Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Pseudo-alloys.

Статті в журналах з теми "Pseudo-alloys"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Pseudo-alloys".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Müller, I. "Pseudo-elastic hysteresis in shape memory alloys." Physica B: Condensed Matter 407, no. 9 (May 2012): 1314–15. http://dx.doi.org/10.1016/j.physb.2011.06.088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hutten, A., A. Handstein, D. Eckert, H. K. Muller, and L. Schultz. "Giant magnetoresistance in pseudo-binary bulk alloys." IEEE Transactions on Magnetics 32, no. 5 (1996): 4695–97. http://dx.doi.org/10.1109/20.539121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Belin, Esther, Zoltan Dankhazi, and Anne Sadoc. "Pseudo-gaps in crystalline and quasicrystalline alloys." Materials Science and Engineering: A 181-182 (May 1994): 717–21. http://dx.doi.org/10.1016/0921-5093(94)90723-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shadrin, V. S., and S. N. Kulkov. "Structure and Properties of Al – ZrW2O8 Pseudo Alloys." Journal of Physics: Conference Series 1045 (June 2018): 012039. http://dx.doi.org/10.1088/1742-6596/1045/1/012039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Junker, Philipp, and Klaus Hackl. "Simulation of pseudo-plasticity in shape-memory-alloys." PAMM 11, no. 1 (December 2011): 391–92. http://dx.doi.org/10.1002/pamm.201110187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SHIRAISHI, H., T. HORI, Y. YAMAGUCHI, S. FUNAHASHI, and K. KANEMATSU. "MAGNETIC PROPERTIES OF PSEUDO-BINARY Mn1−xFexSn2 ALLOYS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 867–70. http://dx.doi.org/10.1142/s0217979293001852.

Повний текст джерела
Анотація:
The magnetic susceptibility measurements have been made on antiferromagnetic compounds Mn1–xFexSn2 and the magnetic phase diagram was illustrated. The high temperature magnetic phases I and III, major phases, were analyzed on the basis of molecular field theory and explained the change of magnetic structure I⇌III occured at x≈0.8.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cunmao, Hong, Zhang Yufen, and Han Degang. "Hydrogen Absorption Properties of Pseudo-Binary Alloys Ti0.8Zr0.2Mn1.5M0.5*." Zeitschrift für Physikalische Chemie 183, Part_1_2 (January 1994): 169–74. http://dx.doi.org/10.1524/zpch.1994.183.part_1_2.169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Brechet, Y., and Y. Estrin. "Pseudo-portevin-le châtelier effect in ordered alloys." Scripta Materialia 35, no. 2 (July 1996): 217–23. http://dx.doi.org/10.1016/1359-6462(96)00126-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yu, Haibo, Yu Sun, S. Pamir Alpay, and Mark Aindow. "Solidification microstructures in Ag3Sn–Cu3Sn pseudo-binary alloys." Journal of Materials Science 51, no. 13 (April 11, 2016): 6474–87. http://dx.doi.org/10.1007/s10853-016-9947-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weil, T., and B. Vinter. "Calculation of carrier transport in pseudo-quarternary alloys." Surface Science Letters 174, no. 1-3 (August 1986): A455. http://dx.doi.org/10.1016/0167-2584(86)90087-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Weil, T., and B. Vinter. "Calculation of carrier transport in pseudo-quaternary alloys." Surface Science 174, no. 1-3 (August 1986): 505–8. http://dx.doi.org/10.1016/0039-6028(86)90460-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Semboshi, Satoshi, Hiroyuki Tsuda, Yasuyuki Kaneno, Akihiro Iwase, and Takayuki Takasugi. "Thermal conductivity of Ni3V–Ni3Al pseudo-binary alloys." Intermetallics 59 (April 2015): 1–7. http://dx.doi.org/10.1016/j.intermet.2014.12.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Vasilescu, Marius, and Mircea Dobrescu. "Property Modifications in Ni-Ti Shape Memory Alloys." Key Engineering Materials 750 (August 2017): 148–52. http://dx.doi.org/10.4028/www.scientific.net/kem.750.148.

Повний текст джерела
Анотація:
In the paper are shown some properties modifications in Ni-Ti shape memory alloys with the shape memory effect transformation. Recovery of deformation and pseudo elasticity are of great importance for shape memory alloys. Mechanical and electrical properties versus temperature are given in comparison for Ni-Ti and Au-Cd alloys.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ovchinnikov, Viktor Vasilevich, Svetlana Viktorovna Yakutina, Irina Aleksandrovna Kurbatova, Elena Vladimirovna Luk'yanenko, and Nadezda Vladimirovna Uchevatkina. "Influence of the Structural State of Titanium Alloy on the Depth of Penetration of Ions during Implantation." Materials Science Forum 1037 (July 6, 2021): 541–46. http://dx.doi.org/10.4028/www.scientific.net/msf.1037.541.

Повний текст джерела
Анотація:
The article presents the results of the influence of the structural state of titanium alloys VT1-0 (α-alloy), VT20 (pseudo-α-alloy), VT6 (α + β) -alloy of the martensitic class) and VT15 (pseudo-β-alloy) on the penetration depth ions of nitrogen, aluminum, copper and the cathode of the alloy 50% Cu – 50% Fe. It is shown that the structural class of titanium alloys selected for the study, when exposed to ion implantation by both gases and metals, does not significantly affect the depth of their penetration.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Akhonin, S. V., V. Yu Belous та R. V. Selin. "Effect of thermal cycle of TIG welding on structure and properties of pseudo-β-titanium alloys". Paton Welding Journal 2018, № 8 (28 серпня 2018): 28–33. http://dx.doi.org/10.15407/tpwj2018.08.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Vitanov, P., A. Harizanova, T. Ivanova, and A. Ulyashin. "Si nanoparticles embedded in pseudo binaries alloys with AI2O3." Journal of Physics: Conference Series 558 (December 3, 2014): 012058. http://dx.doi.org/10.1088/1742-6596/558/1/012058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Okazaki, Yoshimitsu, and Emiko Nishimura. "Corrosion Resistance of Dental Alloys in Pseudo-Oral Environment." MATERIALS TRANSACTIONS 42, no. 2 (2001): 350–55. http://dx.doi.org/10.2320/matertrans.42.350.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Minakova, R. V., A. P. Pachek, L. A. Kryachko, A. P. Kresanova, and V. G. Zatovskii. "Texture formation in the cold rolling of pseudo-alloys." Powder Metallurgy and Metal Ceramics 39, no. 1-2 (February 2000): 78–84. http://dx.doi.org/10.1007/bf02677447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Cui, J. L., Y. L. Yuan, B. Hu, and W. Yang. "Electrical Properties of P-Type Thermoelectric AgxBi0.5Sb1.5-xTe3 (x=0.05~0.4) Alloys Prepared by Spark Plasma Sintering." Key Engineering Materials 336-338 (April 2007): 868–70. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.868.

Повний текст джерела
Анотація:
Thermoelectric Ag-Bi-Sb-Te alloys with the general formula AgxBi0.5Sb1.5-xTe3 (x =0.05∼0.4) were prepared by spark plasma sintering and their electrical properties were examined. The alloys exhibit large electrical conductivities in the whole temperature range, which are approximate 11.0 and 3.5 times those of pseudo-binary Bi0.5Sb1.5Te3 alloy at room temperature and 558K, respectively. The highest power factor value of 1.80×10-3 (W.K-2.m-1) is obtained for the material (x = 0.1) at the temperature of 412K, being about 2.4 times that of pseudo-binary alloy Bi0.5Sb1.5Te3 at the corresponding temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gadalov, Vladimir, Irina Vornacheva, Sergey Voinash, Vitaly Ignatenko, and Evgeny Remshev. "The Influence of Thermocyclic Treatment on the Structure and Mechanical Properties of Pseudo-Alpha Titanium Alloys for Steam Turbine Blades." Materials Science Forum 1031 (May 2021): 117–24. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.117.

