Статті в журналах з теми "Pulse Tube Refrigerator"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Pulse Tube Refrigerator.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Pulse Tube Refrigerator".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zhao, Hongxiang, Wei Shao, Zheng Cui, and Chen Zheng. "Multi-Objective Parameter Optimization of Pulse Tube Refrigerator Based on Kriging Metamodel and Non-Dominated Ranking Genetic Algorithms." Energies 16, no. 6 (March 15, 2023): 2736. http://dx.doi.org/10.3390/en16062736.

Повний текст джерела
Анотація:
Structure parameters have an important influence on the refrigeration performance of pulse tube refrigerators. In this paper, a method combining the Kriging metamodel and Non-Dominated Sorting Genetic Algorithm II (NSGA II) is proposed to optimize the structure of regenerators and pulse tubes to obtain better cooling capacity. Firstly, the Kriging metamodel of the original pulse tube refrigerator CFD model is established to improve the iterative solution efficiency. On this basis, NSGA II was applied to the optimization iteration process to obtain the optimal and worst Pareto front solutions for cooling performance, the heat and mass transfer characteristics of which were further analyzed comparatively to reveal the influence mechanism of the structural parameters. The results show that the Kriging metamodel presents a prediction error of about 2.5%. A 31.24% drop in the minimum cooling temperature and a 31.7% increase in cooling capacity at 120 K are achieved after optimization, and the pressure drop loss at the regenerator and the vortex in the pulse tube caused by the structure parameter changes are the main factors influencing the whole cooling performance of the pulse tube refrigerators. The current study provides a scientific and efficient design method for miniature cryogenic refrigerators.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Geng, Zongtao, Wei Shao, Zheng Cui, and Chen Zheng. "Study on Phase-Shift Mechanism and Kriging-Based Global Optimization of the Active Displacer Pulse Tube Refrigerators." Energies 16, no. 11 (May 23, 2023): 4263. http://dx.doi.org/10.3390/en16114263.

Повний текст джерела
Анотація:
Pulse tube refrigerators are widely used in certain special fields, such as aerospace, due to their unique advantages. Compared to a conventional phase shifter, the active displacer helps to achieve a higher cooling efficiency for pulse tube refrigerators. At present, the displacer is mainly studied by one-dimensional simulation, and the optimization method is not perfect due to its poor accuracy, which is not conducive to obtaining a better performance. Based on the current status of displacer research, phase-shift mechanisms of inertance tube pulse tube refrigerators and active displacer pulse tube refrigerators were firstly studied comparatively by multidimensional simulation, and then we determined the crucial effect properties that lead to a better cooling performance for the active displacer pulse tube refrigerator at different cooling temperatures. Finally, an efficient optimization method combining the Kriging model and genetic algorithm is proposed to further improve the cooling performance of the active displacer pulse tube refrigerator. The results show that the active displacer substantially improves the cooling performance compared to the inertance tube mainly by increasing the PV power and enthalpy flow in the pulse tube. The Kriging agent models of active displacer pulse tube refrigerator achieve 98.2%, 98.31%, 97.86%, and 97.32% prediction accuracy for no-load temperature, cooling capacity, coefficient of performance, and total input PV power, respectively. After optimization, the no-load temperature is minimally optimized for a 23.68% reduction compared to the initial one with a relatively high efficiency, and the founded optimization methods can also be weighted for multiple objectives, according to actual needs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Uhlig, Kurt. "dilution refrigerator with pulse-tube refrigerator precooling." Cryogenics 42, no. 2 (February 2002): 73–77. http://dx.doi.org/10.1016/s0011-2275(02)00002-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fang, Chushu, Yanbo Duan, Zekun Wang, Hongyu Dong, Laifeng Li, and Yuan Zhou. "Numerical simulation of three-stage gas coupled pulse tube refrigerator." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012135. http://dx.doi.org/10.1088/1757-899x/1240/1/012135.

Повний текст джерела
Анотація:
Abstract For its compact structure, small mass, no moving parts at low temperature, strong reliability and stability, Stirling pulse tube refrigerator is regarded as a major development direction of small refrigerator at low temperatures. In order to obtain lower no-load cooling temperature and higher cooling efficiency, multi-stage structure is often used in pulse tube refrigerator. In this paper, a model of three-stage gas-coupled pulse tube refrigerator with multi-bypass and double-inlet is designed by SAGE software. The effects of double-inlet and multi-bypass on the gas distribution of multi-stage pulse tube refrigerator are analyzed. The results show that the multi-bypass and double-inlet do not independently affect the minimum temperature of the refrigerator at no-load, and there is a coupling relationship between their opening. The numerical simulation results are of great value for the construction of a three-stage gas coupled pulse tube refrigerator prototype.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shafi, K. A., K. K. A. Rasheed, J. M. George, N. K. M. Sajid, and S. Kasthurirengan. "An adiabatic model for a two-stage double-inlet pulse tube refrigerator." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 7 (July 1, 2008): 1247–52. http://dx.doi.org/10.1243/09544062jmes775.

Повний текст джерела
Анотація:
A numerical modelling technique for predicting the detailed performance of a double-inlet type two-stage pulse tube refrigerator has been developed. The pressure variations in the compressor, pulse tube, and reservoir were derived, assuming the stroke volume variation of the compressor to be sinusoidal. The relationships of mass flowrates, volume flowrates, and temperature as a function of time and position were developed. The predicted refrigeration powers are calculated by considering the effect of void volumes and the phase shift between pressure and mass flowrate. These results are compared with the experimental results of a specific pulse tube refrigerator configuration and an existing theoretical model. The analysis shows that the theoretical predictions are in good agreement with each other.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Richardson, R. N. "Valved pulse tube refrigerator development." Cryogenics 29, no. 8 (August 1989): 850–53. http://dx.doi.org/10.1016/0011-2275(89)90160-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhu, Shaowei. "Step piston pulse tube refrigerator." Cryogenics 64 (November 2014): 63–69. http://dx.doi.org/10.1016/j.cryogenics.2014.09.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meng, Yuan, Zheng Cui, Wei Shao, and Wanxiang Ji. "Numerical Simulation of the Heat Transfer and Flow Characteristics of Pulse Tube Refrigerators." Energies 16, no. 4 (February 14, 2023): 1906. http://dx.doi.org/10.3390/en16041906.

Повний текст джерела
Анотація:
Because of the unequal diameter between the pulse tube and the heat exchangers at the two sides, the fluid entering the pulse tube from the heat exchanger easily forms a complex disturbing flow in the pulse tube, which causes energy loss and affects the performance of a pulse tube refrigerator. This study proposes a numerical model for predicting the flow and heat transfer characteristics of pulse tube refrigerators. Three cases of adding conical tube transitions between the pulse tube and the heat exchanger are studied, and the results indicate that the conical tube transition can reduce the fluid flow velocity at the inlet and outlet of the pulse tube and reduce the size of the vortex at the boundary of the pulse tube. In comparison with the tapered transition of 45° on only one side of the pulse tube, both sides can maintain the temperature gradient, effectively decrease the effect of the disturbing flow, and significantly improve the cooling performance of the pulse tube.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yuyama, J., and M. Kasuya. "Experimental study on refrigeration losses in pulse tube refrigerator." Cryogenics 33, no. 10 (October 1993): 947–50. http://dx.doi.org/10.1016/0011-2275(93)90222-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Snodgrass, Ryan, Joel Ullom, and Scott Backhaus. "Optimal absorption of distributed and conductive heat loads with cryocooler regenerators." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012131. http://dx.doi.org/10.1088/1757-899x/1240/1/012131.

