Добірка наукової літератури з теми "Pulse current generator"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pulse current generator".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pulse current generator"
Kandratsyeu, Aleh, Uladzimir Sabaleuski, Luis Redondo, and Andrei G. Pakhomov. "Four Channel 6.5 kV, 65 A, 100 ns–100 µs Generator with Advanced Control of Pulse and Burst Protocols for Biomedical and Biotechnological Applications." Applied Sciences 11, no. 24 (December 11, 2021): 11782. http://dx.doi.org/10.3390/app112411782.
Повний текст джерелаGodun, D. V., S. V. Bordusau, and G. P. Budzko. "Output Current Control System of a High Voltage Electric Pulse Generator for Plasma Excitation." PLASMA PHYSICS AND TECHNOLOGY 6, no. 1 (2019): 7–9. http://dx.doi.org/10.14311/ppt.2019.1.7.
Повний текст джерелаDang, Khanh Quoc, Makoto Nanko, Masakazu Kawahara, and Shinichi Takei. "Densification of Alumina Powder by Using PECS Process with Different Pulse Electric Current Waveforms." Materials Science Forum 620-622 (April 2009): 101–4. http://dx.doi.org/10.4028/www.scientific.net/msf.620-622.101.
Повний текст джерелаMuthuramalingam, T., B. Mohan, and D. Saravanakumar. "Evaluation of Surface Finish of Electrical Discharge Machined AISI 304 Stainless Steel with Various Pulse Generators." Applied Mechanics and Materials 772 (July 2015): 279–83. http://dx.doi.org/10.4028/www.scientific.net/amm.772.279.
Повний текст джерелаGromov, Victor, Vladimir Kuznetsov, Sergey Konovalov, Goui Tang, Gou Lin Song, Kseniya Alsaraeva, and Alexander Semin. "Estimation of Current Amplitude Pulse." Advanced Materials Research 1013 (October 2014): 166–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1013.166.
Повний текст джерелаSong, Falun, Fei Li, Beizhen Zhang, Mingdong Zhu, Chunxia Li, Ganping Wang, Haitao Gong, Yanqing Gan, and Xiao Jin. "Recent advances in compact repetitive high-power Marx generators." Laser and Particle Beams 37, no. 01 (March 2019): 110–21. http://dx.doi.org/10.1017/s0263034619000272.
Повний текст джерелаFlaxer, E. "High-voltage pulse modulated radio frequency generator for dielectric barrier discharge combined with ultra-fast high power pulse generator." Journal of Instrumentation 16, no. 10 (October 1, 2021): P10003. http://dx.doi.org/10.1088/1748-0221/16/10/p10003.
Повний текст джерелаKuznetsov, V. A., G. D. Polkovnikov, V. E. Gromov, V. A. Kuznetsova, and O. A. Peregudov. "High power current pulse generator based on reversible thyristor converter." Izvestiya. Ferrous Metallurgy 62, no. 12 (January 15, 2020): 964–71. http://dx.doi.org/10.17073/0368-0797-2019-12-964-971.
Повний текст джерелаLiu, Sheng, Jian-Cang Su, Xibo Zhang, Ya-Feng Pan, Hong-Yan Fan, and Xu-Liang Fan. "A Tesla-type long-pulse generator with wide flat-top width based on a double-width pulse-forming line." Laser and Particle Beams 36, no. 1 (March 2018): 115–20. http://dx.doi.org/10.1017/s0263034618000034.
Повний текст джерелаXi, H., C. Liang, F. Q. Zhang, M. J. Li, and T. P. Peng. "A pulse current generator for dense plasma focus." Journal of Instrumentation 16, no. 12 (December 1, 2021): P12021. http://dx.doi.org/10.1088/1748-0221/16/12/p12021.
Повний текст джерелаДисертації з теми "Pulse current generator"
Bendixsen, Luis Sebastian Caballero. "The design and construction of a compact, high-current pulsed power generator based on multiple low impedance pulse forming lines and networks." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526548.
Повний текст джерелаChazottes-Leconte, Aurélien. "Conception et fabrication d'un dispositif de mise en compression par impulsions électro magnétiques (EMP)." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1082.
Повний текст джерелаPenning processes are widely used in industries to apply compressive residual stresses into the most solicited part of mechanical pieces. In that way, the compressive residual stresses limit the priming and the propagation of micro-cracks in the material. This increases significantly the lifespan of the treated mechanical piece under fatigue stresses. These existing peening processes have proved their efficiency and also their limitations and weaknesses. The main recurrent defaults are a shallow depth of treatment, a degradation of the surface condition, a random control of the treatment, a material contamination, etc. These problems have led towards the development of news innovative peening processes which allow better performance avoiding some previous defaults briefly evoked. Among these news processes, the electromagnetic peening process seems especially interesting. This process uses high energy electromagnetic fields to induce Lorentz forces into a metallic piece and thus residual stresses. Actually, there is not much information about this process in the literature and no prototype was ever built. The work of this thesis is dedicated to development and realization of an electromagnetic peening prototype. The first chapter of this thesis adresses the state of the art of major peening processes actually in industrial use. Next, the electromagnetic peening process, or EMP process, is described and the electrical needs are exposed. A second state of the art is made about the technological solutions to respond to the EMP needs. The second chapter is about the conception of the EMP prototype with the electrical structure adopted in the previous chapter. The first step is about the inductor sizing to generate an electromagnetic field sufficient enough for a peening application. Next, the storage system is designed depending on the inductor parameters and finally the closing switch is created considering the electrical parameters used for the EMP process. To validate the previous results, a 3D electromagnetic simulation is done. The prototype assembly is presented in the third chapter and also the first experimental test on the EMP prototype. To begin with, an aluminium alloy with low yield strength is selected to be treated. Two different samples forms are used, a thin one, to realize a similar test to the Almen test and thick one to check the EMP depth of treatment. A 3D multiphysics simulation of these experiments is made and these numeric results are next correlated to the experimental ones. In the fourth chapter, an exploratory study is realized on the effects of the residual stresses on magnetic properties of ferromagnetic material, the mumetal
Hanák, Pavel. "Systémy pro generování impulsního magnetického vektorového potenciálu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233564.
Повний текст джерелаВінніков, Денис Вікторович. "Електрофізичний вплив потужного підводного іскрового розряду на процеси обробки речовин". Thesis, Національний науковий центр "Харківський фізико-технічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33188.
Повний текст джерелаThesis for the scientific degree of the candidate of engineering sciences by specialty 05.09.13 – Technology of Strong Electric and Magnetic Fields. – National Science Center "Kharkiv Institute of Physics and Technology", Ministry of education and science of Ukraine National Technical University "Kharkiv Politechnic University" Kharkiv, 2017. This thesis is devoted to the improvement of the electric discharge equipment that is used for the substance treatment by heavy-current underwater spark discharges. The properties of materials and liquids were analyzed as a function of the electric parameters of discharge circuit, in particular, the charging voltage, the capacitance and the spark gap size. The structures of electrohydraulic reactors that are used for the treatment of general mechanical rubber goods and materials that simulate in the first approximation the spent solid nuclear fuel were developed and modernized to improve the methods of fuel recycling. The liquid degassing intensification method was suggested to initiate underwater spark discharges in the electrohydraulic reactor under the evacuation. The electrode system was created to provide the ordered motion of a pulsating steam and gas cavity in the water space at a reduced pressure in the reactor. A structure of the electric discharge generator of elastic vibrations that allows us to have an influence on the metal melts in vacuum-arc furnaces has been developed. It has been proved that mechanical acoustic vibrations generated by spark discharges in the liquid have a positive effect on the distribution of admixtures in treated metals and a decrease in the size of crystal grains. Technological recommendations on the improvement of the processes of electrophysical impact on the materials and liquid media were given. A mathematical model used for the investigation of the progress of current conducting channel that short-closes the spark gap at an early stage of its development, in particular a process of the expansion of current conducting channel and steam-gas cavity was improved. An opportunity for a fast (5–20 s) change in the redox potential of the liquid to the side of negative values with a moderate increase in the pH value was revealed for the first time. It has been shown that a change in the redox potential depends on the input of total energy into the treated volume. We established that a change in the redox potential is related to the processes that occur inside the steam-gas cavity, in particular chemical transformations that occur in its volume and the formation of electric erosion products of the electrodes that result in the chemical changes in the composition of treated medium. The size and dimensions of the particles that are formed during the electric erosion of electrodes have been defined. The chemical diagram of their influence on water properties has been suggested. A degree of the change in the redox potential is related to a number of formed polydisperse particles. Nanosize particles (37 % of the total volume of particles) with an increased physical and chemical activity were revealed.
Вінніков, Денис Вікторович. "Електрофізичний вплив потужного підводного іскрового розряду на процеси обробки речовин". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33183.
Повний текст джерелаThesis for the scientific degree of the candidate of engineering sciences by specialty 05.09.13 – Technology of Strong Electric and Magnetic Fields. – National Science Center "Kharkiv Institute of Physics and Technology", Ministry of education and science of Ukraine National Technical University "Kharkiv Politechnic University" Kharkiv, 2017. This thesis is devoted to the improvement of the electric discharge equipment that is used for the substance treatment by heavy-current underwater spark discharges. The properties of materials and liquids were analyzed as a function of the electric parameters of discharge circuit, in particular, the charging voltage, the capacitance and the spark gap size. The structures of electrohydraulic reactors that are used for the treatment of general mechanical rubber goods and materials that simulate in the first approximation the spent solid nuclear fuel were developed and modernized to improve the methods of fuel recycling. The liquid degassing intensification method was suggested to initiate underwater spark discharges in the electrohydraulic reactor under the evacuation. The electrode system was created to provide the ordered motion of a pulsating steam and gas cavity in the water space at a reduced pressure in the reactor. A structure of the electric discharge generator of elastic vibrations that allows us to have an influence on the metal melts in vacuum-arc furnaces has been developed. It has been proved that mechanical acoustic vibrations generated by spark discharges in the liquid have a positive effect on the distribution of admixtures in treated metals and a decrease in the size of crystal grains. Technological recommendations on the improvement of the processes of electrophysical impact on the materials and liquid media were given. A mathematical model used for the investigation of the progress of current conducting channel that short-closes the spark gap at an early stage of its development, in particular a process of the expansion of current conducting channel and steam-gas cavity was improved. An opportunity for a fast (5–20 s) change in the redox potential of the liquid to the side of negative values with a moderate increase in the pH value was revealed for the first time. It has been shown that a change in the redox potential depends on the input of total energy into the treated volume. We established that a change in the redox potential is related to the processes that occur inside the steam-gas cavity, in particular chemical transformations that occur in its volume and the formation of electric erosion products of the electrodes that result in the chemical changes in the composition of treated medium. The size and dimensions of the particles that are formed during the electric erosion of electrodes have been defined. The chemical diagram of their influence on water properties has been suggested. A degree of the change in the redox potential is related to a number of formed polydisperse particles. Nanosize particles (37 % of the total volume of particles) with an increased physical and chemical activity were revealed.
Веселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17177.
Повний текст джерелаThe thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Mutsuura, Keita, Hirotaka Shimizu, Yasunobu Yokomizu, and Toshiro Matsumura. "Flux flow resistance in Bi2223 generated by pulse currents." IEEE, 2005. http://hdl.handle.net/2237/6789.
Повний текст джерелаВеселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17176.
Повний текст джерелаThe thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Thekkevalappil, Soniya Noormuhamed. "Hysteretic pulse width modulation with internally generated carrier for a boost dc-dc converter." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013267.
Повний текст джерелаDalvi, Mahesh. "Computer controlled generation of PWM waveform using harmonic distortion minimization scheme." Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1177442328.
Повний текст джерелаКниги з теми "Pulse current generator"
Stanton, Bonita. Physics and technology of high current discharges in dense gas media and flows. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаFortov, V. E. Explosive-Driven Generators of Powerful Electric Current Pulses. Cambridge International Science Publishing, 2003.
Знайти повний текст джерелаTENS-like devices. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199673278.003.0011.
Повний текст джерелаWright, A. G. Electronics for PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0014.
Повний текст джерелаWright, A. G. PMT background. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0006.
Повний текст джерелаWright, A. G. Voltage dividers. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0013.
Повний текст джерелаЧастини книг з теми "Pulse current generator"
Amit Bhattacharyya. "Differential Voltage Current Conveyor-Based One-Shot Pulse Generator Circuit Implementation." In Proceeding of International Conference on Intelligent Communication, Control and Devices, 1–7. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_1.
Повний текст джерелаCoeur, F., Y. Arnal, J. Pelletier, O. Lesaint, O. Maulat, and M. Roche. "Monoatomic Ion Rich DECR Plasmas for Ion Implantation by Plasma Immersion Using a New High Voltage — High Current Pulse Generator." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_32.
Повний текст джерелаKolikov, Victor, Alexander Bogomaz, and Alexander Budin. "Arc Contraction: Modified Piza-Braginskii Critical Current." In Powerful Pulsed Plasma Generators, 181–202. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95249-9_9.
Повний текст джерела"Design of 1KA Current Pulse Generator." In International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011), 301–4. ASME Press, 2011. http://dx.doi.org/10.1115/1.859902.paper64.
Повний текст джерелаMagee, Patrick, and Mark Tooley. "Pacemakers and Defibrillators." In The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199595150.003.0024.
Повний текст джерелаL’Huillier, Anne. "Generation of high-order harmonics and attosecond pulses." In Current Trends in Atomic Physics, 326–42. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198837190.003.0008.
Повний текст джерелаWang, Siyuan, Peng Song, Huan Pei, Qiyu Li, and Zhibo Zhao. "Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220025.
Повний текст джерела"Treeing Property In Polypropylene Under Various Temperature and Electrical Field." In Electrical Insulation Breakdown and Its Theory, Process, and Prevention, 181–218. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-8885-6.ch007.
Повний текст джерелаMondal, Shyamal, Nisha Flora Boby Edwin, and Vaisshale Rathinasamy. "Interdigitated Photoconductive Antenna for Efficient Terahertz Generation and Detection." In Terahertz Technology [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102379.
Повний текст джерелаB., Andrei. "Electromagnetic Waves Generated by Line Current Pulses." In Wave Propagation. InTech, 2011. http://dx.doi.org/10.5772/13868.
Повний текст джерелаТези доповідей конференцій з теми "Pulse current generator"
Al Haddad, K., B. Dumolard, K. S. Rajashekara, and V. Rajagopalan. "Pulse Current Generator using Dual Thyristors." In INTELEC '86. IEEE, 1986. http://dx.doi.org/10.1109/intlec.1986.4794490.
Повний текст джерелаZurla, R., A. Cabrini, L. Capecchi, M. Carissimi, M. Pasotti, and G. Torelli. "Enhanced Multiple-Output Programmable Current Pulse Generator." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702570.
Повний текст джерелаNashilevskiy, A. V., G. G. Kanaev, V. I. Krauz, V. V. Myalton, G. E. Remnev, and V. P. Vinogradov. "High-current pulse generator for plasma focus." In 2011 IEEE Pulsed Power Conference (PPC). IEEE, 2011. http://dx.doi.org/10.1109/ppc.2011.6191540.
Повний текст джерелаGaliev, A. L., N. I. Yumagulov, and D. V. Topolsky. "Functional Measuring Generator with Pulse Current Stabilization." In 2020 Global Smart Industry Conference (GloSIC). IEEE, 2020. http://dx.doi.org/10.1109/glosic50886.2020.9267836.
Повний текст джерелаGrawer, G., F. Cordobes Dominguez, T. Fowler, and N. Voumard. "A 400A programmable linear current pulse generator." In 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2016. http://dx.doi.org/10.1109/ipmhvc.2016.8012874.
Повний текст джерелаShoihet, Arthur, Moshe Shvartsas, Beni Gdaliahu, and Itzik Edry. "High current short pulse generator for pulse magneto-oscillation (PMO) research." In 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI 2012). IEEE, 2012. http://dx.doi.org/10.1109/eeei.2012.6376977.
Повний текст джерелаHartmann, W. "Design of a high current pulse generator for magnetoforming." In Pulsed Power Seminar. IEE, 2003. http://dx.doi.org/10.1049/ic:20030090.
Повний текст джерелаKopylov, Kirill K., Alexey A. Khristolyubov, and Alexandra I. Khristolyubova. "The pump current pulse generator for laser diodes." In 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2015. http://dx.doi.org/10.1109/edm.2015.7184601.
Повний текст джерелаPatru, Ion, Marcel Nicola, Camelia Marinescu, Laurentiu Vladoi, and Maria Cristina Nitu. "Applications of Voltage Pulse Generator to Achieve Current Pulses of High Amplitude." In 2019 International Conference on Electromechanical and Energy Systems (SIELMEN). IEEE, 2019. http://dx.doi.org/10.1109/sielmen.2019.8905840.
Повний текст джерелаBastos, Miguel Cerqueira, Michele Martino, Gustavo Cesar Uicich, Pablo Daniel Antoszczuk, and John R. P. Pickering. "20A trapezoidal reference current pulse generator for the evaluation of current transducers." In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2013. http://dx.doi.org/10.1109/i2mtc.2013.6555434.
Повний текст джерелаЗвіти організацій з теми "Pulse current generator"
Claus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.
Повний текст джерела