Повний текст джерела
Анотація:
The influence of thermal cycling treatment of pseudo-α-titanium alloys OT4 and VT20 on their structural and substructural characteristics, as well as their mechanical properties is considered. A significant change in structural characteristics is established. This contributes to an increase in the strength properties of alloys with satisfactory ductility and high-temperature strength.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Berti, Alessia, Claudio Giorgi, and Elena Vuk. "Free energies and pseudo-elastic transitions for shape memory alloys." Discrete & Continuous Dynamical Systems - S 6, no. 2 (2013): 293–316. http://dx.doi.org/10.3934/dcdss.2013.6.293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Yuan, W. Q., and S. Yi. "Pseudo-elastic strain estimation of textured TiNi shape memory alloys." Materials Science and Engineering: A 271, no. 1-2 (November 1999): 439–48. http://dx.doi.org/10.1016/s0921-5093(99)00311-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Letardi, P., N. Motta, and A. Balzarotti. "Atomic bonding and thermodynamic properties of pseudo-binary semiconducting alloys." Journal of Physics C: Solid State Physics 20, no. 19 (July 10, 1987): 2853–84. http://dx.doi.org/10.1088/0022-3719/20/19/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Sikder, Sanjib, Punit Rathi, and Jhumpa Adhikari. "Structural characterization of pseudo-binary semiconducting alloys using molecular simulations." Molecular Physics 108, no. 24 (December 20, 2010): 3405–15. http://dx.doi.org/10.1080/00268976.2010.512572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Belin-Ferré, Esther, Zoltán Dankházi, Vincent Fournée, Anne Sadoc, Claire Berger, Herbert Müller, and Hans Kirchmayr. "Electronic distributions and pseudo-gap in quasicrystalline decagonal and alloys." Journal of Physics: Condensed Matter 8, no. 34 (August 19, 1996): 6213–28. http://dx.doi.org/10.1088/0953-8984/8/34/011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lyasotskaya, V. S., M. V. Vozdvizhenskaya, and V. M. Vozdvizhenskii. "Classification of the structure of titanium ? and pseudo-? casting alloys." Metal Science and Heat Treatment 36, no. 3 (March 1994): 163–66. http://dx.doi.org/10.1007/bf01398848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sadoc, A., E. Belin, Z. Dankhazi, and A. M. Flank. "Evidence of a wide pseudo-gap in AlCuFe icosahedral alloys." Journal of Non-Crystalline Solids 153-154 (February 1993): 338–42. http://dx.doi.org/10.1016/0022-3093(93)90369-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Гадалов, Владимир, Vladimir Gadalov, Ирина Ворначева, Irina Vornacheva, Александр Филонович, Alexander Filonovich, Александр Чернышев, and Aleksandr Chernyshev. "Thermo-cycling impact upon velocity choice of titanium alloy super-plastic flow." Science intensive technologies in mechanical engineering 2019, no. 10 (October 29, 2019): 19–25. http://dx.doi.org/10.30987/article_5d6518cd691f02.33724732.

Повний текст джерела
Анотація:
The modes of the thermo-cyclical deformation of pseudo-α alloys having the super-plastic deformation state under isothermal conditions at temperatures in the field of two-phase state are investigated. The modes for preliminary thermo-processing influencing processing characteristics of VT20 and OT$ alloys, that is, increasing a deformation temperature interval and decreasing processing time are determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wang, Xiao Ming, and Heng Xiao. "Modeling Tension-Compression Asymmetry of Shape Memory Alloys Based on Finite Elastoplasticity Model." Applied Mechanics and Materials 327 (June 2013): 314–17. http://dx.doi.org/10.4028/www.scientific.net/amm.327.314.

Повний текст джерела
Анотація:
A combined hardening J2-flow elastoplasticity model is proposed to model tension-compression asymmetry of shape memory alloys in a direct sense. Results show excellent accord with test data for realistic pseudo-elastic behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Dyachkova, L. N. "Influence of heat treatment on the structure and properties of pseudo-alloy steel – copper alloy obtained by infiltration." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 67, no. 1 (April 6, 2022): 27–38. http://dx.doi.org/10.29235/1561-8358-2022-67-1-27-38.