Повний текст джерела
Анотація:
Abstract The second-stage regenerators of pulse tube refrigerators are routinely used to intercept heat in cryogenic systems; however, optimal methods for heat sinking to the regenerator have not been studied in detail. We investigated intermediate cooling methods by densely instrumenting a commercial, two-stage pulse tube refrigerator with thermometers and heaters. We then experimentally emulated heat loads from common sources such as arrays of electrical cables (a single-point conductive load) and 3He return gas for dilution refrigerators (a distributed load). Optimal methods to absorb these heat loads, whether applied independently or simultaneously, are presented. Our study reveals the importance of understanding the response of the regenerator temperature profle for optimal thermal integration of heat loads along the regenerator, i.e., temperatures and heat fows at all heat sink locations. With optimal utilization of regenerator intermediate cooling, 3He fow rates of up to 2 mmol/s can be cooled from 50 K to 3 K and fully condensed using this pulse tube refrigerator; alternatively, the heat leak from over 100 electrical cables can be cooled across that same temperature span while simultaneously condensing 1.4 mmol/s of 3He.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhu, Shaowei, and Yoichi Matsubara. "Numerical method of inertance tube pulse tube refrigerator." Cryogenics 44, no. 9 (September 2004): 649–60. http://dx.doi.org/10.1016/j.cryogenics.2004.03.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Richardson, R. N. "Pulse tube refrigerator — an alternative cryocooler?" Cryogenics 26, no. 6 (June 1986): 331–40. http://dx.doi.org/10.1016/0011-2275(86)90062-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kittel, P. "Ideal orifice pulse tube refrigerator performance." Cryogenics 32, no. 9 (January 1992): 843–44. http://dx.doi.org/10.1016/0011-2275(92)90320-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhu, S. W., and Z. Q. Chen. "Isothermal model of pulse tube refrigerator." Cryogenics 34, no. 7 (January 1994): 591–95. http://dx.doi.org/10.1016/0011-2275(94)90185-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhu, Shaowei, and Zhongqi Chen. "Enthalpy flow rate of a pulse tube in pulse tube refrigerator." Cryogenics 38, no. 12 (December 1998): 1213–16. http://dx.doi.org/10.1016/s0011-2275(98)00107-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Jung, Jeheon, and Sangkwon Jeong. "Optimal pulse tube volume design in GM-type pulse tube refrigerator." Cryogenics 47, no. 9-10 (September 2007): 510–16. http://dx.doi.org/10.1016/j.cryogenics.2007.06.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

SUGANO, Masato, Yoshiki KANAZAWA, and Masakazu NOZAWA. "Relation of Regenerator and Refrigeration Performance for Pulse Tube Refrigerator." Proceedings of Autumn Conference of Tohoku Branch 2016.52 (2016): 204. http://dx.doi.org/10.1299/jsmetohoku.2016.52.204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Choudhari, Mahmadrafik S., B. S. Gawali, and Prateek Malwe. "Numerical Analysis of Inertance Pulse Tube Refrigerator." IOP Conference Series: Materials Science and Engineering 1104, no. 1 (March 1, 2021): 012008. http://dx.doi.org/10.1088/1757-899x/1104/1/012008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

KATO, Yoshitaka. "Model pulse tube refrigerator using plastic bellows." Proceedings of the Symposium on Stirlling Cycle 2021.23 (2021): B1. http://dx.doi.org/10.1299/jsmessc.2021.23.b1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

TANG, Ke. "92 K thermoacoustically driven pulse tube refrigerator." Chinese Science Bulletin 49, no. 14 (2004): 1541. http://dx.doi.org/10.1360/04we0048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Biwa, T. "Thermoacoustic analysis of a pulse tube refrigerator." Journal of Physics: Conference Series 400, no. 5 (December 17, 2012): 052001. http://dx.doi.org/10.1088/1742-6596/400/5/052001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zhu, Shaowei, Yasuhiro Kakimi, and Yoichi Matsubara. "Investigation of active-buffer pulse tube refrigerator." Cryogenics 37, no. 8 (August 1997): 461–71. http://dx.doi.org/10.1016/s0011-2275(97)00080-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Xu, M. Y., A. T. A. M. De Waele, and Y. L. Ju. "A pulse tube refrigerator below 2 K." Cryogenics 39, no. 10 (October 1999): 865–69. http://dx.doi.org/10.1016/s0011-2275(99)00101-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

HAMAJIMA, Takanori, Yoshinori FUNATSU, and Nobuo OKUMURA. "Development of ST Type Pulse Tube Refrigerator." Proceedings of the Symposium on Stirlling Cycle 2000.4 (2000): 141–42. http://dx.doi.org/10.1299/jsmessc.2000.4.141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

DAI, Wei, Yoichi MATSUBARA, Hisayasu KOBAYASHI, and Shuliang ZHOU. "D03 V-M Cycle Pulse Tube Refrigerator." Proceedings of the Symposium on Stirlling Cycle 2001.5 (2001): 121–22. http://dx.doi.org/10.1299/jsmessc.2001.5.121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

David, M., J. C. Maréchal, Y. Simon, and C. Guilpin. "Theory of ideal orifice pulse tube refrigerator." Cryogenics 33, no. 2 (January 1993): 154–61. http://dx.doi.org/10.1016/0011-2275(93)90129-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Uhlig, Kurt. "“Dry” dilution refrigerator with pulse-tube precooling." Cryogenics 44, no. 1 (January 2004): 53–57. http://dx.doi.org/10.1016/j.cryogenics.2003.07.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Tanaeva, I. A., and A. T. A. M. de Waele. "A small helium-3 pulse-tube refrigerator." Cryogenics 45, no. 8 (August 2005): 578–84. http://dx.doi.org/10.1016/j.cryogenics.2005.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Riabzev, S. V., A. M. Veprik, H. S. Vilenchik, and N. Pundak. "Vibration generation in a pulse tube refrigerator." Cryogenics 49, no. 1 (January 2009): 1–6. http://dx.doi.org/10.1016/j.cryogenics.2008.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ki, Taekyung, Sangkwon Jeong, Junseok Ko, and Jiho Park. "Tandem-type pulse tube refrigerator without reservoir." Cryogenics 72 (December 2015): 44–52. http://dx.doi.org/10.1016/j.cryogenics.2015.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yuan, S. W. K. "Validation of the Pulse Tube Refrigerator Model against a Lockheed pulse tube cooler." Cryogenics 36, no. 10 (October 1996): 871–77. http://dx.doi.org/10.1016/0011-2275(96)00051-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

NOHTOMI, Makoto, and Masafumi KATSUTA. "D02 Study on the practical refrigeration system with a pulse tube refrigerator." Proceedings of the Symposium on Stirlling Cycle 2001.5 (2001): 119–20. http://dx.doi.org/10.1299/jsmessc.2001.5.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

GAO, Jin Lin, and Yoichi MATSUBARA. "An Experimental Investigation of 4K Pulse Tube Refrigerator." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 28, no. 9 (1993): 504–10. http://dx.doi.org/10.2221/jcsj.28.504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sai Baba, M., and Pankaj Kumar. "Analysis of Inertance Pulse Tube Refrigerator using CFD." IOP Conference Series: Materials Science and Engineering 954 (October 23, 2020): 012049. http://dx.doi.org/10.1088/1757-899x/954/1/012049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ko, Jun-Seok, Hyo-Bong Kim, Seong-Je Park, Yong-Ju Hong, Han-Kil Yeom, Chung-Soo Lee, In-Su Kang, and Deuk-Yong Koh. "Orientation dependence of GM-type pulse tube refrigerator." Superconductivity and Cryogenics 14, no. 3 (September 30, 2012): 48–52. http://dx.doi.org/10.9714/sac.2012.14.3.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Huang, B. J., and B. W. Sun. "A pulse-tube refrigerator using variable-resistance orifice." Cryogenics 43, no. 1 (January 2003): 59–65. http://dx.doi.org/10.1016/s0011-2275(03)00027-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Shi, Y., and S. Zhu. "Experimental investigation of pulse tube refrigerator with displacer." International Journal of Refrigeration 76 (April 2017): 1–6. http://dx.doi.org/10.1016/j.ijrefrig.2017.01.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

M.V, Preethi, Arunkumar K N, Kasthuriregan S, and Vasudevan K. "NUMERICAL ANALYSIS OF SINGLE STAGE PULSE TUBE REFRIGERATOR." International Journal of Engineering and Technology 9, no. 5 (October 31, 2017): 3798–805. http://dx.doi.org/10.21817/ijet/2017/v9i5/170905138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhu, Shaowei. "Displacer Diameter Effect in Displacer Pulse Tube Refrigerator." IOP Conference Series: Materials Science and Engineering 278 (December 2017): 012143. http://dx.doi.org/10.1088/1757-899x/278/1/012143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wang, Chao, Peiyi Wu, and Zhongqi Chen. "Numerical modelling of an orifice pulse tube refrigerator." Cryogenics 32, no. 9 (January 1992): 785–90. http://dx.doi.org/10.1016/0011-2275(92)90310-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wang, C., P. Y. Wu, and Z. Q. Chen. "Numerical analysis of double-inlet pulse tube refrigerator." Cryogenics 33, no. 5 (May 1993): 526–30. http://dx.doi.org/10.1016/0011-2275(93)90249-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gao, J. L., and Y. Matsubara. "Experimental investigation of 4 K pulse tube refrigerator." Cryogenics 34, no. 1 (January 1994): 25–30. http://dx.doi.org/10.1016/0011-2275(94)90048-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wang, C., P. Wu, and Z. Chen. "Modified orifice pulse tube refrigerator without a reservoir." Cryogenics 34, no. 1 (January 1994): 31–36. http://dx.doi.org/10.1016/0011-2275(94)90049-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

de Boer, P. C. T. "Thermodynamic analysis of the basic pulse-tube refrigerator." Cryogenics 34, no. 9 (January 1994): 699–711. http://dx.doi.org/10.1016/0011-2275(94)90154-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

de Boer, P. C. T. "Analysis of basic pulse-tube refrigerator with regenerator." Cryogenics 35, no. 9 (September 1995): 547–53. http://dx.doi.org/10.1016/0011-2275(95)91252-g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Wang, C., S. Q. Wang, J. H. Cai, and Z. Yuan. "Experimental study of multi-bypass pulse-tube refrigerator." Cryogenics 35, no. 9 (September 1995): 555–58. http://dx.doi.org/10.1016/0011-2275(95)91253-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Jung, Jeheon, and Sangkwon Jeong. "Expansion efficiency of pulse tube in pulse tube refrigerator including shuttle heat transfer effect." Cryogenics 45, no. 5 (May 2005): 386–96. http://dx.doi.org/10.1016/j.cryogenics.2005.01.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ki, Taekyung, and Sangkwon Jeong. "Study for coating effect of various materials in pulse tube of pulse tube refrigerator." Cryogenics 52, no. 10 (October 2012): 518–22. http://dx.doi.org/10.1016/j.cryogenics.2012.06.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Panda, Debashis, Ashok K. Satapathy, and Sunil K. Sarangi. "Thermoeconomic performance optimization of an orifice pulse tube refrigerator." Science and Technology for the Built Environment 26, no. 4 (February 2, 2020): 492–510. http://dx.doi.org/10.1080/23744731.2020.1717245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ki, Tae-Kyung, and Sang-Kwon Jeong. "Design of compact phase controller for pulse tube refrigerator." Progress in Superconductivity and Cryogenics 13, no. 2 (May 31, 2011): 25–28. http://dx.doi.org/10.9714/psac.2011.13.2.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії