Добірка наукової літератури з теми "Pulse current generator"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pulse current generator".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Pulse current generator"

1

Kandratsyeu, Aleh, Uladzimir Sabaleuski, Luis Redondo, and Andrei G. Pakhomov. "Four Channel 6.5 kV, 65 A, 100 ns–100 µs Generator with Advanced Control of Pulse and Burst Protocols for Biomedical and Biotechnological Applications." Applied Sciences 11, no. 24 (December 11, 2021): 11782. http://dx.doi.org/10.3390/app112411782.

Повний текст джерела
Анотація:
Pulsed electric fields in the sub-microsecond range are being increasingly used in biomedical and biotechnology applications, where the demand for high-voltage and high-frequency pulse generators with enhanced performance and pulse flexibility is pushing the limits of pulse power solid state technology. In the scope of this article, a new pulsed generator, which includes four independent MOSFET based Marx modulators, operating individually or combined, controlled from a computer user interface, is described. The generator is capable of applying different pulse shapes, from unipolar to bipolar pulses into biological loads, in symmetric and asymmetric modes, with voltages up to 6.5 kV and currents up to 65 A, in pulse widths from 100 ns to 100 µs, including short-circuit protection, current and voltage monitoring. This new scientific tool can open new research possibility due to the flexibility it provides in pulse generation, particularly in adjusting pulse width, polarity, and amplitude from pulse-to-pulse. It also permits operating in burst mode up to 5 MHz in four independent channels, for example in the application of synchronized asymmetric bipolar pulses, which is shown together with other characteristics of the generator.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Godun, D. V., S. V. Bordusau, and G. P. Budzko. "Output Current Control System of a High Voltage Electric Pulse Generator for Plasma Excitation." PLASMA PHYSICS AND TECHNOLOGY 6, no. 1 (2019): 7–9. http://dx.doi.org/10.14311/ppt.2019.1.7.

Повний текст джерела
Анотація:
A control and pulse discharge current limiting system integrated into an AC/DC converter and pulse modulator of a high voltage pulse generator have been developed. The peculiarity of such system\textquotesingle s operation is the stabilization of the power supplied to the discharge and the correction of the width of output electric pulses towards decrease upon reaching the specified pulsed current amplitude value. The system enables the pulse generator to work in the modes close to the ``short circuited load'' mode. In this case the driving module of a composite IGBT key performs the correction of the working pulse width and blocks the pulse generator operation if needed. The suggested circuit design solutions allow using the generator in a wide range of electric plasma-forming parameters' modes and working with various types of vacuum gas discharge systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dang, Khanh Quoc, Makoto Nanko, Masakazu Kawahara, and Shinichi Takei. "Densification of Alumina Powder by Using PECS Process with Different Pulse Electric Current Waveforms." Materials Science Forum 620-622 (April 2009): 101–4. http://dx.doi.org/10.4028/www.scientific.net/msf.620-622.101.

Повний текст джерела
Анотація:
Densification and sample temperature of alumina (Al2O3) powder during pulsed electric current sintering with different pulse power generators, inverter type and pulsed direct current type were investigated. The sample temperature for inverter generator was higher than that for pulsed direct current generator in same die temperature ranging form 800 to 1400oC. The relative density increased with increasing of the sample temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Muthuramalingam, T., B. Mohan, and D. Saravanakumar. "Evaluation of Surface Finish of Electrical Discharge Machined AISI 304 Stainless Steel with Various Pulse Generators." Applied Mechanics and Materials 772 (July 2015): 279–83. http://dx.doi.org/10.4028/www.scientific.net/amm.772.279.

Повний текст джерела
Анотація:
The performance improvement in Electrical Discharge Machining process is a tedious one in materials and manufacturing processes especially in making of complex die and moulds. Due to non linear nature of this process, conventional pulse generators such as RC pulse generator and transistor pulse train generator cannot produce uniform energy distribution. Since RC pulse generator can produce smaller crater volume, it can make better surface finish than transistor pulse train generator crater size is influenced by the discharge current produced during the machining process. Due to its stochastic behavior, the discharge current is varied for every spark. The modified iso current pulse generator can produce uniform energy distribution with smaller crater size. In this study, EDM drilling experiments have been conducted on AISI 304 stainless steel with the RC pulse generator, Transistor pulse generator and iso energy pulse generator in electrical erosion process. The effects of these pulse generators on surface characterization have been evaluated and analyzed. From the evaluation results, it has been detected that the iso energy pulse generator has produced better surface structure than conventional pulse generators.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gromov, Victor, Vladimir Kuznetsov, Sergey Konovalov, Goui Tang, Gou Lin Song, Kseniya Alsaraeva, and Alexander Semin. "Estimation of Current Amplitude Pulse." Advanced Materials Research 1013 (October 2014): 166–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1013.166.

Повний текст джерела
Анотація:
Method of estimation of current amplitude (~10 kA) pulses constructed by powerful current pulse generator is suggested. It bases on the solution of differential equation current and voltage change on capacitor. The final formula consists of maximum value of capacitor charge, maximum negative voltage value, pulse duration and capacitor value.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Song, Falun, Fei Li, Beizhen Zhang, Mingdong Zhu, Chunxia Li, Ganping Wang, Haitao Gong, Yanqing Gan, and Xiao Jin. "Recent advances in compact repetitive high-power Marx generators." Laser and Particle Beams 37, no. 01 (March 2019): 110–21. http://dx.doi.org/10.1017/s0263034619000272.

Повний текст джерела
Анотація:
AbstractThis paper introduces recent activities on Marx-based compact repetitive pulsed power generators at the Institute of Applied Electronics (IAE), China Academy of Engineering Physics (CAEP), over the period 2010–2018. A characteristic feature of the generators described is the use of a simplified bipolar charged Marx circuit, in which the normal isolation resistors or inductors to ground are removed to make the circuit simpler. Several pulse-forming modules developed to generate a 100 ns square wave output are introduced, including thin-film dielectric lines of different structures, a pulse-forming line based on a Printed Circuit Board, and non-uniform pulse-forming networks. A compact repetitive three-electrode spark gap switch with low-jitter, high-voltage, and high-current was developed and is used in the generators. A positive and negative series resonant constant current power supply with high precision and high power is introduced. As an important part of the repetitive pulse power generator, a lower jitter pulse trigger source is introduced. Several typical high-power repetitive pulsed power generators developed at IAE are introduced including a 30 GW low-impedance Marx generator, a compact square-wave pulse generator based on Kapton-film dielectric Blumlein line, a 20 GW high pulse-energy repetitive PFN-Marx generator, and a coaxial Marx generator based on ceramic capacitors. The research of key technologies and their development status are discussed, which can provide a reference for the future development and application of miniaturization of compact and repetitive Marx generators.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Flaxer, E. "High-voltage pulse modulated radio frequency generator for dielectric barrier discharge combined with ultra-fast high power pulse generator." Journal of Instrumentation 16, no. 10 (October 1, 2021): P10003. http://dx.doi.org/10.1088/1748-0221/16/10/p10003.

Повний текст джерела
Анотація:
Abstract Dielectric barrier discharge is the electrical discharge between two electrodes separated by an insulating dielectric barrier. The discharge process typically uses a high-voltage alternating current in the range of several kilohertz to several gigahertz. A high-frequency and high-power pulse generator is required to drive the discharge process through the capacitance load. There are two main techniques to implement this type of generator: the forced and resonant modes. This work demonstrates the implementation of a programmable digital circuit based on a digital signal controller and a full H-bridge that combines the two topologies and can be used as a controller for dielectric barrier discharge with varying capacitance and structure. We integrated an ultra-fast, high-resolution, and high-power pulse generator into a radio frequency generator to drive high-pressure, supersonic, pulsed valves. The excitation based on our DBD and the combined generator produces cold plasma beams. The controller generates discharge voltages of up to 5 kV, in pulses of 10 to 50 μs wide, at rates of up to 1 kHz, while the discharge frequency ranges are from 1 to 3 MHz under a capacitive load of 100 pF. The power generator applies a current pulse of up to 20 A and voltage of up to 150 V.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kuznetsov, V. A., G. D. Polkovnikov, V. E. Gromov, V. A. Kuznetsova, and O. A. Peregudov. "High power current pulse generator based on reversible thyristor converter." Izvestiya. Ferrous Metallurgy 62, no. 12 (January 15, 2020): 964–71. http://dx.doi.org/10.17073/0368-0797-2019-12-964-971.

Повний текст джерела
Анотація:
In metal forming using high power current pulses, it becomes necessary to control both reproduction frequency and pulse amplitude. Description of a generator of high power current pulses with controlled thyristor converter is provided as a power source of charging device (charger) for regulating voltage (pulse amplitude) of capacitor charge. Faults of the generators associated with inrush current in capacitor charge modes are revealed, which reduces quality of supply network. To reduce time of transient processes while lowering voltage across capacitors, application of reverse thyristor converter is applied as a power source. Structural diagram of generator is considered, which includes reversible thyristor converter with separate control, power unit, capacitor recharge device, charger parameters automatic control system and capacitor charge process control system. Calculation of parameters of automatic control system regulators is presented. To obtain optimal transients, standard methodology for setting regulators to a modular optimum was used. In order to reduce overshoot at time of disturbances appearance, which can reach 100 % and higher, socalled logical device was introduced into the automatic control system. It blocks control pulses on thyristors of converter and simultaneously reduces signal at the output of current regulator to zero. Simulation model of high power current pulse generator in MatLab – Simulink environment was synthesized. Analysis of the model was carried out, and graphs are given that explain principle of device operation and transition processes under various operating modes. Generator application will allow user to adjust amplitude of current pulses with high speed and to obtain sufficiently high-quality transient processes of capacitors charge (discharge), which will have beneficial effect on supply network. Application of better converters will significantly increase frequency of reproduction of current pulses.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Sheng, Jian-Cang Su, Xibo Zhang, Ya-Feng Pan, Hong-Yan Fan, and Xu-Liang Fan. "A Tesla-type long-pulse generator with wide flat-top width based on a double-width pulse-forming line." Laser and Particle Beams 36, no. 1 (March 2018): 115–20. http://dx.doi.org/10.1017/s0263034618000034.

Повний текст джерела
Анотація:
AbstractTo produce pulses with good flat-top quality, pulse-forming lines (PFLs) have been widely used in the field of Tesla-type pulse generators. To shorten the physical length of the PFL, a double-width PFL (DWPFL) is proposed that doubles the output pulse width while maintaining flat-top quality. A repetitively 10 GW Tesla-type long-pulse generator producing pulses with flat-top width of about 110 ns was developed with a coaxial DWPFL to produce high-current electron beams. Electron beams of about 10 GW with flat-top widths of about 110 ns were obtained on a planar vacuum diode load. With this pulse generator and a C-band high-power microwave system, microwaves of ~2.2 GW power and full-width at half-maximum of 101 ns were generated. The experiment demonstrates the feasibility and ideal output waveform quality of the DWPFL.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xi, H., C. Liang, F. Q. Zhang, M. J. Li, and T. P. Peng. "A pulse current generator for dense plasma focus." Journal of Instrumentation 16, no. 12 (December 1, 2021): P12021. http://dx.doi.org/10.1088/1748-0221/16/12/p12021.