Повний текст джерела
Анотація:
The paper presents the results of studies of the effect of heat treatment regimes on changes in the structure and properties of steel-copper alloy pseudo-alloys obtained by infiltration. It is shown that, depending on the composition and initial density of the steel skeleton, the strength of the material increases by 1.3–1.8 times, the hardening effect is realized when the carbon content in the steel skeleton is 0.3–1.5 % and is achieved due to changes in the structure and phase composition of the steel base and copper phase. It has been established that during heating for quenching and during tempering, redistribution of carbon occurs in the iron phase, which is more pronounced in the frame of the pseudo-alloy made of medium-carbon steel. The formation of a “crust” structure in the grains of the skeleton is noted, while in the skeleton made of medium-carbon steel this occurs at a tempering temperature of 200 °C, in low-carbon steel – at a temperature of 500–650 °C. In a high-carbon steel skeleton, carbon stratification in the grain body is less pronounced. An increase in the strength of pseudo-alloys at tempering temperatures of 500–650 °C is associated with the formation of the α′-phase, the precipitation of the Fe3C carbide phase and the metastable Fe2C phase in the iron phase, as well as the precipitation of dispersed phases Fe4Cu3, Fe4Cu3, η-Cu6Sn5 and δ-Cu3Sn8 in the copper phase. Due to the precipitation of phases, the microhardness of the infiltrate in the form of copper in pseudo-alloys after tempering at 550 °C increased from 820–880 to 950–980 MPa, in the form of tin bronze – from 1450 to 1750 MPa. The use of heat treatment leads to an increase not only in the strength, but also in the tribotechnical properties of the pseudo-alloy: the friction coefficient of the pseudo-alloy with a frame of 80 % density made of FeC0.8 steel decreases to 0.008–0.009, the seizure pressure doubles and the wear resistance increases by more than 2.5 times.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Olajire, B. A., and A. A. Musari. "Thermodynamic and structural properties of liquid Al–Au alloys." International Journal of Modern Physics B 31, no. 20 (August 10, 2017): 1750134. http://dx.doi.org/10.1142/s021797921750134x.

Повний текст джерела
Анотація:
The mixing properties of liquid Al–Au alloys with respect to the concentration of each constituent is determined using a method based on hard sphere system and pseudo-potential perturbation. These models were used to get relevant information on mixing properties of the Al–Au alloys like the Gibbs energy and the entropy of mixing. The concentration fluctuations, chemical short range order for the hard sphere mixture (quasi-lattice theory) and the activity are calculated to know the extent of order in the liquid alloys. The results revealed that there is a degree of ordering in liquid Al–Au alloy (hetero-coordinated).
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Burkov, A. T., M. Takeda, A. Teruya, S. Watanabe, S. Hirakawa, Y. Hiranaka, A. Nakamura, et al. "Phase diagram and transport properties of Y1−xNdxCo2 pseudo-binary alloys." Journal of the Korean Physical Society 62, no. 12 (June 2013): 2080–83. http://dx.doi.org/10.3938/jkps.62.2080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

MATSUURA, Kiyotaka, Toshiki KITAMURA, and Masayuki KUDOH. "Combustion synthesis of Al-Ni alloys by a pseudo-HIP process." Journal of Japan Institute of Light Metals 46, no. 8 (1996): 383–88. http://dx.doi.org/10.2464/jilm.46.383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Stenholm, J., O. Eriksson, B. Johansson, and B. Nolang. "Calculated magnetic behaviour for the (Fe1-xNix)2P pseudo-binary alloys." Journal of Physics: Condensed Matter 1, no. 40 (October 9, 1989): 7329–34. http://dx.doi.org/10.1088/0953-8984/1/40/008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Prieb, V., and H. Steckmann. "Pseudo-Plastic Behaviour of Single-Crystals of Cu-Base Memory Alloys." Journal de Physique IV 05, no. C8 (December 1995): C8–907—C8–912. http://dx.doi.org/10.1051/jp4/199558907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Liu, J. B., D. D. Johnson, and A. V. Smirnov. "Predicting yield-stress anomalies in L12 alloys: Ni3Ge–Fe3Ge pseudo-binaries." Acta Materialia 53, no. 13 (August 2005): 3601–12. http://dx.doi.org/10.1016/j.actamat.2005.04.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ikeda, Teruyuki, Sossina M. Haile, Vilupanur A. Ravi, Hesham Azizgolshani, Franck Gascoin, and G. Jeffrey Snyder. "Solidification processing of alloys in the pseudo-binary PbTe–Sb2Te3 system." Acta Materialia 55, no. 4 (February 2007): 1227–39. http://dx.doi.org/10.1016/j.actamat.2006.09.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhigang, Wang, and Hwang Kehchih. "A constitutive relation for pseudo-elastic behaviour in shape memory alloys." Acta Mechanica Sinica 7, no. 1 (February 1991): 67–75. http://dx.doi.org/10.1007/bf02486598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hornbogen, E., and A. Heckmann. "Microstructure, frequency and localisation of pseudo-elastic fatigue strain in NiTi." International Journal of Materials Research 94, no. 10 (October 1, 2003): 1062–65. http://dx.doi.org/10.1515/ijmr-2003-0194.

Повний текст джерела
Анотація:
Abstract Fatigue is due to accumulation of undesired defects by repeated loading cycles. Classical fatigue leads to the formation of localised strain and nucleation and propagation of cracks. In shape memory alloys, there are additional fatigue phenomena: 1. Thermal cycling plays a role mainly for the two-way effect; 2. Pseudo-elastic fatigue can precede classical fatigue. Pseudo-elastic fatigue consists in deterioration of the hysteresis and consequently the loss of damping ability and transformability. It is related to the localisation of the martensitic transformation reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhang, Ze, He Tian, Yan-Hui Chen, and Wei Sun. "Special planar defects in the structural complex metallic alloys of Al–Pd–Mn and Al–Ni–Rh." International Journal of Materials Research 97, no. 7 (July 1, 2006): 1001–7. http://dx.doi.org/10.1515/ijmr-2006-0158.

Повний текст джерела
Анотація:
Abstract A systematic high-resolution electron microscopy study of a special type of two-dimensional defects, phason planes, has been carried out in the structurally complex metallic alloys of Al –Pd –Mn and Al –Ni –Rh. The structural characteristics of the phason planes in these two alloys consist of pentagon-banana pairs of polygons but with a different arrangement. Located on the vertex of the polygons are pseudo-Mackay atomic clusters. The detailed atomic structures of the phason planes in both ξ′- and ξ-phases of the two alloys have been determined by means of high-resolution electron microscopy and theoretical simulations. The possible ways of displacement of the phason planes in the complex alloys are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ageev, E. V., N. M. Khoriakova, and K. V. Sadova. "MORPHOLOGY AND ELEMENT COMPOSITION POWDER ALLOY POWDER VNZH-95, OBTAINED BY ELECTROEROSION DISPERSION IN KEROSIN." IZVESTIA VOLGOGRAD STATE TECHNICAL UNIVERSITY, no. 7(242) (July 29, 2020): 15–20. http://dx.doi.org/10.35211/1990-5297-2020-7-242-15-20.

Повний текст джерела
Анотація:
Residence permits pseudo-alloys are used for the manufacture of cylinder parts, bushings, complex-shaped blanks with curved surfaces: gyroscope rotors, inertial masses, erosion-resistant electrodes, funnel for cumulative charges, biological protection from gamma radiation. Recycling of tungsten pseudo-alloys residence permit is relevant and necessary due to the shortage of tungsten. A promising method of processing waste into fine powders is the method of electroerosive dispersion (EED) that we have chosen. The purpose of the work is to study the morphology and elemental composition of the powder of the VNZh-95 pseudo-alloy obtained by electroerosive dispersion in kerosene. In order to process the waste of the W-Ni-Fe alloy into powder, we used waste in the form of chips from the core of the VNZh-95 pseudo-alloy (Ni ̶ 3.2-3.7, Fe ̶ 1.5-2.0, W ̶ the rest). Kerosene is used as a working fluid. The EED process was carried out on the installation for obtaining powders from conductive materials (patent for the invention of the Russian Federation No. 2449859). The process was carried out at a voltage on the electrodes of 100 ... 110 V, the capacitance of the discharge capacitors 50 μF and a pulse repetition rate of 120 ... 130 Hz. The microstructure of the samples (along the transverse section) was studied using a Quanta 200 3D electron-ion scanning microscope. The powder obtained by the EED method for waste of VNZh-95 alloy in kerosene consists of particles of regular spherical shape (or elliptical) and irregular shape (conglomerates). Microanalysis of particles of electroerosive powder of pseudo-alloy VNZh-95 was carried out using an EDAX energy-dispersive x-ray analyzer built into the Quanta 200 3D scanning electron microscope. As a result of studying the elemental composition of the VNZh-95 pseudo-alloy powder obtained by EED in kerosene, it was found that the main elements are tungsten, nickel, iron, carbon and oxygen.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Steblyanko, P., K. Domichev, and A. Petrov. "PHENOMENOLOGICAL MODELING OF VOLUME NANOMATERIALS WITH FORM MEMORY." Innovative Solution in Modern Science 4, no. 40 (July 5, 2020): 5. http://dx.doi.org/10.26886/2414-634x.4(40)2020.1.

Повний текст джерела
Анотація:
The paper presents a phenomenological approach to modeling bulk memory nanomaterials form. A phenomenological model has been proposed that can be applied to model the behavior of nanomaterials with shape memory properties. The study of shape memory alloys as functionally inhomogeneous materials with the properties of pseudo-elastic-plasticity is presented. The phenomenological model is confirmed by experimental data. Tables of diagrams for different temperatures of alloys with shape memory are given.Key words: modeling, functionally inhomogeneous materials, nanomaterials, phenomenological approach, large deformations
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Katayama, Iwao, Toshihiro Tanaka, Shin-ichi Akai, Kisao Yamazaki, and Takamichi Iida. "Activity Measurement of Liquid Sn-Ag-Bi Alloys by Fused Salt EMF Method." Materials Science Forum 502 (December 2005): 129–38. http://dx.doi.org/10.4028/www.scientific.net/msf.502.129.

Повний текст джерела
Анотація:
Activity of tin in liquid Sn-Ag-Bi alloys was derived by EMF measurement of galvanic cell with fused salts electrolyte in the temperature range of 700 to 900K in the whole composition range. Activity of tin at 900K shows very small positive deviation from Raoult’s low for Sn-Bi alloys. Activity of ternary alloys was measured along three pseudo binary systems of Sn-(Ag,Bi) (where xAg/xBi =1/3,1/1 and 3/1). Its concentration dependence is very complex. From the iso-activity curves in the ternary system excess free energy of mixing is derived using Darken’s method for Gibbs-Duhem equation
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kumar, Anil, B. Vinith, Aditya Kumar Choudhary, and Manoj Kumar Chopkar. "Synthesis and Characterization of Novel High Entropy Alloys." Materials Science Forum 978 (February 2020): 167–73. http://dx.doi.org/10.4028/www.scientific.net/msf.978.167.

Повний текст джерела
Анотація:
High entropy alloys (HEAs) generally exhibit either high resistance to deformation or high toughness due to the presence of body-centered or face-centered cubic structure, respectively. To overcome these limitations, new high entropy alloys have been developed in the present study. This investigation aims to synthesis and characterization of novel CoCrFeNi3Si, CoCrFe2Ni2Si, and Co2CrFeNi2Si high entropy alloys. The mechanical alloying route is used to synthesize these alloys. Grinding was carried out to 20h and X-ray diffraction (XRD) analysis was done at different time intervals of grinding. The face-centered cubic structure along with the intermetallic compound of Ni-Si was observed after 20h of grinding. Furthermore, a pseudo binary strategy based on the valence electron concentration and mixing enthalpy is also employed to design the high entropy alloys considered in the present study. Carefully analysis of the XRD pattern indicates that from 5 to 20h of mechanical alloying there is a decrement in the initial peaks of elements observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kuskov, Kirill V., Mohammad Abedi, Dmitry O. Moskovskikh, Illia Serhiienko, and Alexander S. Mukasyan. "Comparison of Conventional and Flash Spark Plasma Sintering of Cu–Cr Pseudo-Alloys: Kinetics, Structure, Properties." Metals 11, no. 1 (January 12, 2021): 141. http://dx.doi.org/10.3390/met11010141.

Повний текст джерела
Анотація:
Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Mudry, S. I., O. V. Shved, Yu O. Kulyk, I. I. Bulyk, and A. K. Borysiuk. "The structural features of the amorphous C14 HfNiAl Laves phase." Archives of Materials Science and Engineering 2, no. 89 (February 1, 2018): 49–54. http://dx.doi.org/10.5604/01.3001.0011.7171.

Повний текст джерела
Анотація:
Purpose: In order to clarify whether amorphization occurs in the pseudo-binary C14 HfNi0.6Al1.4 Laves phase a detailed investigation of the effect of hydrogen treatment on it phase-structural state has been studied. This type of compounds is of interest due to their high possibility to hydrogen absorption as Laves phase structures and as Hf-Ni alloys. Design/methodology/approach: We used a combination of hydrogen treatment and grinding methods for studying of the processes of controlled structure formation. High temperature transformations of the HfNi0.6Al1.4 alloy were pointed out by means of XRD analysis. Findings: By combination of two amorphization methods and high temperature measurements we have observed a phase structural transformation of the HfNi0.6Al1.4 alloy, which could be presented as: HfNi0.6Al1.4(cryst.) + H2 ® HfNi0.6Al1.4 (nanocryst.) + HfNi0.6Al1.4 (amorphous) + H2 ® HfH2 (amorphous) + AlH3 (amorphous) + Ni. Ferromagnetic- like properties of the pseudo-binary HfNi0.6Al1.4 Laves phase was found. Research limitations/implications: Complex research of HfNi0.6Al1.4 alloy revealed various structure features depending on phase content, thermodynamic parameters and conditions of hydrogen treatment. Obtained results suppose that further studies of structure and physical properties of Hf-Ni-Al alloys will allow to find the methods to control the producing of materials with desired properties. Practical implications: Using of hydrogen treatment is effective to produce Al-based alloys with improved magnetic properties. Originality/value: Treatment in hydrogen atmosphere allows improving the glass-forming ability in Hf-Ni-Al alloys.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ioroi, Kazushige, Satoshi Semboshi, Yasuyuki Kaneno, and Takayuki Takasugi. "Microstructures and tensile properties of off-stoichiometric Ni3Al–Ni3V pseudo-binary alloys." Journal of Materials Research 34, no. 18 (September 2019): 3061–70. http://dx.doi.org/10.1557/jmr.2019.269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

NAKANO, Hiroaki, and Shinjiro WAKAO. "Fabrication method of metal hydride electrodes with pseudo-binary Laves-phase alloys." Journal of Advanced Science 8, no. 3/4 (1996): 203–9. http://dx.doi.org/10.2978/jsas.8.203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Y. Umetsu, Rie, Kazuaki Fukamichi, and Akimasa Sakuma. "Effective Exchange Constant and Electronic Structure of Pseudo-Gap-TypeL10-MnPd Alloys." Journal of the Physical Society of Japan 75, no. 10 (October 15, 2006): 104714. http://dx.doi.org/10.1143/jpsj.75.104714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ettenberg, M. H., J. R. Maddux, P. J. Taylor, W. A. Jesser, and F. D. Rosi. "Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3)(Sb2Se3)." Journal of Crystal Growth 179, no. 3-4 (August 1997): 495–502. http://dx.doi.org/10.1016/s0022-0248(97)00133-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії