Добірка наукової літератури з теми "Pulse source of magnetic field"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pulse source of magnetic field".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pulse source of magnetic field"
Mamedov, N. V., A. S. Rohmanenkov, and A. A. Solodovnikov. "Magnetic field influence on the Penning discharge characteristics." Journal of Physics: Conference Series 2064, no. 1 (November 1, 2021): 012039. http://dx.doi.org/10.1088/1742-6596/2064/1/012039.
Повний текст джерелаZhang Jun, 张军, 靳振兴 Jin Zhenxing, 张点 Zhang Dian, 杨建华 Yang Jianhua, 舒挺 Shu Ting, 钟辉煌 Zhong Huihuang, and 周生岳 Zhou Shengyue. "4.8 MJ magnetic field excitation source using pulse width modulation technique." High Power Laser and Particle Beams 22, no. 6 (2010): 1323–26. http://dx.doi.org/10.3788/hplpb20102206.1323.
Повний текст джерелаDÖRR, M., D. ECKERT, H. ESCHRIG, F. FISCHER, P. FULDE, R. GROESSINGER, W. GRÜNBERGER, et al. "THE DRESDEN 100 T/10 ms PROJECT: A HIGH MAGNETIC FIELD FACILITY AT AN IR-FEL." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3397. http://dx.doi.org/10.1142/s0217979202014541.
Повний текст джерелаEspina-Hernández, J. H., Roland Grössinger, Reiko Sato Turtelli, and J. M. Hallen. "A New Measuring System for Determining the Magnetic Viscosity in Permanent Magnets." Advanced Materials Research 68 (April 2009): 12–20. http://dx.doi.org/10.4028/www.scientific.net/amr.68.12.
Повний текст джерелаFitak, Robert R., Eleanor M. Caves, and Sönke Johnsen. "Orientation in Pill Bugs: An Interdisciplinary Activity to Engage Students in Concepts of Biology, Physics & Circular Statistics." American Biology Teacher 80, no. 8 (October 1, 2018): 608–18. http://dx.doi.org/10.1525/abt.2018.80.8.608.
Повний текст джерелаAbedi-Varaki, Mehdi. "Effect of obliquely external magnetic field on the intense laser pulse propagating in plasma medium." International Journal of Modern Physics B 34, no. 07 (March 11, 2020): 2050044. http://dx.doi.org/10.1142/s0217979220500447.
Повний текст джерелаYANG, YANJU, CHUNLEI CHENG, WENYAO YANG, JIE LI, ZHENGFU CHENG, and XIAOYU ZHANG. "STUDY OF ACOUSTIC SOURCE EXCITED BY PULSED MAGNETIC FIELD." Journal of Mechanics in Medicine and Biology 21, no. 05 (April 14, 2021): 2140008. http://dx.doi.org/10.1142/s021951942140008x.
Повний текст джерелаKondratenko, I. P., A. N. Karlov, and R. S. Kryshchuk. "CONTROL STRATEGIES TO ELIMINATE HARMONICS IN POWER GENERATION SYSTEMS BASED ON A DOUBLY-FED INDUCTION GENERATOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini, no. 61 (May 25, 2022): 5–12. http://dx.doi.org/10.15407/publishing2022.61.005.
Повний текст джерелаIZUMIDA, SHINJI, SHINGO ONO, ZHENLIN LIU, HIDEYUKI OHTAKE, and NOBUHIKO SARUKURA. "INTENSE THz-RADIATION SOURCES USING SEMICONDUCTORS IRRADIATED WITH FEMTOSECOND LASER PULSES IN A MAGNETIC FIELD." Journal of Nonlinear Optical Physics & Materials 08, no. 01 (March 1999): 71–87. http://dx.doi.org/10.1142/s0218863599000060.
Повний текст джерелаBespalov, Peter A., and Olga N. Savina. "Excitation of the main giant pulses from the Crab pulsar." Monthly Notices of the Royal Astronomical Society 498, no. 2 (August 20, 2020): 2864–70. http://dx.doi.org/10.1093/mnras/staa2520.
Повний текст джерелаДисертації з теми "Pulse source of magnetic field"
Dias, André. "Development of a scanning MOKE system with a 10 T pulsed magnetic field source." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY099.
Повний текст джерелаThe aim of this PhD project is to study diamagnetic levitation at the micro-scale in a quantitative fashion and to explore its use for the precise positioning and controlled movement of micro/nano-objects. Diamagnetic materials will be prepared with controlled shape and size (µm-mm range). Micro-magnets will also be developed to levitate the diamagnetic objects or to levitate above diamagnetic surfaces. To complement the study, a fully automated scanning MOKE system will be developed in order to characterize the quality of our samples fabricated using the triode sputtering machine and applying techniques called micro magnetic transfer and micro flux concentrators. First simple micro-robotic devices will be designed, and hopefully tested
Jenkins, Catherine A. (Catherine Ann) 1981. "Pulse-field actuation of collinear magnetic single crystals." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32717.
Повний текст джерелаIncludes bibliographical references (p. 33-34).
Ferromagnetic shape memory alloys (FSMAs) are a class of alloys that exhibits the shape memory effect, as in the alloy nickel-titanium, sometimes known as Nitinol. In FSMAs, though, the shape changes are not brought on just by changes in temperature or mechanical stresses, but can also be driven by the application of a relatively small magnetic field. The large strains exhibited by such materials are a result of the coexistence of several features, including a thermoelastic martensitic transition, and a ferromagnetic martensite (non-equilibrium, low-temperature) phase. The magnetocrystalline anisotropy must also be large, as seen in similar alloys such as iron-palladium (Fe₇₀Pd₃₀) [1]. Nickel-manganese-gallium is an FSMA that has shown up to 10% strain in certain orientations as an effect of unconstrained magnetic actuation [4]. To achieve cyclic actuation in FSMAs, the field-induced extension has conventionally been reversed by a compressive mechanical stress from a spring or field orthogonal to the actuating field. The use of a second FSMA crystal to provide the reset force was unreported. Collinear single crystals are shown here to be able to induce a 2.8% reset strain against one another when subjected alternately to individual pulsed magnetic fields in a custom designed and constructed apparatus. A setup of this type could be used in a bistable microswitch, linear motion actuator, or shutter controller where a low actuation stress is sufficient or the electrical contacts required to activate a piezoelectric device are undesirable.
by Catherine A. Jenkins.
S.B.
Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48184.
Повний текст джерелаThesis for a Candidate Degree in Engineering (Doctor of Philosophy), specialty 05.11.13 "Devices and methods of testing and determination of composition of substances" - National Technical University "Kharkiv Polytechnic Institute". The dissertation is devoted to development of new ultrasonic electromagnetic-acoustic transducers with a source of pulsed polarizing magnetic field, methods of sensitive testing and diagnostics of metalware with the use of transducers of this type. Analytical review and analysis of modern means and methods of testing and diagnostics via electromagnetic-acoustic method [1-3] of ferromagnetic and electrically conductive or strictly electrically conductive products under conditions of impact of constant and pulse polarizing magnetic fields taking into account the presence of coherent interferences of different types, technical level of modern electromagnetic circuits, means of their power supply, reception of ultrasonic pulses from metalware and their processing, determination of known advantages and disadvantages, and opportunities of their use in research and development. The direction of the research is defined and justified: development of electromagnetic-acoustic transducer in the form of a simplified single-wind coil model [4] of a source of a magnetic polarizing field with a ferromagnetic core and a high-frequency coil, which is located between the core and the sample; by modeling [5] the distribution of induction of polarizing magnetic field at the end face of the core of the magnetic field source and in the surface layer of both ferromagnetic and non-ferromagnetic metallurgy the features of the location of the high frequency coil of inductance under the magnetic field source are effectively determined for the effective excitation of shear ultrasonic pulses (near the peripheral end of the ferromagnetic core) [6]. The increase in number of winds of magnetization coil in presence of a ferromagnetic core leads to a significant increase in time of transients during the process of powering of a pulsed source of a polarizing magnetic field and during its switching off. As a result, the duration of the power pulse increases to 1 ms or more, which leads to an increase in the force of attraction of EMAP to the ferromagnetic product, additional losses of electricity, deterioration of temperature conditions of the transducer. To reduce the duration of powering pulse of magnetic field it is necessary to reduce the number of winds of the magnetizing coil, but this leads to a decrease in magnetic induction magnitude, even in presence of a ferromagnetic core. As a result of rational choice of the design of the magnetic field source, the flat coil of magnetization must be made with a two-window three-wind and made of high-conductive high-heat-conducting material [7-9]. The core should be placed in the windows of the magnet coil only by the ends. As a result, the action time of the magnetization pulse is reduced to 200 μs, which is sufficient for testing of samples up to 300 mm thick. The high-frequency inductor coil is made of two linear working sections that are located under the windows of the coil [9]. In opposite directions of high-frequency current in these working areas, in-phase powerful pulses of shear ultrasonic waves are excited in the surface layer of the product. The ratio of the excited amplitudes of the shear and longitudinal pulses exceeds 30 dB. That is, the coherent pulses of longitudinal waves in the testing of the moon by the method will practically not affect the results of the diagnosis of ferromagnetic products. Design variants of electromagnetic-acoustic transducers with one-wind [7], two-wind [8] and three-wind magnetization coils [9] of a source of a pulsed polarizing magnetic field are developed. With a single-coil [7], the transients are minimal when the power pulse is winded on. However, it is necessary to excite in the coil a current of several kA, which complicates the temperature conditions of the transducer and power equipment. With a three-coil [9] magnetization, the amplitude of the bottom pulses in relation to the amplitude of the interference exceeds 24 dB, which allows for testing and diagnostics of large variety of samples. When using the charge core [9], the ratio of amplitudes increased to 38 dB, which makes it possible to monitor the echo by the method. The method [10] of ultrasonic electromagnetic - acoustic testing of ferromagnetic products is developed. vectors of intensity with duration of several periods of high filling frequency, n and this excitation of the pulses of the electromagnetic field is performed at a time equal to the time of transients to establish the operating value of the induction of the polarizing magnetic field, and the reception of ultrasonic pulses reflected from the product is performed in the time period tпр, which is determined by the expression T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, where T is the duration of the magnetization pulse; t1 is the time of transients to establish the working value of the induction of a polarizing magnetic field; t2 - time of packet pulse of electromagnetic field; t3 is the time of damping oscillations in the flat high frequency inductor; H is the thickness of the product or the distance in volume of the product to be ultrasound; C is the velocity of propagation of shear ultrasonic waves in the material of the product. It is established [9] that the interferences in the ferromagnetic core caused by the Barkhausen effect and magnetostrictive transformation of electromagnetic energy into ultrasound are practically excluded by production of the core blended, usage of the material of the core plates which has a low coefficient of magnetostrictive conversion, perpendicular core plates orientation in relation to the conductors of the working areas of the flat high-frequency inductor, as well as filling of the gaps between the plates with a high density fluid, such as glycerol. It is shown that the sensitivity of direct EMA transducers with pulse magnetization when powered by a batch high frequency probe pulse generator [11] and when receiving via a low noise amplifier [12] provide detection of flat-bottomed reflectors with a diameter of 3 mm or more, probe frequency of 40 Hz, peak high-frequency current of 120A, shear linearly polarized ultrasonic oscillations of 2.3 MHz, high frequency packet pulse duration 6…7 filling frequency periods, magnetization pulse duration 200 μs, magnetization current density of 600 A / mm2 and at the gap between the EMAP and the product of 0.2 mm [9]. The amplitude of the echo momentum reflected from the flaw in relation to the noise amplitude reaches 20 dB. The EMATs developed are protected with 2 utility model patents.
Салам, Буссі. "Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/48181.
Повний текст джерелаThesis for a Candidate Degree in Engineering, specialty 05.11.13 – Devices and methods of testing and determination of composition of substances. National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, 2020. A relevant scientific – practical problem on development of new types of EMAP for effective ultrasonic control of metal products is solved in the dissertation. Computer simulation of EMAT magnetic fields distribution in pulse magnetization of ferromagnetic and non-magnetic products is performed. Ways to build transducers with maximum sensitivity are established. The method of excitation of pulsed batch ultrasonic pulses due to the sequential formation of pulsed magnetic and electromagnetic fields is developed. Technical solutions for suppression of coherent interference in the core and in the product have been developed. The geometrical and structural parameters of pulsed magnetic field source were determined, which made it possible to excite powerful in-phase packet pulses of high-frequency shear oscillations in a sample. It is shown that the sensitivity of direct EMA transducers with pulse magnetization provide detection of flat-bottom reflectors with a diameter of 3 mm and more at a probing frequency of 40 Hz, a frequency of shear linearly polarized ultrasonic oscillations of 2.3 MHz, a peak current of high-frequency packet pulses of 120 A, duration of batch high frequency current pulses in 6 periods of filling frequency, magnetization pulse duration of 200 μs, magnetization current of 600 A and at the gap between EMAP and product of 0.2 mm.
Jiang, Yuxiang. "A Unipolar Pulse Electromagnetic Field Apparatus for Magnetic Therapy: Design, Simulation and Development." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37854.
Повний текст джерелаForsberg, Andreas. "Spatial variation of radio frequency magnetic field exposure from clinical pulse sequences in 1.5T MRI." Thesis, Umeå universitet, Institutionen för fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-90391.
Повний текст джерелаLiu, Jean. "Constraining the Source Distribution of Meltwater Pulse 1A Using Near- and Far-Field Sea-level Data." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30241.
Повний текст джерелаEichel, Rüdiger-Albert. "New concepts in two-dimensional pulse electron paramagnetic resonance spectroscopy : resolution enhancement by magnetic field modulation /." Zürich : [s.n.], 2001. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=14394.
Повний текст джерелаKurpad, Krishna Nagaraj. "Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources." Texas A&M University, 2004. http://hdl.handle.net/1969.1/2755.
Повний текст джерелаShore, Robert Michael. "Improved description of Earth's external magnetic fields and their source regions using satellite data." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8935.
Повний текст джерелаКниги з теми "Pulse source of magnetic field"
Cowan, M. Megagauss magnetic field generation and pulsed power applications. New York: Nova Science, 1994.
Знайти повний текст джерелаHurban, Jane. Does the pulse form affect the enhanced suggestibility from right hemispheric magnetic field stimulation? Sudbury, Ont: Laurentian University, Department of Psychology, 1996.
Знайти повний текст джерелаW, Kahler Stephen, and United States. National Aeronautics and Space Administration., eds. Study of the source regions of coronal mass ejections using Yohkoh SXT data: Final report for--NASA grant NAGW-4578, period of performance--1 May 1995 - 30 April 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаMaccabee, Paul J., and Vahe E. Amassian. Lessons learned from magnetic stimulation of physical models and peripheral nerve in vitro. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0006.
Повний текст джерелаEpstein, Charles M. Electromagnetism. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0001.
Повний текст джерелаClassen, Joseph, and Katja Stefan. Changes in TMS Measures induced by repetitive TMS. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0016.
Повний текст джерелаRiehl, Mark. TMS stimulator design. Edited by Charles M. Epstein, Eric M. Wassermann, and Ulf Ziemann. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780198568926.013.0003.
Повний текст джерелаT. Wave Phenomena. Courier Dover Publications, 2014.
Знайти повний текст джерелаЧастини книг з теми "Pulse source of magnetic field"
Kivelson, Margaret G., and David J. Southwood. "Magnetopause pressure pulses as a source of localized field-aligned currents in the magnetosphere." In Physics of Magnetic Flux Ropes, 619–25. Washington, D. C.: American Geophysical Union, 1990. http://dx.doi.org/10.1029/gm058p0619.
Повний текст джерелаOlevsky, Eugene A., and Dina V. Dudina. "Magnetic Pulse Compaction." In Field-Assisted Sintering, 293–313. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76032-2_9.
Повний текст джерелаDobre, A., and A. M. Morega. "Numerical Simulation In Magnetic Drug Targeting. Magnetic Field Source Optimization." In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, 651–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13039-7_164.
Повний текст джерелаOsinskaya, J. V., and A. V. Pokoev. "The Ageing of Beryllium Bronze in the Pulse Magnetic Field." In Defect and Diffusion Forum, 81–85. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-55-8.81.
Повний текст джерелаFoss, Clive. "Recovery of Source Magnetization Direction from Magnetic Field Data." In Encyclopedia of Solid Earth Geophysics, 1–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_265-1.
Повний текст джерелаFoss, Clive. "Recovery of Source Magnetization Direction from Magnetic Field Data." In Encyclopedia of Solid Earth Geophysics, 1310–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_265.
Повний текст джерелаRichter, Aleš, Miroslav Bartoš, and Želmíra Ferková. "Physical Analysis of Pulse Low-Dynamic Magnetic Field Applied in Physiotherapy." In IFMBE Proceedings, 239–45. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9023-3_43.
Повний текст джерелаDester, Gary D., and Edward J. Rothwell. "Analysis of the Late-Time Transient Field Scattered by a Line Source Above a Grounded Dielectric Slab." In Ultra-Wideband Short-Pulse Electromagnetics 8, 195–202. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-73046-2_26.
Повний текст джерелаNolle, Eugen. "Determination of the Magnetic Stray Field with an Equivalent Source Model." In Process Modelling, 305–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60120-0_20.
Повний текст джерелаThottappillil, R., M. A. Uman, and N. Theethayi. "TEM Field Structure of Electric and Magnetic Fields From a Semi-Infinite Vertical Thin-Wire Antenna Above a Conducting Plane." In Ultra-Wideband, Short-Pulse Electromagnetics 7, 33–40. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-37731-5_4.
Повний текст джерелаТези доповідей конференцій з теми "Pulse source of magnetic field"
CHERNYKH, E. V., V. E. FORTOV, K. V. GORBACHEV, E. V. NESTEROV, S. A. ROSCHUPKIN, and V. A. STROGANOV. "HIGH VOLTAGE PULSED MCG-BASED ENERGY SOURCE." In Proceedings of the VIIIth International Conference on Megagauss Magnetic Field Generation and Related Topics. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702517_0078.
Повний текст джерелаKraus, W., U. Fantz, D. Wünderlich, Yasuhiko Takeiri, and Katsuyoshi Tsumori. "Dependence of the Performance of the Long Pulse RF Driven Negative Ion Source on the Magnetic Filter Field." In SECOND INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES. AIP, 2011. http://dx.doi.org/10.1063/1.3637400.
Повний текст джерелаOno, S., T. Tsukamoto, H. Ohtake, E. Kawahata, T. Yano, and N. Sarukura. "Optimum geometry of the THz-radiation source using femtosecond pulse irradiated InAs [100] in a magnetic field." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907382.
Повний текст джерелаEgorychev, Boris T., Dmitry V. Avdeev, Viktor V. Avdoshin, Anatoly M. Buyko, Gennady I. Volkov, Aleksey M. Glybin, Andrey V. Ivanovsky, et al. "Investigation of Solid Quasi-Spherical Liner Implosion Using Diagnostic Test Stand and Helical Explosive Magnetic Generator as a Pulsed Power Source." In 2006 International Conference on Megagauss Magnetic Field Generation and Related Topics. IEEE, 2006. http://dx.doi.org/10.1109/megaguss.2006.4530666.
Повний текст джерелаDolinskii, V. Yu, D. A. Ershov, A. P. Falin, S. F. Garanin, A. V. Garin, O. N. Petrushin, and Yu S. Shigaev. "Prospects for development of pulsed source with a yield 1014 DT-neutrons based on spherical DPF chamber." In 2018 16th International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS). IEEE, 2018. http://dx.doi.org/10.1109/megagauss.2018.8722685.
Повний текст джерелаDuday, P. V., A. M. Glybin, B. T. Egorichev, V. A. Ivanov, A. I. Krayev, V. B. Kudel'kin, S. M. Polyushko, et al. "Powerful Pulsed Source with Adjustable Time of Current Rise on the Basis of Helical EMG and Explosive Opening Switch to Drive Solid Liners." In 2006 International Conference on Megagauss Magnetic Field Generation and Related Topics. IEEE, 2006. http://dx.doi.org/10.1109/megaguss.2006.4530700.
Повний текст джерелаShkuratov, Sergey I., Evgueni F. Talantsev, Jason Baird, Larry L. Altgilbers, and Allen H. Stults. "New Concept for Constructing an Autonomous Completely Explosive Pulsed Power System: Transverse Shock Wave Ferromagnetic Primary Power Source and Loop Flux Compression Amplifier." In 2006 IEEE International Conference on Megagauss Magnetic Field Generation and Related Topics (MEGAGAUSS). IEEE, 2006. http://dx.doi.org/10.1109/megaguss.2006.4530697.
Повний текст джерелаZhang, Li, James A. Bain, Jian-Gang Zhu, Leon Abelmann, and Takahiro Onoue. "The Role of STM Tip Shape in Heat Assisted Magnetic Probe Recording on CONI/PT Film." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46057.
Повний текст джерелаRyzhkov, Sergei V., and Andrey V. Anikeev. "Improved Regimes in High Pressure Magnetic Discharges." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22212.
Повний текст джерелаOno, Shingo, Hiroshi Takahashi, Alex Quema, Gilbert Diwa, Hidetoshi Murakami, Nobuhiko Sarukura, and Michael Hasselbeck. "High frequency component of terahertz-radiation spectrum enhanced by using an excitation source with short pulse duration on an n-type InAs immersed in magnetic field." In Optical Terahertz Science and Technology. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/otst.2005.me5.
Повний текст джерелаЗвіти організацій з теми "Pulse source of magnetic field"
Tilak, Anup S., Douglas J. Basarab, Herbert A. Leupold, II Potenziani, and Ernest. Magnetic Field Source for Bi-Chambered Electron Beam Devices. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada261316.
Повний текст джерелаMeitzler, C. R. Magnetic field of a toroidal volume H sup minus source. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5481261.
Повний текст джерелаHolmes, John J. Boundary Conditions for Magnetic Field Gradients Inside a Source-Free Volume. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada362760.
Повний текст джерелаJ Selvaggi, S Salon, and O Kwon CVK Chari. A General Method for Calculating the External Magnetic Field from a Cylindrical Magnetic Source using Toroidal Functions. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/881294.
Повний текст джерелаS.J. Zweben, D.S. Darrow, P.W. Ross, J.L. Lowrance, and G. Renda. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/827999.
Повний текст джерелаNikolic, L. Modelling the magnetic field of the solar corona with potential-field source-surface and Schatten current sheet models. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/300826.
Повний текст джерелаRaitses, Y., Smirnov A., and N. J. Fisch. Comment on "Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/938977.
Повний текст джерелаKaganovich, I. D., E. A. Startsev, A. B. Sefkow, and R. C. Davidson. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Small Solenoidal Magnetic Field. Office of Scientific and Technical Information (OSTI), August 2007. http://dx.doi.org/10.2172/961895.
Повний текст джерелаHart, Carl R., and Gregory W. Lyons. A Measurement System for the Study of Nonlinear Propagation Through Arrays of Scatterers. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38621.
Повний текст джерелаJohra, Hicham. Performance overview of caloric heat pumps: magnetocaloric, elastocaloric, electrocaloric and barocaloric systems. Department of the Built Environment, Aalborg University, January 2022. http://dx.doi.org/10.54337/aau467469997.
Повний текст джерела