Повний текст джерела
Анотація:
Abstract A pulse current generator applied in a type of high-yield intense pulsed neutron source, the Dense Plasma Focus (DPF), is designed and developed in this paper. There are three key components in this generator. Each group of capacitors and switches is integrative to meet the DPF's requirements of low circuit inductance. A coaxial multi-channel switch is developed to solve the problems of the switch inductance, the jitter and the electrode erosion. A kind of sectorial plate transmission line is adopted to transfer the high pulse current from the capacitors to the DPF. The following technical parameters of the generator were achieved on dummy load: output current amplitude of ∼560 kA when primary capacitors are charged with 22 kV.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Pulse current generator"

1

Bendixsen, Luis Sebastian Caballero. "The design and construction of a compact, high-current pulsed power generator based on multiple low impedance pulse forming lines and networks." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chazottes-Leconte, Aurélien. "Conception et fabrication d'un dispositif de mise en compression par impulsions électro magnétiques (EMP)." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1082.

Повний текст джерела
Анотація:
Les procédés de traitement de surface sont utilisés à l'échelle industrielle pour améliorer les performances de pièces mécaniques en introduisant des contraintes résiduelles de compression. Cette mise en compression de surface permet de limiter l'amorçage et la propagation de fissures dans le matériau. Ceci permet d'augmenter de façon significative la durée de vie en fatigue des pièces mécaniques ainsi traitées. L'utilisation de ces procédés dans l'industrie a démontré leur efficacité, mais aussi leurs limitations et inconvénients. Les défauts récurrents consistent en une profondeur traitée faible, une dégradation de l'état de surface (rugosité), des difficultés de contrôle, une contamination du matériau traité, etc. Ces défauts ont conduit à l'élaboration de nouveaux procédés innovants qui permettent de meilleures performances en évitant certains des inconvénients succinctement évoqués. Parmi ces procédés innovants, le traitement de surface par impulsion électromagnétique semble particulièrement intéressant. Ce procédé met en œuvre un puissant champ magnétique transitoire pour engendrer des forces de Laplace dans une pièce métallique et induire des contraintes résiduelles. Il n'existe que peu d'informations dans la littérature et il n'existe aucun dispositif expérimental de ce procédé. Cette thèse est dédiée à la conception et la réalisation d'un prototype de mise en compression électromagnétique. Le premier chapitre de cette thèse est un état de l'art des technologies de mise en compression et du procédé de mise en compression par impulsion électromagnétique. Ainsi, les besoins de ce procédé sont identifiés et les technologies pouvant répondre à ces besoins sont explorées. Le deuxième chapitre, après une sélection de la structure globale du dispositif, va consister aux dimensionnements des éléments du prototype EMP. Cette étude commencera avec une étude sur l'inducteur qui va être utilisé avant de continuer sur le dimensionnement du stockage d'énergie et de l'interrupteur de décharge. Afin de valider le dimensionnement des composants précédents, une simulation électromagnétique 3D du système est réalisée. L'assemblage du prototype est présenté dans le troisième chapitre ainsi qu'une première campagne d'essai sur un alliage d'aluminium. Deux types d'éprouvettes sont testées : une éprouvette fine pour vérifier visuellement la mise en compression (essai Almen) et une éprouvette massive afin d'évaluer la profondeur traitée. Une modélisation multiphysique 3D du procédé est réalisée afin de corréler ces résultats avec l'expérience. Dans un dernier chapitre, une étude exploratoire est menée sur un matériau ferromagnétique, le mumétal, pour visualiser l'influence des contraintes résiduelles sur les propriétés magnétiques de ce dernier
Penning processes are widely used in industries to apply compressive residual stresses into the most solicited part of mechanical pieces. In that way, the compressive residual stresses limit the priming and the propagation of micro-cracks in the material. This increases significantly the lifespan of the treated mechanical piece under fatigue stresses. These existing peening processes have proved their efficiency and also their limitations and weaknesses. The main recurrent defaults are a shallow depth of treatment, a degradation of the surface condition, a random control of the treatment, a material contamination, etc. These problems have led towards the development of news innovative peening processes which allow better performance avoiding some previous defaults briefly evoked. Among these news processes, the electromagnetic peening process seems especially interesting. This process uses high energy electromagnetic fields to induce Lorentz forces into a metallic piece and thus residual stresses. Actually, there is not much information about this process in the literature and no prototype was ever built. The work of this thesis is dedicated to development and realization of an electromagnetic peening prototype. The first chapter of this thesis adresses the state of the art of major peening processes actually in industrial use. Next, the electromagnetic peening process, or EMP process, is described and the electrical needs are exposed. A second state of the art is made about the technological solutions to respond to the EMP needs. The second chapter is about the conception of the EMP prototype with the electrical structure adopted in the previous chapter. The first step is about the inductor sizing to generate an electromagnetic field sufficient enough for a peening application. Next, the storage system is designed depending on the inductor parameters and finally the closing switch is created considering the electrical parameters used for the EMP process. To validate the previous results, a 3D electromagnetic simulation is done. The prototype assembly is presented in the third chapter and also the first experimental test on the EMP prototype. To begin with, an aluminium alloy with low yield strength is selected to be treated. Two different samples forms are used, a thin one, to realize a similar test to the Almen test and thick one to check the EMP depth of treatment. A 3D multiphysics simulation of these experiments is made and these numeric results are next correlated to the experimental ones. In the fourth chapter, an exploratory study is realized on the effects of the residual stresses on magnetic properties of ferromagnetic material, the mumetal
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hanák, Pavel. "Systémy pro generování impulsního magnetického vektorového potenciálu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-233564.

Повний текст джерела
Анотація:
The doctoral thesis is focused on research, design, implementation and testing of systems for the application of magnetic vector potential to biological materials. The main objective was to analyze and design systems which could generate magnetic vector potential without the presence of other unwanted fields or at least amplify its intensity. Moreover, the systems designed had to eliminate other foreign effects on the biological samples, especially the influence of waste heat from the coils. Toroidal coils were employed to generate the vector potential, because they confine the unwanted magnetic induction inside their core thanks to their shape. The thesis employed coils with two different outer diameters, specifically 102 and 600 mm. To excite the coils, four current pulse generators capable of delivering currents of up to 100 A were constructed. The systems’ generated fields were comprehensively analyzed with the help of finite-element simulations in ANSYS. To simplify the design phase, analytical equations for the calculation of vector potential intensity at an arbitrary point around the toroidal coils were also derived. A method employing electromagnetic shielding made of two different materials was developed to suppress the unwanted fields. To eliminate the influence of heat, the 102 mm system employed air cooling and the 600 mm system employed a closed water loop to equalize the temperatures of biological samples. The biological effects of both systems were tested on genetically modified bio-luminescent bacteria Escherichia coli K12 luxABCDEamp. The thesis was created in connection with the research project of The Ministry of Education, Youth and Sports of the Czech Republic named “Research into the effect of a combination of substances for targeted therapy and inhibitory action of the field pulse vector magnetic potential on oncogenous diseases”, No. 2B08063.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Вінніков, Денис Вікторович. "Електрофізичний вплив потужного підводного іскрового розряду на процеси обробки речовин". Thesis, Національний науковий центр "Харківський фізико-технічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33188.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.09.13 – техніка сильних електричних та магнітних полів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. Дисертація присвячена вдосконаленню електророзрядного обладнання, що використовується для обробки речовин сильно струмовим підводним іскровим розрядом. Проведено аналіз здобутих властивостей матеріалів та рідин в залежності від електричних параметрів розрядного кола, розмірів міжелектродного проміжку, конструкцій електрогідравлічних реакторів і тиску у реакторі. Запропоновані технологічні рекомендації щодо вдосконалення обладнання та процесів електрофізичного впливу на матеріали і рідкі середовища. В дисертації вдосконалено математичну модель щодо дослідження ранньої стадії розвитку іскрового каналу потужного іскрового розряду в парі води та у парогазовій оболонці. Вперше виявлено можливість швидкої (5–20 с) зміни окислювально-відновного потенціалу рідин в бік від'ємних значень з помірним підвищенням водневого показника. Проведено діагностику зміни фізико-хімічних властивостей води. Визначено склад та розміри частинок, що утворюються під час електричної ерозії електродів, запропоновано хімічну схему їх впливу на властивості води. Виявлено можливість подрібнення матеріалів, що моделюють відпрацьоване ядерне паливо, з метою вдосконалення методів його переробки. Оптимізовано параметри розрядного кола та реактора для подрібнення гумовотехнічних виробів у середовищі рідкого азоту. Доведено можливість обробки та зменшення розмірів зерен металів, що переплавляються в вакуумно-дугових пічках під впливом механіко-акустичних імпульсів, які утворюються високовольтними потужними підводними іскровими розрядами.
Thesis for the scientific degree of the candidate of engineering sciences by specialty 05.09.13 – Technology of Strong Electric and Magnetic Fields. – National Science Center "Kharkiv Institute of Physics and Technology", Ministry of education and science of Ukraine National Technical University "Kharkiv Politechnic University" Kharkiv, 2017. This thesis is devoted to the improvement of the electric discharge equipment that is used for the substance treatment by heavy-current underwater spark discharges. The properties of materials and liquids were analyzed as a function of the electric parameters of discharge circuit, in particular, the charging voltage, the capacitance and the spark gap size. The structures of electrohydraulic reactors that are used for the treatment of general mechanical rubber goods and materials that simulate in the first approximation the spent solid nuclear fuel were developed and modernized to improve the methods of fuel recycling. The liquid degassing intensification method was suggested to initiate underwater spark discharges in the electrohydraulic reactor under the evacuation. The electrode system was created to provide the ordered motion of a pulsating steam and gas cavity in the water space at a reduced pressure in the reactor. A structure of the electric discharge generator of elastic vibrations that allows us to have an influence on the metal melts in vacuum-arc furnaces has been developed. It has been proved that mechanical acoustic vibrations generated by spark discharges in the liquid have a positive effect on the distribution of admixtures in treated metals and a decrease in the size of crystal grains. Technological recommendations on the improvement of the processes of electrophysical impact on the materials and liquid media were given. A mathematical model used for the investigation of the progress of current conducting channel that short-closes the spark gap at an early stage of its development, in particular a process of the expansion of current conducting channel and steam-gas cavity was improved. An opportunity for a fast (5–20 s) change in the redox potential of the liquid to the side of negative values with a moderate increase in the pH value was revealed for the first time. It has been shown that a change in the redox potential depends on the input of total energy into the treated volume. We established that a change in the redox potential is related to the processes that occur inside the steam-gas cavity, in particular chemical transformations that occur in its volume and the formation of electric erosion products of the electrodes that result in the chemical changes in the composition of treated medium. The size and dimensions of the particles that are formed during the electric erosion of electrodes have been defined. The chemical diagram of their influence on water properties has been suggested. A degree of the change in the redox potential is related to a number of formed polydisperse particles. Nanosize particles (37 % of the total volume of particles) with an increased physical and chemical activity were revealed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Вінніков, Денис Вікторович. "Електрофізичний вплив потужного підводного іскрового розряду на процеси обробки речовин". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/33183.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.09.13 – техніка сильних електричних та магнітних полів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2017. Дисертація присвячена вдосконаленню електророзрядного обладнання, що використовується для обробки речовин сильно струмовим підводним іскровим розрядом. Проведено аналіз здобутих властивостей матеріалів та рідин в залежності від електричних параметрів розрядного кола, розмірів міжелектродного проміжку, конструкцій електрогідравлічних реакторів і тиску у реакторі. Запропоновані технологічні рекомендації щодо вдосконалення обладнання та процесів електрофізичного впливу на матеріали і рідкі середовища. В дисертації вдосконалено математичну модель щодо дослідження ранньої стадії розвитку іскрового каналу потужного іскрового розряду в парі води та у парогазовій оболонці. Вперше виявлено можливість швидкої (5–20 с) зміни окислювально-відновного потенціалу рідин в бік від'ємних значень з помірним підвищенням водневого показника. Проведено діагностику зміни фізико-хімічних властивостей води. Визначено склад та розміри частинок, що утворюються під час електричної ерозії електродів, запропоновано хімічну схему їх впливу на властивості води. Виявлено можливість подрібнення матеріалів, що моделюють відпрацьоване ядерне паливо, з метою вдосконалення методів його переробки. Оптимізовано параметри розрядного кола та реактора для подрібнення гумовотехнічних виробів у середовищі рідкого азоту. Доведено можливість обробки та зменшення розмірів зерен металів, що переплавляються в вакуумно-дугових пічках під впливом механіко-акустичних імпульсів, які утворюються високовольтними потужними підводними іскровими розрядами.
Thesis for the scientific degree of the candidate of engineering sciences by specialty 05.09.13 – Technology of Strong Electric and Magnetic Fields. – National Science Center "Kharkiv Institute of Physics and Technology", Ministry of education and science of Ukraine National Technical University "Kharkiv Politechnic University" Kharkiv, 2017. This thesis is devoted to the improvement of the electric discharge equipment that is used for the substance treatment by heavy-current underwater spark discharges. The properties of materials and liquids were analyzed as a function of the electric parameters of discharge circuit, in particular, the charging voltage, the capacitance and the spark gap size. The structures of electrohydraulic reactors that are used for the treatment of general mechanical rubber goods and materials that simulate in the first approximation the spent solid nuclear fuel were developed and modernized to improve the methods of fuel recycling. The liquid degassing intensification method was suggested to initiate underwater spark discharges in the electrohydraulic reactor under the evacuation. The electrode system was created to provide the ordered motion of a pulsating steam and gas cavity in the water space at a reduced pressure in the reactor. A structure of the electric discharge generator of elastic vibrations that allows us to have an influence on the metal melts in vacuum-arc furnaces has been developed. It has been proved that mechanical acoustic vibrations generated by spark discharges in the liquid have a positive effect on the distribution of admixtures in treated metals and a decrease in the size of crystal grains. Technological recommendations on the improvement of the processes of electrophysical impact on the materials and liquid media were given. A mathematical model used for the investigation of the progress of current conducting channel that short-closes the spark gap at an early stage of its development, in particular a process of the expansion of current conducting channel and steam-gas cavity was improved. An opportunity for a fast (5–20 s) change in the redox potential of the liquid to the side of negative values with a moderate increase in the pH value was revealed for the first time. It has been shown that a change in the redox potential depends on the input of total energy into the treated volume. We established that a change in the redox potential is related to the processes that occur inside the steam-gas cavity, in particular chemical transformations that occur in its volume and the formation of electric erosion products of the electrodes that result in the chemical changes in the composition of treated medium. The size and dimensions of the particles that are formed during the electric erosion of electrodes have been defined. The chemical diagram of their influence on water properties has been suggested. A degree of the change in the redox potential is related to a number of formed polydisperse particles. Nanosize particles (37 % of the total volume of particles) with an increased physical and chemical activity were revealed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Веселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17177.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата історичних наук за спеціальністю 07.00.07 – історія науки і техніки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2015. У дисертації комплексно досліджується створення та розвиток харківських наукових шкіл у галузі техніки та електрофізики високих напруг у 1930–2010 рр. В роботі визначені харківські наукові школи в цій галузі, а саме: наукова школа високовольтних прискорювачів в УФТІ, яку очолив академік АН УРСР А. К. Вальтер; наукова школа техніки високих напруг ХПІ, засновником якої став академік АН УРСР В. М. Хрущов; наукова школа магнітно-імпульсної обробки металів ХПІ, що була заснована проф. І. В. Білим. Проведено цілісний науково-історичний аналіз процесу виникнення технічних рішень в електрофізиці і створення установок високої напруги в провідних харківських наукових центрах. Розкрито процес формування складу наукових установ і лабораторій, внесок окремих вчених у розвиток техніки і електрофізики високих напруг в м. Харкові. Показана важливість та унікальність створених високовольтних установок, визначено передумови їх створення та досліджено застосування цих пристроїв у вітчизняній науці та промисловості.
The thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mutsuura, Keita, Hirotaka Shimizu, Yasunobu Yokomizu, and Toshiro Matsumura. "Flux flow resistance in Bi2223 generated by pulse currents." IEEE, 2005. http://hdl.handle.net/2237/6789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Веселова, Надія Вікторівна. "Становлення і розвиток харківських наукових шкіл у галузі техніки та електрофізика високих напруг (1930–2010 рр.)". Thesis, НТУ "ХПІ", 2015. http://repository.kpi.kharkov.ua/handle/KhPI-Press/17176.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата історичних наук за спеціальністю 07.00.07 – історія науки і техніки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2015. У дисертації комплексно досліджується створення та розвиток харківських наукових шкіл у галузі техніки та електрофізики високих напруг у 1930–2010 рр. В роботі визначені харківські наукові школи в цій галузі, а саме: наукова школа високовольтних прискорювачів в УФТІ, яку очолив академік АН УРСР А. К. Вальтер; наукова школа техніки високих напруг ХПІ, засновником якої став академік АН УРСР В. М. Хрущов; наукова школа магнітно-імпульсної обробки металів ХПІ, що була заснована проф. І. В. Білим. Проведено цілісний науково-історичний аналіз процесу виникнення технічних рішень в електрофізиці і створення установок високої напруги в провідних харківських наукових центрах. Розкрито процес формування складу наукових установ і лабораторій, внесок окремих вчених у розвиток техніки і електрофізики високих напруг в м. Харкові. Показана важливість та унікальність створених високовольтних установок, визначено передумови їх створення та досліджено застосування цих пристроїв у вітчизняній науці та промисловості.
The thesis for the competition of the academic degree of the candidate of the historical sciences, the speciality 07.00.07 – The history of science and technique. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2015. The thesis is devoted to the complex research of the establishment and the development of Kharkiv scientific schools in the field of the technique and the electrophysics of the high-voltages in 1930's – 2010's. In this work the Kharkiv scientific schools in this field were identified for the first time. They are: the scientific school of the high-voltage accelerators in the UFTI headed by academician of USSR A.K. Walter; the scientific school of the technique of high-voltages in the KhPI, the founder of which was the acacademician of the Academy of Sciences of USSR V. M. Khrushchev; the scientific school of magnetic-pulse treatment of metals in KhPI which was founded by professor I. V. Belii. A holistic scientific-historical analysis of the process of technical solutions in electrophysics and the creation of high-voltage installations in leading scientific centers of Kharkiv is carried out in this work. The importance and uniqueness of the high-voltage installations is shown here. The importance and the uniqueness of the high-voltage structures, the conditions of their creation usage in home industry and science are shown here.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thekkevalappil, Soniya Noormuhamed. "Hysteretic pulse width modulation with internally generated carrier for a boost dc-dc converter." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dalvi, Mahesh. "Computer controlled generation of PWM waveform using harmonic distortion minimization scheme." Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1177442328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Pulse current generator"

1

Stanton, Bonita. Physics and technology of high current discharges in dense gas media and flows. Hauppauge, N.Y: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fortov, V. E. Explosive-Driven Generators of Powerful Electric Current Pulses. Cambridge International Science Publishing, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

TENS-like devices. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199673278.003.0011.

Повний текст джерела
Анотація:
TENS-like devices deliver electrical currents across the intact surface of the skin using pulse generators with technical output specifications that differ from a standard TENS device. Technological advances have resulted in reductions in the size and cost of electrotherapeutic devices with increasing varieties of self-administered hand-held TENS-like devices available to practitioners and the general public. The diversity of TENS-like devices available on the market makes synthesizing evidence difficult. The purpose of this chapter is to categorize TENS-like devices and briefly overview the characteristics, mechanism of action, and effectiveness of various TENS-like devices. The chapter covers high-voltage pulsed (Galvanic) current, microcurrent electrical therapy, low-intensity transcutaneous cranial electrical stimulation, transcutaneous spinal electroanalgesia, transcutaneous piezoelectric current, non-invasive interactive neurostimulation, action potential simulation and H-wave therapy, and transcutaneous electrical acupoint stimulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wright, A. G. Electronics for PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0014.

Повний текст джерела
Анотація:
Photomultipliers (PMTs) are current generators characterized by high gain, wide bandwidth, and high-output impedance. The role of preamplifiers and amplifiers is generally one of conditioning the PMT output. Either the time signature is preserved using a fast voltage preamplifier, or a voltage proportional to the charge in each event is generated with a charge-sensitive preamplifier. Both preamplifier types are generally of low-output impedance, suitable for driving matched coaxial cable. Preamplifiers and amplifiers are available as modular units (e.g. nuclear instrument module), stand alone, or are incorporated in a module including the PMT. Shaping amplifiers are used to further condition preamplifier signals, using integrating and differentiating circuits—particularly relevant to scintillation spectrometers. Discrete-component amplifiers and current-feedback operational amplifiers serve fast applications. Digital signal processing has overtaken many of the classical electronic techniques involving resolution and in pulse shape discrimination. Electronic circuitry for generating fast LED pulses is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wright, A. G. PMT background. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0006.

Повний текст джерела
Анотація:
Photomultiplier (PMT) background derives from sources of photons, and from photoelectrons generation within a PMT. These may also act as a source of optical and radioactive background for neighbouring detectors. Dark count and dark current are reconciled by allowing for leakage currents flowing into the anode. The optimal gain setting follows from these considerations. Sources of background generated by the photocathode include thermionic emission; light generated within the PMT; gamma rays; muons and minimum ionizing particles (MIPs); insulator glow in the region of the anode; and residual gas. Pulse height distributions for dark counts, in terms of photoelectrons equivalent, reveal the size and magnitude distributions of the various contributions. Temperature and gain dependence are also covered. PMTs constructed from low radioactive glass provide ultra-low background.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wright, A. G. Voltage dividers. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0013.

Повний текст джерела
Анотація:
Voltage dividers provide accelerating voltages to generate multiplier gain. Dynode voltages must remain constant and independent of the light input to maintain stable gain. The standard resistive divider never quite satisfies this requirement, although acceptable performance can be achieved by careful design. The inclusion of zener diodes improves performance but field-effect transistor (FET) circuits can provide gain stability at high mean anode currents, regardless of whether the application is pulsed or analogue. Design procedures for active and semi-active voltage dividers are presented. Dividers based on the Cockcroft–Walton (CW) principle are particularly suited to portable instrumentation because of their low standing current. Consideration is given to pulsed operation, decoupling, switch-on transients, ripple, dynode signals, single cable dividers, and equivalent circuits at high frequencies. Gating is used to protect a photomultiplier, in the presence of high light levels, by reducing the gain electronically. Various methods for gating a voltage divider are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Pulse current generator"

1

Amit Bhattacharyya. "Differential Voltage Current Conveyor-Based One-Shot Pulse Generator Circuit Implementation." In Proceeding of International Conference on Intelligent Communication, Control and Devices, 1–7. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coeur, F., Y. Arnal, J. Pelletier, O. Lesaint, O. Maulat, and M. Roche. "Monoatomic Ion Rich DECR Plasmas for Ion Implantation by Plasma Immersion Using a New High Voltage — High Current Pulse Generator." In Advanced Technologies Based on Wave and Beam Generated Plasmas, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kolikov, Victor, Alexander Bogomaz, and Alexander Budin. "Arc Contraction: Modified Piza-Braginskii Critical Current." In Powerful Pulsed Plasma Generators, 181–202. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95249-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"Design of 1KA Current Pulse Generator." In International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011), 301–4. ASME Press, 2011. http://dx.doi.org/10.1115/1.859902.paper64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Magee, Patrick, and Mark Tooley. "Pacemakers and Defibrillators." In The Physics, Clinical Measurement and Equipment of Anaesthetic Practice for the FRCA. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199595150.003.0024.

Повний текст джерела
Анотація:
Cardiac pacemakers and defibrillators are used to stimulate cardiac muscle directly. The pacemaker corrects for abnormalities in the heart rate (this can be fast or slow). Defibrillators are used to restore a fibrillating or tachycardic heart, to sinus rhythm. These are normally external, battery or mains powered, but can be internal devices, which are called Implantable Cardiac Devices (ICDs). Pacemakers that deal with bradycardia will be considered first. Normally a slow or irregular heart rhythm is caused by three types of heart block: ◆ First degree, where the delay at the AV junction is increased beyond the normal 0.2 s; ◆ Second degree, where a proportion of the depolarisation wave fails to pass through the AV junction; ◆ Complete block, where none of the depolarisation waves pass through the AV junction, and ventricular electrical activity is independent of supraventricular activity. In all these cases, the ventricles will beat at a slower or irregular rate. Dizziness or loss of consciousness may occur. The simplest pacemaker consists of three major components: batteries, the pulse generator, and the electrode leads. The pulse generator is required to provide a rectangular pulse. Typical parameters are the duration of 1 ms, a voltage of 5 V and capable of delivering a current of 10 mA. The power needed per second (if the pacemaker is on all the time) would be I 2R = 50 mW, for an electrode tissue resistance of 500 Ω. If the pacemaker is operating at 1 Hz (60 beats per minute), then the average power consumption would be 50 μW, as the pulse width is 1 ms (the pacemaker is on for 1/1000 of a second, and so the power consumption will be divided by 1000). A typical small battery has a capacity of 1 A h, so that this battery could supply the average current (10 μA) for about 11 years. The circuitry would also absorb power so that the battery life would drop to around 5 years. The batteries used are now commonly lithium iodide. The output pulse is applied to the tissue via an electrode. The electrode tip, which can screw in (or more unusually, is sown in), can be made of platinum, silver, stainless steel, titanium as well as various alloys.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

L’Huillier, Anne. "Generation of high-order harmonics and attosecond pulses." In Current Trends in Atomic Physics, 326–42. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198837190.003.0008.

Повний текст джерела
Анотація:
The interaction of atoms with intense laser radiation leads to the generation of high-order harmonics of the laser field. In the time domain, this corresponds to a train of pulses in the extreme ultraviolet range and with attosecond duration. The first section introduces the physics of high-order harmonic generation and attosecond pulses on the single atom level while the second section discusses phase matching and propagation effects. The attosecond time scale is that of the electron motion in atoms and molecules. Attosecond light pulses are used to study, for example, the dynamics of atomic or molecular photoionization. The third section will present an interferometric method developed for measuring attosecond pulses and discuss some of the applications, in particular concerning photoionization dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Siyuan, Peng Song, Huan Pei, Qiyu Li, and Zhibo Zhao. "Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220025.

Повний текст джерела
Анотація:
This paper established a one-dimensional model of a coaxial dielectric barrier discharge (DBD) with a single dielectric layer covering the high-voltage electrode. The mixture of Ar and a small amount of CH4 was used as working gas, the influence of different voltage amplitude on the discharge characteristics was studied by 10.0 kHz microsecond pulsed power. The simulation results show that the discharge current curve presents bipolar characteristics with different intensities are generated in a single microsecond pulse period, and the primary discharge is much intense. The discharge current, discharge power can enhance by increasing the discharge voltage amplitude. The equivalent capacitance Cg also increases, the discharge voltage has no significant effect on Cd. In the experiment, it can be observed that the number of discharge filaments in the discharge gap increases with the increase of voltage amplitude, and photoionization is formed near the anode. The result of the current experimental trend is almost the same as the simulated current.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

"Treeing Property In Polypropylene Under Various Temperature and Electrical Field." In Electrical Insulation Breakdown and Its Theory, Process, and Prevention, 181–218. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-8885-6.ch007.

Повний текст джерела
Анотація:
Polypropylene (PP) has no cross-linking process and environmentally friendly properties and is considered to be a replacement for cross-linked polyethylene (xlpe) for high voltage direct current (HVDC) cable insulation. High-voltage DC cable systems generate repetitive pulse voltages during operation and may encounter different temperature environmental challenges. This chapter discusses the effects of pulse amplitude and frequency on PP trees at different temperatures. A higher pulse frequency accelerates the propagation of the tree. Higher amplitudes accelerate tree growth and fractal dimensions. In addition, the effects of DC voltage, pulse voltage, and pulse frequency on the tree characteristics of PP at DC voltage and pulse combination voltage are also studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mondal, Shyamal, Nisha Flora Boby Edwin, and Vaisshale Rathinasamy. "Interdigitated Photoconductive Antenna for Efficient Terahertz Generation and Detection." In Terahertz Technology [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102379.

Повний текст джерела
Анотація:
THz signals can be generated commonly from Photoconductive Antenna (PCA) but the efficiency is low for the conventional PCA. This work improves the optical to terahertz conversion efficiency of the terahertz radiation by changing the conventional PCA structure to Interdigitated PCA (IPCA). The efficiency of PCA is dependent on the current pulse generated in the antenna structure when the laser pulse is incident on it. This paper targets to achieve high photo-current, as well as THz electric field from the IPCAs which are simulated using FEM and FDTD techniques. Also, the effect of various parameters such as current, gain, frequency bandwidth, optical to terahertz conversion efficiency, etc. are studied to study the importance of IPCAs.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

B., Andrei. "Electromagnetic Waves Generated by Line Current Pulses." In Wave Propagation. InTech, 2011. http://dx.doi.org/10.5772/13868.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Pulse current generator"

1

Al Haddad, K., B. Dumolard, K. S. Rajashekara, and V. Rajagopalan. "Pulse Current Generator using Dual Thyristors." In INTELEC '86. IEEE, 1986. http://dx.doi.org/10.1109/intlec.1986.4794490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zurla, R., A. Cabrini, L. Capecchi, M. Carissimi, M. Pasotti, and G. Torelli. "Enhanced Multiple-Output Programmable Current Pulse Generator." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nashilevskiy, A. V., G. G. Kanaev, V. I. Krauz, V. V. Myalton, G. E. Remnev, and V. P. Vinogradov. "High-current pulse generator for plasma focus." In 2011 IEEE Pulsed Power Conference (PPC). IEEE, 2011. http://dx.doi.org/10.1109/ppc.2011.6191540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Galiev, A. L., N. I. Yumagulov, and D. V. Topolsky. "Functional Measuring Generator with Pulse Current Stabilization." In 2020 Global Smart Industry Conference (GloSIC). IEEE, 2020. http://dx.doi.org/10.1109/glosic50886.2020.9267836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grawer, G., F. Cordobes Dominguez, T. Fowler, and N. Voumard. "A 400A programmable linear current pulse generator." In 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2016. http://dx.doi.org/10.1109/ipmhvc.2016.8012874.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shoihet, Arthur, Moshe Shvartsas, Beni Gdaliahu, and Itzik Edry. "High current short pulse generator for pulse magneto-oscillation (PMO) research." In 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI 2012). IEEE, 2012. http://dx.doi.org/10.1109/eeei.2012.6376977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hartmann, W. "Design of a high current pulse generator for magnetoforming." In Pulsed Power Seminar. IEE, 2003. http://dx.doi.org/10.1049/ic:20030090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kopylov, Kirill K., Alexey A. Khristolyubov, and Alexandra I. Khristolyubova. "The pump current pulse generator for laser diodes." In 2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2015. http://dx.doi.org/10.1109/edm.2015.7184601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Patru, Ion, Marcel Nicola, Camelia Marinescu, Laurentiu Vladoi, and Maria Cristina Nitu. "Applications of Voltage Pulse Generator to Achieve Current Pulses of High Amplitude." In 2019 International Conference on Electromechanical and Energy Systems (SIELMEN). IEEE, 2019. http://dx.doi.org/10.1109/sielmen.2019.8905840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bastos, Miguel Cerqueira, Michele Martino, Gustavo Cesar Uicich, Pablo Daniel Antoszczuk, and John R. P. Pickering. "20A trapezoidal reference current pulse generator for the evaluation of current transducers." In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2013. http://dx.doi.org/10.1109/i2mtc.2013.6555434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Pulse current generator"

1

Claus, Ana, Borzooye Jafarizadeh, Azmal Huda Chowdhury, Neziah Pala, and Chunlei Wang. Testbed for Pressure Sensors. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009771.

Повний текст джерела
Анотація:
Currently, several studies and experiments are being done to create a new generation of ultra-low-power wearable sensors. For instance, our group is currently working towards the development of a high-performance flexible pressure sensor. However, with the creation of new sensors, a need for a standard test method is necessary. Therefore, we opted to create a standardized testbed to evaluate the pressure applied to sensors. A pulse wave is generated when the heart pumps blood causing a change in the volume of the blood vessel. In order to eliminate the need of human subjects when testing pressure sensors, we utilized polymeric material, which mimics human flesh. The goal is to simulate human pulse by pumping air into a polymeric pocket which s deformed. The project is realized by stepper motor and controlled with an Arduino board. Furthermore, this device has the ability to simulate pulse wave form with different frequencies. This in turn allows us to simulate conditions such as bradycardia, tachycardia, systolic pressure, and diastolic pressure.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії