Добірка наукової літератури з теми "Pulse Tube Refrigerator"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pulse Tube Refrigerator".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Pulse Tube Refrigerator"

1

Zhao, Hongxiang, Wei Shao, Zheng Cui, and Chen Zheng. "Multi-Objective Parameter Optimization of Pulse Tube Refrigerator Based on Kriging Metamodel and Non-Dominated Ranking Genetic Algorithms." Energies 16, no. 6 (March 15, 2023): 2736. http://dx.doi.org/10.3390/en16062736.

Повний текст джерела
Анотація:
Structure parameters have an important influence on the refrigeration performance of pulse tube refrigerators. In this paper, a method combining the Kriging metamodel and Non-Dominated Sorting Genetic Algorithm II (NSGA II) is proposed to optimize the structure of regenerators and pulse tubes to obtain better cooling capacity. Firstly, the Kriging metamodel of the original pulse tube refrigerator CFD model is established to improve the iterative solution efficiency. On this basis, NSGA II was applied to the optimization iteration process to obtain the optimal and worst Pareto front solutions for cooling performance, the heat and mass transfer characteristics of which were further analyzed comparatively to reveal the influence mechanism of the structural parameters. The results show that the Kriging metamodel presents a prediction error of about 2.5%. A 31.24% drop in the minimum cooling temperature and a 31.7% increase in cooling capacity at 120 K are achieved after optimization, and the pressure drop loss at the regenerator and the vortex in the pulse tube caused by the structure parameter changes are the main factors influencing the whole cooling performance of the pulse tube refrigerators. The current study provides a scientific and efficient design method for miniature cryogenic refrigerators.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Geng, Zongtao, Wei Shao, Zheng Cui, and Chen Zheng. "Study on Phase-Shift Mechanism and Kriging-Based Global Optimization of the Active Displacer Pulse Tube Refrigerators." Energies 16, no. 11 (May 23, 2023): 4263. http://dx.doi.org/10.3390/en16114263.

Повний текст джерела
Анотація:
Pulse tube refrigerators are widely used in certain special fields, such as aerospace, due to their unique advantages. Compared to a conventional phase shifter, the active displacer helps to achieve a higher cooling efficiency for pulse tube refrigerators. At present, the displacer is mainly studied by one-dimensional simulation, and the optimization method is not perfect due to its poor accuracy, which is not conducive to obtaining a better performance. Based on the current status of displacer research, phase-shift mechanisms of inertance tube pulse tube refrigerators and active displacer pulse tube refrigerators were firstly studied comparatively by multidimensional simulation, and then we determined the crucial effect properties that lead to a better cooling performance for the active displacer pulse tube refrigerator at different cooling temperatures. Finally, an efficient optimization method combining the Kriging model and genetic algorithm is proposed to further improve the cooling performance of the active displacer pulse tube refrigerator. The results show that the active displacer substantially improves the cooling performance compared to the inertance tube mainly by increasing the PV power and enthalpy flow in the pulse tube. The Kriging agent models of active displacer pulse tube refrigerator achieve 98.2%, 98.31%, 97.86%, and 97.32% prediction accuracy for no-load temperature, cooling capacity, coefficient of performance, and total input PV power, respectively. After optimization, the no-load temperature is minimally optimized for a 23.68% reduction compared to the initial one with a relatively high efficiency, and the founded optimization methods can also be weighted for multiple objectives, according to actual needs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Uhlig, Kurt. "dilution refrigerator with pulse-tube refrigerator precooling." Cryogenics 42, no. 2 (February 2002): 73–77. http://dx.doi.org/10.1016/s0011-2275(02)00002-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fang, Chushu, Yanbo Duan, Zekun Wang, Hongyu Dong, Laifeng Li, and Yuan Zhou. "Numerical simulation of three-stage gas coupled pulse tube refrigerator." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012135. http://dx.doi.org/10.1088/1757-899x/1240/1/012135.

Повний текст джерела
Анотація:
Abstract For its compact structure, small mass, no moving parts at low temperature, strong reliability and stability, Stirling pulse tube refrigerator is regarded as a major development direction of small refrigerator at low temperatures. In order to obtain lower no-load cooling temperature and higher cooling efficiency, multi-stage structure is often used in pulse tube refrigerator. In this paper, a model of three-stage gas-coupled pulse tube refrigerator with multi-bypass and double-inlet is designed by SAGE software. The effects of double-inlet and multi-bypass on the gas distribution of multi-stage pulse tube refrigerator are analyzed. The results show that the multi-bypass and double-inlet do not independently affect the minimum temperature of the refrigerator at no-load, and there is a coupling relationship between their opening. The numerical simulation results are of great value for the construction of a three-stage gas coupled pulse tube refrigerator prototype.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shafi, K. A., K. K. A. Rasheed, J. M. George, N. K. M. Sajid, and S. Kasthurirengan. "An adiabatic model for a two-stage double-inlet pulse tube refrigerator." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, no. 7 (July 1, 2008): 1247–52. http://dx.doi.org/10.1243/09544062jmes775.

Повний текст джерела
Анотація:
A numerical modelling technique for predicting the detailed performance of a double-inlet type two-stage pulse tube refrigerator has been developed. The pressure variations in the compressor, pulse tube, and reservoir were derived, assuming the stroke volume variation of the compressor to be sinusoidal. The relationships of mass flowrates, volume flowrates, and temperature as a function of time and position were developed. The predicted refrigeration powers are calculated by considering the effect of void volumes and the phase shift between pressure and mass flowrate. These results are compared with the experimental results of a specific pulse tube refrigerator configuration and an existing theoretical model. The analysis shows that the theoretical predictions are in good agreement with each other.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Richardson, R. N. "Valved pulse tube refrigerator development." Cryogenics 29, no. 8 (August 1989): 850–53. http://dx.doi.org/10.1016/0011-2275(89)90160-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhu, Shaowei. "Step piston pulse tube refrigerator." Cryogenics 64 (November 2014): 63–69. http://dx.doi.org/10.1016/j.cryogenics.2014.09.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meng, Yuan, Zheng Cui, Wei Shao, and Wanxiang Ji. "Numerical Simulation of the Heat Transfer and Flow Characteristics of Pulse Tube Refrigerators." Energies 16, no. 4 (February 14, 2023): 1906. http://dx.doi.org/10.3390/en16041906.

Повний текст джерела
Анотація:
Because of the unequal diameter between the pulse tube and the heat exchangers at the two sides, the fluid entering the pulse tube from the heat exchanger easily forms a complex disturbing flow in the pulse tube, which causes energy loss and affects the performance of a pulse tube refrigerator. This study proposes a numerical model for predicting the flow and heat transfer characteristics of pulse tube refrigerators. Three cases of adding conical tube transitions between the pulse tube and the heat exchanger are studied, and the results indicate that the conical tube transition can reduce the fluid flow velocity at the inlet and outlet of the pulse tube and reduce the size of the vortex at the boundary of the pulse tube. In comparison with the tapered transition of 45° on only one side of the pulse tube, both sides can maintain the temperature gradient, effectively decrease the effect of the disturbing flow, and significantly improve the cooling performance of the pulse tube.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yuyama, J., and M. Kasuya. "Experimental study on refrigeration losses in pulse tube refrigerator." Cryogenics 33, no. 10 (October 1993): 947–50. http://dx.doi.org/10.1016/0011-2275(93)90222-a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Snodgrass, Ryan, Joel Ullom, and Scott Backhaus. "Optimal absorption of distributed and conductive heat loads with cryocooler regenerators." IOP Conference Series: Materials Science and Engineering 1240, no. 1 (May 1, 2022): 012131. http://dx.doi.org/10.1088/1757-899x/1240/1/012131.

Повний текст джерела
Анотація:
Abstract The second-stage regenerators of pulse tube refrigerators are routinely used to intercept heat in cryogenic systems; however, optimal methods for heat sinking to the regenerator have not been studied in detail. We investigated intermediate cooling methods by densely instrumenting a commercial, two-stage pulse tube refrigerator with thermometers and heaters. We then experimentally emulated heat loads from common sources such as arrays of electrical cables (a single-point conductive load) and 3He return gas for dilution refrigerators (a distributed load). Optimal methods to absorb these heat loads, whether applied independently or simultaneously, are presented. Our study reveals the importance of understanding the response of the regenerator temperature profle for optimal thermal integration of heat loads along the regenerator, i.e., temperatures and heat fows at all heat sink locations. With optimal utilization of regenerator intermediate cooling, 3He fow rates of up to 2 mmol/s can be cooled from 50 K to 3 K and fully condensed using this pulse tube refrigerator; alternatively, the heat leak from over 100 electrical cables can be cooled across that same temperature span while simultaneously condensing 1.4 mmol/s of 3He.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Pulse Tube Refrigerator"

1

Schor, Alisha R. (Alisha Robin). "Design of a single orifice pulse tube refrigerator through the development of a first-order model." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40482.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.
"June 2007."
Includes bibliographical references (p. 41).
A first order model for the behavior of a linear orifice pulse tube refrigerator (OPTR) was developed as a design tool for construction of actual OPTRs. The model predicts cooling power as well as the pressure/volume relationships for various segments of the refrigerator with minimal computational requirements. The first portion of this document describes the development of this model and its simplifications relative to higher-order numerical models. The second portion of this document details a physical implementation of the pulse tube and compares its performance to the predicted performance of the model. It was found that the model accurately predicted qualitative behavior and trends of the orifice pulse tube refrigerator, but that the predicted temperature difference was approximately five times higher than the measured temperature difference. It is believed that the model can be improved with provisions for flow choking as well as warnings for behavior outside of the accepted operating conditions.
by Alisha R. Schor.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Emery, Nick. "Cryogenic refrigeration using an acoustic stirling expander." Thesis, University of Canterbury. Mechanical Engineering, 2011. http://hdl.handle.net/10092/5306.

Повний текст джерела
Анотація:
A single-stage pulse tube cryocooler was designed and fabricated to provide cooling at 50 K for a high temperature superconducting (HTS) magnet, with a nominal electrical input frequency of 50 Hz and a maximum mean helium working gas pressure of 2.5 MPa. Sage software was used for the thermodynamic design of the pulse tube, with an initially predicted 30 W of cooling power at 50 K, and an input indicated power of 1800 W. Sage was found to be a useful tool for the design, and although not perfect, some correlation was established. The fabricated pulse tube was closely coupled to a metallic diaphragm pressure wave generator (PWG) with a 60 ml swept volume. The pulse tube achieved a lowest no-load temperature of 55 K and provided 46 W of cooling power at 77 K with a p-V input power of 675 W, which corresponded to 19.5% of Carnot COP. Recommendations included achieving the specified displacement from the PWG under the higher gas pressures, design and development of a more practical co-axial pulse tube and a multi-stage configuration to achieve the power at lower temperatures required by HTS.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sultan, Ahmad. "Dynamique dans les fluides quantiques : Etude des excitations collectives dans un liquide de Fermi 2D." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00768021.

Повний текст джерела
Анотація:
L'4He et l'3He sont des systèmes modèles pour comprendre les propriétés quantiques de la matière fortement corrélée. C'est pour cette raison que plusieurs études ont été consacrées à la compréhension de leur dynamique. A basses températures où les effets quantiques jouent un rôle essentiel, les excitations élémentaires dans l'4He sont décrites par un mode collectif d'excitations: phonon-roton. Par contre pour un système d'3He la description est plus complexe, le spectre d'excitation a deux composantes: un mode collectif (zéro-son) et un continuum d'excitations incohérentes de type particule-trou. Les deux sont bien décrites par la théorie de Landau des liquides de Fermi qui trouve sa validité pour des petits vecteurs d'onde. Jusqu'à présent, on supposait que la dynamique dans les liquides de Fermi à vecteurs d'onde élevés était essentiellement incohérente. Cette thèse porte sur l'exploration, par diffusion inélastique de neutrons, des excitations collectives dans l'3He liquide 2D adsorbé sur un substrat de graphite. Un tel travail expérimental requiert trois ingrédients essentiels : un réfrigérateur à dilution afin de travailler à basses températures, un spectromètre temps de vol afin de mesurer le facteur de structure dynamique du système et un substrat solide (graphite exfolié ZYX) pour la préparation de films d'3He-2D par physisorption. Nos expériences sur ces films d'3He déposés en deuxième couche sur de l'4He solide adsorbé sur le graphite nous ont permis de faire les observations suivantes : à petit vecteur d'onde, le zéro-son est plus proche de la bande particule-trou que celui observé dans le cas de l'3He massif, tandis qu'à fort vecteur d'onde le mode collectif entre dans le continuum et réapparait de l'autre côté. Cette nouvelle branche, observée pour la première fois, est aujourd'hui décrite par la théorie dynamique à N-corps développée par nos collaborateurs de l'université Johannes Kepler de Linz, Autriche. Au cours de ce travail de thèse plusieurs techniques expérimentales ont été développées, en particulier, un réfrigérateur à dilution sans fluide cryogénique robuste adapté à des expériences de diffusion neutronique. Son optimisation a permis de réduire le temps de refroidissement de ce type de réfrigérateurs.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Conrad, Theodore Judson. "Miniaturized pulse tube refrigerators." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41108.

Повний текст джерела
Анотація:
Pulse tube refrigerators (PTR) are robust, rugged cryocoolers that do not have a moving component at their cold ends. They are often employed for cryogenic cooling of high performance electronics in space applications where reliability is paramount. Miniaturizing these refrigerators has been a subject of intense research interest because of the benefits of minimal size and weight for airborne operation and because miniature coolers would be an enabling technology for other applications. Despite much effort, the extent of possible PTR miniaturization is still uncertain. To partially remedy this, an investigation of the miniaturization of pulse tube refrigerators has been undertaken using several numerical modeling techniques. In support of these models, experiments were performed to determine directional hydrodynamic parameters characteristic of stacked screens of #635 stainless steel and #325 phosphor bronze wire mesh, two fine-mesh porous materials suitable for use in the regenerator and heat exchanger components of miniature PTRs. Complete system level and pulse tube component level CFD models incorporating these parameters were then employed to quantitatively estimate the effects of several phenomena expected to impact the performance of miniature PTRs. These included the presence of preferential flow paths in an annular region near the regenerator wall and increased viscous and thermal boundary layer thicknesses relative to the pulse tube diameter. The effects of tapering or chamfering the junctions between components of dissimilar diameters were also investigated. The results of these models were subsequently applied to produce successively smaller micro-scale PTR models having total volumes as small as 0.141 cc for which sufficient net cooling was predicted to make operation at cryogenic temperatures feasible. The results of this investigation provide design criteria for miniaturized PTRs and establish the feasibility of their operation at frequencies up to 1000 Hz with dimensions roughly an order of magnitude smaller than those that have recently been demonstrated, provided that challenges related to their regenerator fillers and compressors can be addressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Watanabe, Atsuhiko. "Studies of superfluid stirling and pulse tube refrigeration." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

David-Calvet, Marc. "Refrigeration par tube a gaz pulse : etude theorique et experimentale." Paris 6, 1992. http://www.theses.fr/1992PA066110.

Повний текст джерела
Анотація:
Le tube a gaz pulse est un cryogenerateur qui, par sa grande fiabilite (pas de partie mecanique fonctionnant a froid ni orifice a basse temperature), sa relative facilite de construction et son importante capacite de refrigeration, est un candidat potentiel pour, par exemple, les applications embarquees sur satellites. Le principal objectif de cette these est d'expliquer le fonctionnement d'un tube a gaz pulse (t. G. P. ) avec orifice. Un modele analytique du t. G. P. Ideal a ete developpe. Le mecanisme des flux de chaleur aux extremites du tube est explique comme le resultat du cycle d'hysteresis subi par les elements de gaz entrant et quittant le tube. Nous avons demontre que, dans les conditions normales de travail le rapport theorie/experience calcule pour la puissance extraite par le gaz a la source froide (egale a celle evacuee a la source chaude) est seulement de 1. 2 alors que ceux des modeles precedents sont compris entre 3 et 5#|#1#,#2#|. Le modele etudie est valable pour n'importe quelle variation temporelle de pression. Pour une forme de pression donnee (mesuree dans le tube, est exprimee avec un minimum de parametres independants, permettant ainsi une optimisation ulterieure du systeme. Les mesures de temperature et de vitesse le long du tube sont en bon accord avec les calculs numeriques. Avec un t. G. P. Ameliore dit hybride, nous obtenons une efficacite comparable a celle d'un cryogenerateur du commerce type gifford-mac mahon. La temperature limite de notre t. G. P. A double entree est de 32 k pour une puissance de 8w a 77k
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mulcahey, Thomas Ian. "Convective instability of oscillatory flow in pulse tube cryocoolers due to asymmetric gravitational body force." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51808.

Повний текст джерела
Анотація:
Pulse tube cryocoolers (PTCs) are among the most attractive choices of refrigerators for applications requiring up to 1 kW of cooling in the temperature range of 4-123 K as a result of the high relative efficiency of the Stirling cycle, the reliability of linear compressors, and the lack of cryogenic moving parts resulting in long life and low vibration signature. Recently, PTCs have been successfully used in applications in the 150 K range, extending the useful range of the device beyond the traditional cryogenic regime. A carefully designed cylindrical cavity referred to as the pulse tube replaces the mechanical expander piston found in a Stirling machine. A network consisting of the pulse tube, inertance tube, and surge volume invoke out-of-phase pressure and mass flow oscillations while eliminating all moving parts in the cold region of the device, significantly improving reliability over Stirling cryocoolers. Terrestrial applications of PTCs expose a fundamental flaw. Many PTCs only function properly in a narrow range of orientations, with the cold end of the pulse tube pointed downward with respect to gravity. Unfavorable orientation of the cold head often leads to a catastrophic loss of cooling, rendering the entire cryocooler system inoperable. Previous research indicates that cooling loss is most likely attributed to secondary flow patterns in the pulse tube caused by free convection. Convective instability is initiated as a result of non-uniform density gradients within the pulse tube. The ensuing secondary flow mixes the cryogen and causes enhanced thermal transport between the warm and cold heat exchangers of the cryocooler. This study investigates the nonlinear stabilizing effect of fluid oscillation on Rayleigh-Bénard instability in a cryogenic gas subject to misalignment between gravitational body force and the primary flow direction. The results are directly applicable to the flow conditions frequently experienced in PTCs. Research has shown that the convective component can be minimized by parametrically driven fluid oscillation as a result of sinusoidal pressure excitation; however, a reliable method of predicting the influence of operating parameters has not been reported. In this dissertation, the entire PTC domain is first fully simulated in three dimensions at various angles of inclination using a hybrid method of finite volume and finite element techniques in order to incorporate conjugate heat transfer between fluid domains and their solid containment structures. The results of this method identify the pulse tube as the sole contributor to convective instability, and also illustrate the importance of pulse tube design by incorporating a comparison between two pulse tubes with constant volume but varying aspect ratio. A reduced domain that isolates the pulse tube and its adjacent components is then developed and simulated to improve computational efficiency, facilitating the model’s use for parametric study of the driving variables. A parametric computational study is then carried out and analyzed for pulse tubes with cold end temperatures ranging from 4 K to 80 K, frequencies between 25-60 Hz, mass flow - pressure phase relationships of -30◦ and +30◦, and Stokes thickness-based Reynolds numbers in the range of 43-350, where the turbulent transition occurs at 500. In order to validate the computational models reported and therefore justify their suitability to perform parametric exploration, the CFD codes are applied to a commercially developed single stage PTR design. The results of the CFD model are compared to laboratory-measured values of refrigeration power at temperatures ranging from 60 K to 120 K at inclination angles of 0◦ and 91◦. The modeled results are shown to agree with experimental values with less than 8.5% error for simulation times of approximately six days using high performance computing (HPC) resources through Georgia Tech’s Partnership for Advanced Computing (PACE) cluster resource, and 10 days on a common quad-core desktop computer. The results of the computational parametric study as well as the commercial cryocooler data sets are compiled in a common analysis of the body of data as a whole. The results are compared to the current leading pulse tube convective stability model to improve the reliability of the predictions and bracket the range of losses expected as a function of pulse tube convection number. Results can be used to bracket the normalized cooling loss as a function of the pulse tube convection number NPTC. Experimental data and simulated results indicate that a value of NPTC greater than 10 will yield a loss no greater than 10% of the net pulse tube energy flow at any angle. A value of NPTC greater than 40 is shown to yield a loss no greater than 1% of the net pulse tube energy flow at all angles investigated. The computational and experimental study completed in this dissertation addresses static angles of inclination. Recent interest in the application of PTCs to mobile terrestrial platforms such as ships, aircraft, and military vehicles introduces a separate regime wherein the angle of inclination is dynamically varying. To address this research need, the development of a single axis rotating cryogenic vacuum facility is documented. A separate effects apparatus with interchangeable pulse tube components has also been built in a modular fashion to accommodate future research needs.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wilson, Kyle B. "The use of Sage simulation software in the design and testing of Sunpower's pulse tube cryocooler." Ohio : Ohio University, 2005. http://www.ohiolink.edu/etd/view.cgi?ohiou1126908659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Clearman, William M. "Measurement and correlation of directional permeability and Forchheimer's inertial coefficient of micro porous structures used in pulse tube cryocoolers." Thesis, Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07092007-111541/.

Повний текст джерела
Анотація:
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008.
Kirkconnell, Carl S., Committee Member ; Ghiaasiaan, S. Mostafa, Committee Chair ; Desai, Prateen V., Committee Member ; Jeter, Sheldon M., Committee Member.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saez, Sébastien. "Magnétomètres - Gradiomètres à capteurs supraconducteurs à haute température critique; Mise en oeuvre dans un cryogénérateur portable à tube pulsé." Phd thesis, Université de Caen, 2000. http://tel.archives-ouvertes.fr/tel-00011006.

Повний текст джерела
Анотація:
Les SQUID (Superconducting QUantum Interference Device), à haute température critique, permettent la réalisation de magnétomètres directionnels à haute sensibilité, pour des fréquences allant du continu à plusieurs centaines de kHz. Les seuils de détection atteints en chambre blindée autorisent la caractérisation fine du biomagnétisme, dont celui du muscle cardiaque. L'objectif de cette thèse était de réaliser un magnétomètre portable, opérant la détection des signaux cardiaques en milieu magnétiquement non-blindé. La modélisation du signal magnétique cardiaque par un moment magnétique variable permet de montrer qu'une mesure optimale de ce champ peut être réduite à celle de sa composante normale au plan d'étude. Nous montrons également qu'une résolution de $100\,\mathrm(fT)/\sqrt(\mathrm(Hz))$ dans une bande passante de 100 Hz est nécessaire à sa caractérisation. Cependant, de nombreuses sources magnétiques contrarient toutes mesures sans blindage. Ces sources parasites, que nous avons analysées, peuvent être discriminées par leur évolution spatiale. Un sytème gradiométrique permet alors d'extraire le signal magnétique cardiaque en réalisant un filtrage spatial. Un tel dispositif, mis en oeuvre avec deux flux-gates et associé à un processeur de signal numérique (DSP), permet la mise en évidence des pics magnétiques du signal cardiaque et montre l'utilité et la souplesse du traitement numérique en temps réel pour notre application, y compris en milieu ouvert. Un magnétomètre à SQUID dc refroidi par un système cryogénique portable, du type tube à gaz pulsé, s'est révélé inadapté à la magnéto-cardiographie, le bruit lié à ce cryogénérateur pertubant trop largement les mesures dans la bande passante utile. Plusieurs systèmes gradiométriques à SQUID, refroidis par azote liquide, ont été mis en oeuvre. Le signal magnétique cardiaque a été mesuré sans blindage. Des techniques de réductions du bruit à basse fréquence du capteur permettront une meilleure caractérisation du signal cardiaque.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Pulse Tube Refrigerator"

1

1939-, Radebaugh Ray, Zimmerman James Edward 1923-, and National Institute of Standards and Technology (U.S.), eds. Analytical model for the refrigeration power of the orifice pulse tube refrigerator. Boulder, Colo. (325 Broadway, Boulder 80303-3328): U.S. Dept. of Commerce, National Institute of Standards and Technology, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Herrmann, Steffen. Measurements of the efficiency and refrigeration power of pulse-tube refrigerators. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

E, Calkins Myron, and United States. National Aeronautics and Space Administration., eds. A small, single stage orifice pulse tube cryocooler demonstration: Final report. [Washington, DC: National Aeronautics and Space Administration, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Pulse Tube Refrigerator"

1

Will, M. E., and A. T. A. M. de Waele. "Counterflow Pulse-tube Refrigerator." In Cryocoolers 13, 251–60. Boston, MA: Springer US, 2005. http://dx.doi.org/10.1007/0-387-27533-9_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Longsworth, R. C. "Early Pulse Tube Refrigerator Developments." In Cryocoolers 9, 261–68. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5869-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sai Baba, M., Pankaj Kumar, and G. Sireesh Kumar. "A Review on Pulse Tube Refrigerator." In Advances in Mechanical Engineering, 433–45. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0942-8_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

David, M., and J.-C. Maréchal. "80 K Miniature Pulse Tube Refrigerator Performance." In Cryocoolers 9, 223–28. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5869-9_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Shaowei, Masahiro Ichikawa, Masafumi Nogawa, and Tatsuo Inoue. "Two-Stage 4 K Pulse Tube Refrigerator." In Cryocoolers 11, 243–47. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47112-4_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Halouane, A., J. C. Marechal, and Y. Simon. "Design of a Miniature Pulse Tube Refrigerator." In Cryocoolers 11, 317–26. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47112-4_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ravikumar, K. V., and Y. Matsubara. "Pulse Tube Refrigerator Based on Fluid Inertia." In Advances in Cryogenic Engineering, 1911–18. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9047-4_241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Thummes, G., R. Landgraf, F. Giebeler, M. Mück, and C. Heiden. "Pulse Tube Refrigerator for High-TC Squid Operation." In A Cryogenic Engineering Conference Publication, 1463–70. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0373-2_184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Watanabe, A., G. W. Swift, and J. G. Brisson. "Superfluid Orifice Pulse Tube Refrigerator below 1 Kelvin." In A Cryogenic Engineering Conference Publication, 1519–26. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0373-2_191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Koh, D. Y., S. J. Park, S. J. Lee, H. K. Yeom, Y. J. Hong, and S. K. Jeong. "An Experimental Investigation of the Pulse Tube Refrigerator." In Cryocoolers 9, 239–45. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5869-9_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Pulse Tube Refrigerator"

1

Ashwin, T. R., G. S. V. L. Narasimham, and Subhash Jacob. "NUMERICAL MODELING OF INERTANCE TUBE PULSE TUBE REFRIGERATOR." In Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.560.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Radebaugh, Ray, Peter Bradley, Bayram Arman, Dante Bonaquist, and Kirk Larson. "Pulse Tube Refrigerator for Hydrogen Densification." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koshimizu, Takao, Hiromi Kubota, Yasuyuki Takata, and Takehiro Ito. "Numerical Simulation of Heat Pumping in a Pulse Tube Refrigerator." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32729.

Повний текст джерела
Анотація:
Numerical simulation of heat and fluid flow in a basic and an orifice pulse tube refrigerator have been performed to visualize heat pumping generated in the regenerator and the pulse tube, and to clarify the difference in heat pumping caused by the phase difference between pressure and displacement of gas. Common components of the regenerator and the pulse tube are used in the basic and the orifice pulse tube refrigerator. The flow in the tube is assumed to be one-dimensional and compressible. As governing equations, the continuity, momentum and energy equations are used in this study. From the temperature and velocity field obtained as a result of the simulation, the relation between the displacement and the temperature change of gas elements is visually clarified, and consequently it is found that the characteristic that the temperatures of gas elements are nearly higher than those of the regenerator material or the pulse-tube wall during compression and lower during expansion is very important for the heat pumping in basic and orifice pulse tube refrigerators. Furthermore, the behavior of heat pumping in the basic and the orifice pulse tube refrigerator is illustrated by analyzing the relation between the displacement of gas elements and heat quantity transferred to the wall from the gas elements, and the difference in heat pumping between the basic and the orifice pulse tube refrigerator is made clear.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jin, T. "Cryogenic-temperature thermoacoustically driven pulse tube refrigerator." In ADVANCES IN CRYOGENIC ENGINEERING: Proceedings of the Cryogenic Engineering Conference - CEC. AIP, 2002. http://dx.doi.org/10.1063/1.1472102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

David, Marc, Jean-Claude Maréchal, and Yvan Simon. "Development of a Miniature Pulse Tube Refrigerator." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tanaeva, I. A. "High-frequency Pulse-tube Refrigerator for 4 K." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2006. http://dx.doi.org/10.1063/1.2202491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jensen, Scott M., J. Clair Batty, William A. Roettker, and Matthew J. Felt. "Cooling SABER with a miniature pulse tube refrigerator." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by James B. Heaney and Lawrence G. Burriesci. SPIE, 1998. http://dx.doi.org/10.1117/12.323740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hozumi, Yoshikazu. "Simulation of Thermodynamics Aspects about Pulse Tube Refrigerator." In ADVANCES IN CRYOGENIC ENGEINEERING: Transactions of the Cryogenic Engineering Conference - CEC. AIP, 2004. http://dx.doi.org/10.1063/1.1774844.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hamaguchi, Kazuhiro, Yoshikatsu Hiratsuka, and Takeshi Hoshino. "Performance Characteristics of an Atmospheric Pulse Tube Refrigerator." In 2nd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jafarian, A., M. H. Saidi, and S. K. Hannani. "Optimization Analysis of Alternate Tube Section for Pulse Tube Refrigerators." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95138.

Повний текст джерела
Анотація:
In spite of numerous attempts which have been made during the last decade to optimize pulse tube refrigerators, still theoretical and analytical realization of this device needs to be thoroughly explained. In this paper, in addition to the oscillatory flow analysis in the pulse tube refrigerator through a simple analytical model, the performance of the alternate tube section of this device is analyzed using a generalized efficiency, based on the entropy generation rate. In this model, in order to extract the entropy generation rate and the dissipative terms caused by fluid friction and heat flow in alternate tube, simplified momentum and energy equations are solved analytically and velocity and temperature fields for the oscillatory flow are obtained. The method of entropy generation minimization is used to determine the optimum operation conditions that minimize process irreversibility. Based on the developed theoretical model, the influence of important parameters such as kinetic Reynolds number, ratio of tube length to its diameter, frequency of oscillations and temperature gradient along the tube on the pulse tube performance is investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Pulse Tube Refrigerator"

1

Storch, Peter J. Analytical model for the refrigeration power of the orifice pulse tube refrigerator. Gaithersburg, MD: National Bureau of Standards, 1990. http://dx.doi.org/10.6028/nist.tn.1343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Panda, Debashis, K. N. S. Manoj, Sunil K. Sarangi, and R. K. Sahoo. A Mathematical Model and Design Software of GM-Type Pulse Tube Refrigerator. Peeref, September 2022. http://dx.doi.org/10.54985/peeref.2209p4039956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Swift, G., and D. Gardner. Downhole pulse tube refrigerators. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/555366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Herrmann, Steffen. Measurements of the efficiency and refrigeration power of pulse-tube refrigerators. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.tn.1301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії