Статті в журналах з теми "Proteins - Conformation Dynamics"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Proteins - Conformation Dynamics.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Proteins - Conformation Dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kang, Hyun-Seo, and Michael Sattler. "Capturing dynamic conformational shifts in protein–ligand recognition using integrative structural biology in solution." Emerging Topics in Life Sciences 2, no. 1 (April 20, 2018): 107–19. http://dx.doi.org/10.1042/etls20170090.

Повний текст джерела
Анотація:
In recent years, a dynamic view of the structure and function of biological macromolecules is emerging, highlighting an essential role of dynamic conformational equilibria to understand molecular mechanisms of biological functions. The structure of a biomolecule, i.e. protein or nucleic acid in solution, is often best described as a dynamic ensemble of conformations, rather than a single structural state. Strikingly, the molecular interactions and functions of the biological macromolecule can then involve a shift between conformations that pre-exist in such an ensemble. Upon external cues, such population shifts of pre-existing conformations allow gradually relaying the signal to the downstream biological events. An inherent feature of this principle is conformational dynamics, where intrinsically disordered regions often play important roles to modulate the conformational ensemble. Unequivocally, solution-state NMR spectroscopy is a powerful technique to study the structure and dynamics of such biomolecules in solution. NMR is increasingly combined with complementary techniques, including fluorescence spectroscopy and small angle scattering. The combination of these techniques provides complementary information about the conformation and dynamics in solution and thus affords a comprehensive description of biomolecular functions and regulations. Here, we illustrate how an integrated approach combining complementary techniques can assess the structure and dynamics of proteins and protein complexes in solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Garaizar, Adiran, Ignacio Sanchez-Burgos, Rosana Collepardo-Guevara, and Jorge R. Espinosa. "Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid–Liquid Phase Separation." Molecules 25, no. 20 (October 15, 2020): 4705. http://dx.doi.org/10.3390/molecules25204705.

Повний текст джерела
Анотація:
Proteins containing intrinsically disordered regions (IDRs) are ubiquitous within biomolecular condensates, which are liquid-like compartments within cells formed through liquid–liquid phase separation (LLPS). The sequence of amino acids of a protein encodes its phase behaviour, not only by establishing the patterning and chemical nature (e.g., hydrophobic, polar, charged) of the various binding sites that facilitate multivalent interactions, but also by dictating the protein conformational dynamics. Besides behaving as random coils, IDRs can exhibit a wide-range of structural behaviours, including conformational switching, where they transition between alternate conformational ensembles. Using Molecular Dynamics simulations of a minimal coarse-grained model for IDRs, we show that the role of protein conformation has a non-trivial effect in the liquid–liquid phase behaviour of IDRs. When an IDR transitions to a conformational ensemble enriched in disordered extended states, LLPS is enhanced. In contrast, IDRs that switch to ensembles that preferentially sample more compact and structured states show inhibited LLPS. This occurs because extended and disordered protein conformations facilitate LLPS-stabilising multivalent protein–protein interactions by reducing steric hindrance; thereby, such conformations maximize the molecular connectivity of the condensed liquid network. Extended protein configurations promote phase separation regardless of whether LLPS is driven by homotypic and/or heterotypic protein–protein interactions. This study sheds light on the link between the dynamic conformational plasticity of IDRs and their liquid–liquid phase behaviour.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Brouhard, Gary J., та Luke M. Rice. "The contribution of αβ-tubulin curvature to microtubule dynamics". Journal of Cell Biology 207, № 3 (10 листопада 2014): 323–34. http://dx.doi.org/10.1083/jcb.201407095.

Повний текст джерела
Анотація:
Microtubules are dynamic polymers of αβ-tubulin that form diverse cellular structures, such as the mitotic spindle for cell division, the backbone of neurons, and axonemes. To control the architecture of microtubule networks, microtubule-associated proteins (MAPs) and motor proteins regulate microtubule growth, shrinkage, and the transitions between these states. Recent evidence shows that many MAPs exert their effects by selectively binding to distinct conformations of polymerized or unpolymerized αβ-tubulin. The ability of αβ-tubulin to adopt distinct conformations contributes to the intrinsic polymerization dynamics of microtubules. αβ-Tubulin conformation is a fundamental property that MAPs monitor and control to build proper microtubule networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gormal, Rachel S., Pranesh Padmanabhan, Ravikiran Kasula, Adekunle T. Bademosi, Sean Coakley, Jean Giacomotto, Ailisa Blum та ін. "Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies". Proceedings of the National Academy of Sciences 117, № 48 (19 листопада 2020): 30476–87. http://dx.doi.org/10.1073/pnas.2007443117.

Повний текст джерела
Анотація:
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR(Nb80) is highly immobile and organized in nanoclusters. The Gαs−GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR(Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mizutani, Tadashi, and Shigeyuki Yagi. "Linear tetrapyrroles as functional pigments in chemistry and biology." Journal of Porphyrins and Phthalocyanines 08, no. 03 (March 2004): 226–37. http://dx.doi.org/10.1142/s1088424604000210.

Повний текст джерела
Анотація:
1,19,21,24-tetrahydro-1,19-bilindione is the framework of pigments frequently found in nature, which includes biliverdin IX α, phytochromobilin and phycocyanobilin. 1,19-bilindiones have unique features such as (1) photochemical and thermal cis-trans isomerization, (2) excited energy transfer, (3) chiroptical properties due to the cyclic helical conformation, (4) redox activity, (5) coordination to various metals, and (6) reconstitution to proteins. 1,19-bilindione can adopt a number of conformations since it has exocyclic three double bonds and three single bonds that are rotatable thermally and photochemically. In solution, biliverdin and phycocyanobilin adopt a cyclic helical ZZZ, syn, syn, syn conformation, but other conformations are stabilized depending on the experimental conditions and substituents on the bilin framework. The conformational changes in 1,19-bilindiones are related to the biological functions of a photoreceptor protein, phytochrome. Structural and conformational studies of bilindiones are summarized both in solution and in protein. The conformational changes of bilins can be used for other functions such as a chirality sensor. The bilindiones and the zinc complexes of bilindiones can be employed as a chirality sensor due to the helically chiral structure and the dynamics of racemization of enantiomers. In this paper, we discuss the conformational equilibria and dynamics of bilindiones and its implications in photobiology and materials science.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ramirez-Mondragon, Carlos A., Megin E. Nguyen, Jozafina Milicaj, Bakar A. Hassan, Frank J. Tucci, Ramaiah Muthyala, Jiali Gao, Erika A. Taylor, and Yuk Y. Sham. "Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics." International Journal of Molecular Sciences 22, no. 9 (April 28, 2021): 4619. http://dx.doi.org/10.3390/ijms22094619.

Повний текст джерела
Анотація:
It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the “closed” state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase’s function and new modality to modulate enzymatic efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kulkarni, Prakash, Vitor B. P. Leite, Susmita Roy, Supriyo Bhattacharyya, Atish Mohanty, Srisairam Achuthan, Divyoj Singh, et al. "Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma." Biophysics Reviews 3, no. 1 (March 2022): 011306. http://dx.doi.org/10.1063/5.0080512.

Повний текст джерела
Анотація:
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and “promiscuous” interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Westenhoff, Sebastian, Elena Nazarenko, Erik Malmerberg, Jan Davidsson, Gergely Katona, and Richard Neutze. "Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches." Acta Crystallographica Section A Foundations of Crystallography 66, no. 2 (February 18, 2010): 207–19. http://dx.doi.org/10.1107/s0108767309054361.

Повний текст джерела
Анотація:
Proteins undergo conformational changes during their biological function. As such, a high-resolution structure of a protein's resting conformation provides a starting point for elucidating its reaction mechanism, but provides no direct information concerning the protein's conformational dynamics. Several X-ray methods have been developed to elucidate those conformational changes that occur during a protein's reaction, including time-resolved Laue diffraction and intermediate trapping studies on three-dimensional protein crystals, and time-resolved wide-angle X-ray scattering and X-ray absorption studies on proteins in the solution phase. This review emphasizes the scope and limitations of these complementary experimental approaches when seeking to understand protein conformational dynamics. These methods are illustrated using a limited set of examples including myoglobin and haemoglobin in complex with carbon monoxide, the simple light-driven proton pump bacteriorhodopsin, and the superoxide scavenger superoxide reductase. In conclusion, likely future developments of these methods at synchrotron X-ray sources and the potential impact of emerging X-ray free-electron laser facilities are speculated upon.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Jing, Jing Chen, and Zibiao Li. "Structural Basis for the Structure–Activity Behaviour of Oxaliplatin and its Enantiomeric Analogues: A Molecular Dynamics Study of Platinum-DNA Intrastrand Crosslink Adducts." Australian Journal of Chemistry 69, no. 4 (2016): 379. http://dx.doi.org/10.1071/ch15624.

Повний текст джерела
Анотація:
The discrimination of Pt-GG adducts by mismatch repair proteins, DNA damage-recognition proteins, and translation DNA polymerases was thought to be vital in determining the toxicity, efficacy, and mutagenicity of platinum anti-tumour drugs. Studies on cis-diammine-Pt-GG (from cisplatin and carboplatin) and trans-R,R-diaminocyclohexane (DACH)-Pt-GG indicated that these proteins recognized the differences in conformation and conformational dynamics of Pt-DNA complexes. However, the structural basis of enantiomeric DACH-Pt-GG forms is unclear. Molecular dynamics simulations results presented here reveal that the conformational dynamics between trans-R,R-DACH-Pt-GG, trans-S,S-DACH-Pt-GG, cis-DACH-Pt-GG and undamaged DNA are distinct and depend on the chirality of DACH though their major conformations are similar. Trans-DACH-Pt was found to be energetically favoured over cis-DACH-Pt to form DNA adducts. Moreover, oxaliplatin and its cis-DACH analogues were found to preferentially form hydrogen bonds on the 3′ side of the Pt-GG adduct, whereas the S,S-DACH-Pt preferred the 5′ side. A three-centre hydrogen bond formed between cis1-DACH-Pt and DNA was observed, and the differences in hydrogen bond formation are highly correlated with differences in DNA conformational dynamics. Based on these results, it is suggested that the different bioactivities of oxaliplatin and its enantiomeric analogues were controlled by the difference in hydrogen bonds formation dynamics between DNA and the Pt moiety. Our molecular dynamics approach was demonstrated to be applicable to the study of stereoisomer conformations of platinum-DNA model, thereby suggesting its potential application as a tool for the study and design of new effective platinum-based drugs.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Haiyan, Zanxia Cao, Guodong Hu, Liling Zhao, Chunling Wang, and Jihua Wang. "Ligand-induced structural changes analysis of ribose-binding protein as studied by molecular dynamics simulations." Technology and Health Care 29 (March 25, 2021): 103–14. http://dx.doi.org/10.3233/thc-218011.

Повний текст джерела
Анотація:
BACKGROUND: The ribose-binding protein (RBP) from Escherichia coli is one of the representative structures of periplasmic binding proteins. Binding of ribose at the cleft between two domains causes a conformational change corresponding to a closure of two domains around the ligand. The RBP has been crystallized in the open and closed conformations. OBJECTIVE: With the complex trajectory as a control, our goal was to study the conformation changes induced by the detachment of the ligand, and the results have been revealed from two computational tools, MD simulations and elastic network models. METHODS: Molecular dynamics (MD) simulations were performed to study the conformation changes of RBP starting from the open-apo, closed-holo and closed-apo conformations. RESULTS: The evolution of the domain opening angle θ clearly indicates large structural changes. The simulations indicate that the closed states in the absence of ribose are inclined to transition to the open states and that ribose-free RBP exists in a wide range of conformations. The first three dominant principal motions derived from the closed-apo trajectories, consisting of rotating, bending and twisting motions, account for the major rearrangement of the domains from the closed to the open conformation. CONCLUSIONS: The motions showed a strong one-to-one correspondence with the slowest modes from our previous study of RBP with the anisotropic network model (ANM). The results obtained for RBP contribute to the generalization of robustness for protein domain motion studies using either the ANM or PCA for trajectories obtained from MD.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nehls, Thomas, Tim Heymann, Christian Meyners, Felix Hausch, and Frederik Lermyte. "Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation." International Journal of Molecular Sciences 22, no. 18 (September 14, 2021): 9927. http://dx.doi.org/10.3390/ijms22189927.

Повний текст джерела
Анотація:
In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the ‘four-dimensional’ protein structure). Instead, a combination of complementary techniques is required. Mass spectrometry methods have shown promise in addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments. Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms of known structural information, and that conformational changes induced by ligand binding are reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights are obtained from intact mass measurement and native mass spectrometry. We believe that this method will provide a valuable and robust addition to the ‘toolbox’ of mass spectrometry researchers studying higher-order protein structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lenaz, Giorgio. "Lipid fluidity and membrane protein dynamics." Bioscience Reports 7, no. 11 (November 1, 1987): 823–37. http://dx.doi.org/10.1007/bf01119473.

Повний текст джерела
Анотація:
Membrane fluidity plays an important role in cellular functions. Membrane proteins are mobile in the lipid fluid environment; lateral diffusion of membrane proteins is slower than expected by theory, due to both the effect of protein crowding in the membrane and to constraints from the aqueous matrix. A major aspect of diffusion is in macromolecular associations: reduction of dimensionality for membrane diffusion facilitates collisional encounters, as those concerned with receptor-mediated signal transduction and with electron transfer chains. In mitochondrial electron transfer, diffusional control is prevented by the excess of collisional encounters between fast-diffusing ubiquinone and the respiratory complexes. Another aspect of dynamics of membrane proteins is their conformational flexibility. Lipids may induce the optimal conformation for catalytic activity. Breaks in Arrhenius plots of membrane-bound enzymes may be related to lipid fluidity: the break could occur when a limiting viscosity is reached for catalytic activity. Viscosity can affect protein conformational changes by inhibiting thermal fluctuations to the inner core of the protein molecule.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Evich, Marina, Alexander M. Spring-Connell, and Markus W. Germann. "Impact of modified ribose sugars on nucleic acid conformation and function." Heterocyclic Communications 23, no. 3 (June 27, 2017): 155–65. http://dx.doi.org/10.1515/hc-2017-0056.

Повний текст джерела
Анотація:
AbstractThe modification of the ribofuranose in nucleic acids is a widespread method of manipulating the activity of nucleic acids. These alterations, however, impact the local conformation and chemical reactivity of the sugar. Changes in the conformation and dynamics of the sugar moiety alter the local and potentially global structure and plasticity of nucleic acids, which in turn contributes to recognition, binding of ligands and enzymatic activity of proteins. This review article introduces the conformational properties of the (deoxy)ribofuranose ring and then explores sugar modifications and how they impact local and global structure and dynamics in nucleic acids.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhong, Bozitao, Ge Song, and Hai-Feng Chen. "Balanced Force Field ff03CMAP Improving the Dynamics Conformation Sampling of Phosphorylation Site." International Journal of Molecular Sciences 23, no. 19 (September 25, 2022): 11285. http://dx.doi.org/10.3390/ijms231911285.

Повний текст джерела
Анотація:
Phosphorylation plays a key role in plant biology, such as the accumulation of plant cells to form the observed proteome. Statistical analysis found that many phosphorylation sites are located in disordered regions. However, current force fields are mainly trained for structural proteins, which might not have the capacity to perfectly capture the dynamic conformation of the phosphorylated proteins. Therefore, we evaluated the performance of ff03CMAP, a balanced force field between structural and disordered proteins, for the sampling of the phosphorylated proteins. The test results of 11 different phosphorylated systems, including dipeptides, disordered proteins, folded proteins, and their complex, indicate that the ff03CMAP force field can better sample the conformations of phosphorylation sites for disordered proteins and disordered regions than ff03. For the solvent model, the results strongly suggest that the ff03CMAP force field with the TIP4PD water model is the best combination for the conformer sampling. Additional tests of CHARMM36m and FB18 force fields on two phosphorylated systems suggest that the overall performance of ff03CMAP is similar to that of FB18 and better than that of CHARMM36m. These results can help other researchers to choose suitable force field and solvent models to investigate the dynamic properties of phosphorylation proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhang, Meiling, Thomas E. Frederick, Jamie VanPelt, David A. Case, and Jeffrey W. Peng. "Coupled intra- and interdomain dynamics support domain cross-talk in Pin1." Journal of Biological Chemistry 295, no. 49 (September 22, 2020): 16585–603. http://dx.doi.org/10.1074/jbc.ra120.015849.

Повний текст джерела
Анотація:
The functional mechanisms of multidomain proteins often exploit interdomain interactions, or “cross-talk.” An example is human Pin1, an essential mitotic regulator consisting of a Trp–Trp (WW) domain flexibly tethered to a peptidyl-prolyl isomerase (PPIase) domain, resulting in interdomain interactions important for Pin1 function. Substrate binding to the WW domain alters its transient contacts with the PPIase domain via means that are only partially understood. Accordingly, we have investigated Pin1 interdomain interactions using NMR paramagnetic relaxation enhancement (PRE) and molecular dynamics (MD) simulations. The PREs show that apo-Pin1 samples interdomain contacts beyond the range suggested by previous structural studies. They further show that substrate binding to the WW domain simultaneously alters interdomain separation and the internal conformation of the WW domain. A 4.5-μs all-atom MD simulation of apo-Pin1 suggests that the fluctuations of interdomain distances are correlated with fluctuations of WW domain interresidue contacts involved in substrate binding. Thus, the interdomain/WW domain conformations sampled by apo-Pin1 may already include a range of conformations appropriate for binding Pin1's numerous substrates. The proposed coupling between intra-/interdomain conformational fluctuations is a consequence of the dynamic modular architecture of Pin1. Such modular architecture is common among cell-cycle proteins; thus, the WW–PPIase domain cross-talk mechanisms of Pin1 may be relevant for their mechanisms as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Roither, Bernhard, Chris Oostenbrink, Georg Pfeiler, Heinz Koelbl, and Wolfgang Schreiner. "Pembrolizumab Induces an Unexpected Conformational Change in the CC′-loop of PD-1." Cancers 13, no. 1 (December 22, 2020): 5. http://dx.doi.org/10.3390/cancers13010005.

Повний текст джерела
Анотація:
To improve cancer immunotherapy, a clearer understanding of key targets such as the immune checkpoint receptor PD-1 is essential. The PD-1 inhibitors nivolumab and pembrolizumab were recently approved by the FDA. The CC′-loop of PD-1 has been identified as a hotspot for drug targeting. Here, we investigate the influence of nivolumab and pembrolizumab on the molecular motion of the CC′-loop of PD-1. We performed molecular dynamics simulations on the complete extracellular domain of PD-1, in complex with PD-L1, and the blocking antibodies nivolumab and pembrolizumab. Conformations of the CC′-loop were analyzed unsupervised with the Daura et al. clustering algorithm and multidimensional scaling. Surprisingly, two conformations found were seen to correspond to the ‘open’ and ‘closed’ conformation of CC′-loop in apo-PD-1, already known from literature. Unsupervised clustering also surprisingly reproduced the natural ligand, PD-L1, exclusively stabilizing the ‘closed’ conformation, as also known from literature. Nivolumab, like PD-L1, was found to shift the equilibrium towards the ‘closed’ conformation, in accordance with the conformational selection model. Pembrolizumab, on the other hand, induced a third conformation of the CC′-loop which has not been described to date: Relative to the conformation ‘open’ the, CC′-loop turned 180° to form a new conformation which we called ‘overturned’. We show that the combination of clustering and multidimensional scaling is a fast, easy, and powerful method in analyzing structural changes in proteins. Possible refined antibodies or new small molecular compounds could utilize the flexibility of the CC′-loop to improve immunotherapy.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sinnaeve, Davy, Abir Ben Bouzayene, Emile Ottoy, Gert-Jan Hofman, Eva Erdmann, Bruno Linclau, Ilya Kuprov, José C. Martins, Vladimir Torbeev, and Bruno Kieffer. "Fluorine NMR study of proline-rich sequences using fluoroprolines." Magnetic Resonance 2, no. 2 (November 9, 2021): 795–813. http://dx.doi.org/10.5194/mr-2-795-2021.

Повний текст джерела
Анотація:
Abstract. Proline homopolymer motifs are found in many proteins; their peculiar conformational and dynamic properties are often directly involved in those proteins' functions. However, the dynamics of proline homopolymers is hard to study by NMR due to a lack of amide protons and small chemical shift dispersion. Exploiting the spectroscopic properties of fluorinated prolines opens interesting perspectives to address these issues. Fluorinated prolines are already widely used in protein structure engineering – they introduce conformational and dynamical biases – but their use as 19F NMR reporters of proline conformation has not yet been explored. In this work, we look at model peptides where Cγ-fluorinated prolines with opposite configurations of the chiral Cγ centre have been introduced at two positions in distinct polyproline segments. By looking at the effects of swapping these (4R)-fluoroproline and (4S)-fluoroproline within the polyproline segments, we were able to separate the intrinsic conformational properties of the polyproline sequence from the conformational alterations instilled by fluorination. We assess the fluoroproline 19F relaxation properties, and we exploit the latter in elucidating binding kinetics to the SH3 (Src homology 3) domain.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Day, Austin L., Per Greisen, Lindsey Doyle, Alberto Schena, Nephi Stella, Kai Johnsson, David Baker, and Barry Stoddard. "Unintended specificity of an engineered ligand-binding protein facilitated by unpredicted plasticity of the protein fold." Protein Engineering, Design and Selection 31, no. 10 (October 1, 2018): 375–87. http://dx.doi.org/10.1093/protein/gzy031.

Повний текст джерела
Анотація:
Abstract Attempts to create novel ligand-binding proteins often focus on formation of a binding pocket with shape complementarity against the desired ligand (particularly for compounds that lack distinct polar moieties). Although designed proteins often exhibit binding of the desired ligand, in some cases they display unintended recognition behavior. One such designed protein, that was originally intended to bind tetrahydrocannabinol (THC), was found instead to display binding of 25-hydroxy-cholecalciferol (25-D3) and was subjected to biochemical characterization, further selections for enhanced 25-D3 binding affinity and crystallographic analyses. The deviation in specificity is due in part to unexpected altertion of its conformation, corresponding to a significant change of the orientation of an α-helix and an equally large movement of a loop, both of which flank the designed ligand-binding pocket. Those changes led to engineered protein constructs that exhibit significantly more contacts and complementarity towards the 25-D3 ligand than the initial designed protein had been predicted to form towards its intended THC ligand. Molecular dynamics simulations imply that the initial computationally designed mutations may contribute to the movement of the helix. These analyses collectively indicate that accurate prediction and control of backbone dynamics conformation, through a combination of improved conformational sampling and/or de novo structure design, represents a key area of further development for the design and optimization of engineered ligand-binding proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kim, J. I., K. Eom, and S. Na. "Mechanical Mass-Spring Model for Understanding Globular Motion of Proteins." Journal of Mechanics 32, no. 2 (January 25, 2016): 123–29. http://dx.doi.org/10.1017/jmech.2015.109.

Повний текст джерела
Анотація:
AbstractThe conformational (structural) change of proteins plays an essential role in their functions. Experiments have been conducted to try to understand the conformational change of proteins, but they have not been successful in providing information on the atomic scale. Simulation methods have been developed to understand the conformational change at an atomic scale in detail. Coarse-grained methods have been developed to calculate protein dynamics with computational efficiency when compared with than all-atom models. A structure-based mass-spring model called the elastic network model (ENM) showed excellent performance in various protein studies. Coarse-grained ENM was modified in various ways to improve the computational efficiency, and consequently to reduce required computational cost for studying the large-scale protein structures. Our previous studies report a modified mass-spring model, which was developed based on condensation method applicable to ENM, and show that the model is able to accurately predict the fluctuation behavior of proteins. We applied this modified mass-spring model to analyze the conformational changes in proteins. We consider two model proteins as an example, where these two proteins exhibit different functions and molecular sizes. It is shown that the modified mass-spring model allows for accurately predicting the pathways of conformation changes for proteins. Our model provides structural insights into the conformation change of proteins related to the biological functions of large protein complexes.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Laugwitz, Jeannette M., Haleh H. Haeri, Anette Kaiser, Ulrike Krug, Dariush Hinderberger, Annette G. Beck-Sickinger, and Peter Schmidt. "Probing the Y2 Receptor on Transmembrane, Intra- and Extra-Cellular Sites for EPR Measurements." Molecules 25, no. 18 (September 10, 2020): 4143. http://dx.doi.org/10.3390/molecules25184143.

Повний текст джерела
Анотація:
The function of G protein-coupled receptors is intrinsically linked to their conformational dynamics. In conjugation with site-directed spin labeling, electron paramagnetic resonance (EPR) spectroscopy provides powerful tools to study the highly dynamic conformational states of these proteins. Here, we explored positions for nitroxide spin labeling coupled to single cysteines, introduced at transmembrane, intra- and extra-cellular sites of the human neuropeptide Y2 receptor. Receptor mutants were functionally analyzed in cell culture system, expressed in Escherichia coli fermentation with yields of up to 10 mg of purified protein per liter expression medium and functionally reconstituted into a lipid bicelle environment. Successful spin labeling was confirmed by a fluorescence assay and continuous wave EPR measurements. EPR spectra revealed mobile and immobile populations, indicating multiple dynamic conformational states of the receptor. We found that the singly mutated positions by MTSL ((1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl) methyl methanesulfonothioate) have a water exposed immobilized conformation as their main conformation, while in case of the IDSL (bis(1-oxyl-2,2,5,5-tetramethyl-3-imidazolin-4-yl) disulfide) labeled positions, the main conformation are mainly of hydrophobic nature. Further, double cysteine mutants were generated and examined for potential applications of distance measurements by double electron–electron resonance (DEER) pulsed EPR technique on the receptor.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Sharma, Meenakshi, Nancy Jaiswal, Dinesh Kumar, and Krishna Mohan Poluri. "Enhanced dynamics of conformationally heterogeneous T7 bacteriophage lysozyme native state attenuates its stability and activity." Biochemical Journal 476, no. 3 (February 14, 2019): 613–28. http://dx.doi.org/10.1042/bcj20180703.

Повний текст джерела
Анотація:
Abstract Proteins are dynamic in nature and exist in a set of equilibrium conformations on various timescale motions. The flexibility of proteins governs various biological functions, and therefore elucidation of such functional dynamics is essential. In this context, we have studied the structure–dynamics–stability–activity relationship of bacteriophage T7 lysozyme/endolysin (T7L) native-state ensemble in the pH range of 6–8. Our studies established that T7L native state is conformationally heterogeneous, as several residues of its C-terminal half are present in two conformations (major and minor) in the slow exchange time scale of nuclear magnetic resonance (NMR). Structural and dynamic studies suggested that the residues belonging to minor conformations do exhibit native-like structural and dynamic features. Furthermore, the NMR relaxation experiments unraveled that the native state is highly dynamic and the dynamic behavior is regulated by the pH, as the pH 6 conformation exhibited enhanced dynamics compared with pH 7 and 8. The stability measurements and cell-based activity studies on T7L indicated that the native protein at pH 6 is ∼2 kcal less stable and is ∼50% less active than those of pH 7 and 8. A comprehensive analysis of the T7L active site, unfolding initiation sites and the residues with altered dynamics outlined that the attenuation of stability and activity is a resultant of its enhanced dynamic properties, which, in turn, can be attributed to the protonation/deprotonation of its partially buried His residues. Our study on T7L structure–dynamics–activity paradigm could assist in engineering novel amidase-based endolysins with enhanced activity and stability over a broad pH range.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Pistolesi, Sara, Nico Tjandra, and Guillermo A. Bermejo. "Solution NMR studies of periplasmic binding proteins and their interaction partners." BioMolecular Concepts 2, no. 1-2 (April 1, 2011): 53–64. http://dx.doi.org/10.1515/bmc.2011.005.

Повний текст джерела
Анотація:
AbstractPeriplasmic binding proteins (PBPs) are a crucial part of ATP-binding cassette import systems in Gram-negative bacteria. Central to their function is the ability to undergo a large-scale conformational rearrangement from open-unliganded to closed-liganded, which signals the presence of substrate and starts its translocation. Over the years, PBPs have been extensively studied not only owing to their essential role in nutrient uptake but also because they serve as excellent models for both practical applications (e.g., biosensor technology) and basic research (e.g., allosteric mechanisms). Although much of our knowledge at atomic level has been inferred from the detailed, static pictures afforded by crystallographic studies, nuclear magnetic resonance (NMR) has been able to fill certain gaps in such body of work, particularly with regard to dynamic processes. Here, we review NMR studies on PBPs, and their unique insights on conformation, dynamics, energetics, substrate binding, and interactions with related transport proteins. Based on the analysis of recent paramagnetic NMR results, as well as crystallographic and functional observations, we propose a mechanism that could explain the ability of certain PBPs to achieve a closed conformation in absence of ligand while others seem to remain open until ligand-mediated closure.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Tafi, A., Fabrizio Manetti, Federico Corelli, Stefano Alcaro, and Maurizio Botta. "Structural flexibility of hyaluronan oligomers as probed by molecular modelling." Pure and Applied Chemistry 75, no. 2-3 (January 1, 2003): 359–66. http://dx.doi.org/10.1351/pac200375020359.

Повний текст джерела
Анотація:
In the last few years, molecular modeling studies have been published that are devoted to a better understanding of the structural flexibility of hyaluronan (HA). Further conformational investigations, however, are needed on this polysaccharide, such as the application of statistical methods to perform enhanced one-step conformational analyses of its subunits. Moreover, the adjustment of assisted model building and energy refinement (AMBER) force field could provide the appropriate computational tool to study the interactions of HA and its derivatives with proteins. The present paper reports a combined Monte Carlo (MC) and molecular dynamics (MD) approach applied to the conformational study of HA, using an adjusted version of AMBER force field and the generalized Born solvent-accessible surface area (GB/SA) continuum solvation model. The MC approach turned out to be extremely effective to outline a conformational survey of the disaccharides constituting HA. Complete sets of conformations of the monomers were provided for the first time, some of which had never been predicted. MD technique, integrating the MC results, correctly reproduced the unusual stiffness of HA and predicted the existence of a minor skew-boat conformation of the β-d-glucuronic moiety. The computational approach, as a whole, improved the comprehension of the dynamic behavior of HA and offered a clear causal explanation of the relative dynamics of the glycosidic linkages.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Krukenberg, Kristin A., Timothy O. Street, Laura A. Lavery, and David A. Agard. "Conformational dynamics of the molecular chaperone Hsp90." Quarterly Reviews of Biophysics 44, no. 2 (March 18, 2011): 229–55. http://dx.doi.org/10.1017/s0033583510000314.

Повний текст джерела
Анотація:
AbstractThe ubiquitous molecular chaperone Hsp90 makes up 1–2% of cytosolic proteins and is required for viability in eukaryotes. Hsp90 affects the folding and activation of a wide variety of substrate proteins including many involved in signaling and regulatory processes. Some of these substrates are implicated in cancer and other diseases, making Hsp90 an attractive drug target. Structural analyses have shown that Hsp90 is a highly dynamic and flexible molecule that can adopt a wide variety of structurally distinct states. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis only shift the equilibria between a pre-existing set of conformational states. For bacterial, yeast and human Hsp90, there is a conserved three-state (apo–ATP–ADP) conformational cycle; however; the equilibria between states are species specific. In eukaryotes, cytosolic co-chaperones regulate the in vivo dynamic behavior of Hsp90 by shifting conformational equilibria and affecting the kinetics of structural changes and ATP hydrolysis. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90, as well as the roles that nucleotide, co-chaperones, post-translational modification and substrates play. This view of Hsp90's conformational dynamics was enabled by the use of multiple complementary structural methods including, crystallography, small-angle X-ray scattering (SAXS), electron microscopy, Förster resonance energy transfer (FRET) and NMR. Finally, we discuss the effects of Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tamrazi, Anobel, Kathryn E. Carlson, Alice L. Rodriguez, and John A. Katzenellenbogen. "Coactivator Proteins as Determinants of Estrogen Receptor Structure and Function: Spectroscopic Evidence for a Novel Coactivator-Stabilized Receptor Conformation." Molecular Endocrinology 19, no. 6 (June 1, 2005): 1516–28. http://dx.doi.org/10.1210/me.2004-0458.

Повний текст джерела
Анотація:
Abstract The direct regulation of gene transcription by nuclear receptors, such as the estrogen receptor (ER), involves not just ligand and DNA binding but the recruitment of coregulators. Typically, recruitment of p160 coactivator proteins to agonist-liganded ER is considered to be unidirectional, with ligand binding stabilizing an ER ligand binding domain (LBD) conformation that favors coactivator interaction. Using fluorophore-labeled ERα-LBDs, we present evidence for a pronounced stabilization of ER conformation that results from coactivator binding, manifest by decreased ER sensitivity to proteases and reduced conformational dynamics, as well as for the formation of a novel coactivator-stabilized (costabilized) receptor conformation, that can be conveniently monitored by the generation of an excimer emission from pyrene-labeled ERα-LBDs. This costabilized conformation may embody features required to support ER transcriptional activity. Different classes of coactivator proteins combine with estrogen agonists of different structure to elicit varying degrees of this receptor stabilization, and antagonists and coactivator binding inhibitors disfavor the costabilized conformation. Remarkably, high concentrations of coactivators engender this conformation even in apo- and antagonist-bound ERs (more so with selective ER modulators than with pure antagonists), providing an in vitro model for the development of resistance to hormone therapy in breast cancer.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Sun, Jixue, Zibin Li, and Na Yang. "Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study." International Journal of Molecular Sciences 22, no. 13 (July 2, 2021): 7185. http://dx.doi.org/10.3390/ijms22137185.

Повний текст джерела
Анотація:
SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 μs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Vollmer, B., V. Pražák, D. Vasishtan, E. E. Jefferys, A. Hernandez-Duran, M. Vallbracht, B. G. Klupp, et al. "The prefusion structure of herpes simplex virus glycoprotein B." Science Advances 6, no. 39 (September 2020): eabc1726. http://dx.doi.org/10.1126/sciadv.abc1726.

Повний текст джерела
Анотація:
Cell entry of enveloped viruses requires specialized viral proteins that mediate fusion with the host membrane by substantial structural rearrangements from a metastable pre- to a stable postfusion conformation. This metastability renders the herpes simplex virus 1 (HSV-1) fusion glycoprotein B (gB) highly unstable such that it readily converts into the postfusion form, thereby precluding structural elucidation of the pharmacologically relevant prefusion conformation. By identification of conserved sequence signatures and molecular dynamics simulations, we devised a mutation that stabilized this form. Functionally locking gB allowed the structural determination of its membrane-embedded prefusion conformation at sub-nanometer resolution and enabled the unambiguous fit of all ectodomains. The resulting pseudo-atomic model reveals a notable conservation of conformational domain rearrangements during fusion between HSV-1 gB and the vesicular stomatitis virus glycoprotein G, despite their very distant phylogeny. In combination with our comparative sequence-structure analysis, these findings suggest common fusogenic domain rearrangements in all class III viral fusion proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Caldararu, Octav, Vilhelm Ekberg, Derek T. Logan, Esko Oksanen, and Ulf Ryde. "Exploring ligand dynamics in protein crystal structures with ensemble refinement." Acta Crystallographica Section D Structural Biology 77, no. 8 (July 29, 2021): 1099–115. http://dx.doi.org/10.1107/s2059798321006513.

Повний текст джерела
Анотація:
Understanding the dynamics of ligands bound to proteins is an important task in medicinal chemistry and drug design. However, the dominant technique for determining protein–ligand structures, X-ray crystallography, does not fully account for dynamics and cannot accurately describe the movements of ligands in protein binding sites. In this article, an alternative method, ensemble refinement, is used on six protein–ligand complexes with the aim of understanding the conformational diversity of ligands in protein crystal structures. The results show that ensemble refinement sometimes indicates that the flexibility of parts of the ligand and some protein side chains is larger than that which can be described by a single conformation and atomic displacement parameters. However, since the electron-density maps are comparable and R free values are slightly increased, the original crystal structure is still a better model from a statistical point of view. On the other hand, it is shown that molecular-dynamics simulations and automatic generation of alternative conformations in crystallographic refinement confirm that the flexibility of these groups is larger than is observed in standard refinement. Moreover, the flexible groups in ensemble refinement coincide with groups that give high atomic displacement parameters or non-unity occupancy if optimized in standard refinement. Therefore, the conformational diversity indicated by ensemble refinement seems to be qualitatively correct, indicating that ensemble refinement can be an important complement to standard crystallographic refinement as a tool to discover which parts of crystal structures may show extensive flexibility and therefore are poorly described by a single conformation. However, the diversity of the ensembles is often exaggerated (probably partly owing to the rather poor force field employed) and the ensembles should not be trusted in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

LIEBOVITCH, LARRY S., NIKITA D. ARNOLD, and LEV Y. SELECTOR. "NEURAL NETWORKS TO COMPUTE MOLECULAR DYNAMICS." Journal of Biological Systems 02, no. 02 (June 1994): 193–228. http://dx.doi.org/10.1142/s0218339094000155.

Повний текст джерела
Анотація:
Large molecules such as proteins have many of the properties of neural networks. Hence, neural networks may serve as a natural and thus efficient method to compute the time dependent changes of the structure in large molecules. We describe how to encode the spatial conformation and energy structure of a molecule in a neural network. The dynamics of the molecule can then be computed from the dynamics of the corresponding neural network. As a detailed example, we formulated a Hopfield network to compute the molecular dynamics of a small molecule, cyclohexane. We used this network to determine the distribution of times spent in the twist and chair conformational states as the cyclohexane thermally switches between these two states.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ren, Zhenning, Jumin Lee, Mahdi Muhammad Moosa, Yin Nian, Liya Hu, Zhichun Xu, Jason G. McCoy, Allan Chris M. Ferreon, Wonpil Im, and Ming Zhou. "Structure of an EIIC sugar transporter trapped in an inward-facing conformation." Proceedings of the National Academy of Sciences 115, no. 23 (May 21, 2018): 5962–67. http://dx.doi.org/10.1073/pnas.1800647115.

Повний текст джерела
Анотація:
The phosphoenolpyruvate-dependent phosphotransferase system (PTS) transports sugar into bacteria and phosphorylates the sugar for metabolic consumption. The PTS is important for the survival of bacteria and thus a potential target for antibiotics, but its mechanism of sugar uptake and phosphorylation remains unclear. The PTS is composed of multiple proteins, and the membrane-embedded Enzyme IIC (EIIC) component transports sugars across the membrane. Crystal structures of two members of the glucose superfamily of EIICs, bcChbC and bcMalT, were solved in the inward-facing and outward-facing conformations, and the structures suggest that sugar translocation could be achieved by movement of a structured domain that contains the sugar-binding site. However, different conformations have not been captured on the same transporter to allow precise description of the conformational changes. Here we present a crystal structure of bcMalT trapped in an inward-facing conformation by a mercury ion that bridges two strategically placed cysteine residues. The structure allows direct comparison of the outward- and inward-facing conformations and reveals a large rigid-body motion of the sugar-binding domain and other conformational changes that accompany the rigid-body motion. All-atom molecular dynamics simulations show that the inward-facing structure is stable with or without the cross-linking. The conformational changes were further validated by single-molecule Föster resonance energy transfer (smFRET). Combined, these results establish the elevator-type mechanism of transport in the glucose superfamily of EIIC transporters.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Stewart, Chelsea M., Cosmo Z. Buffalo, J. Andrés Valderrama, Anna Henningham, Jason N. Cole, Victor Nizet, and Partho Ghosh. "Coiled-coil destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction." Proceedings of the National Academy of Sciences 113, no. 34 (August 10, 2016): 9515–20. http://dx.doi.org/10.1073/pnas.1606160113.

Повний текст джерела
Анотація:
The sequences of M proteins, the major surface-associated virulence factors of the widespread bacterial pathogen group A Streptococcus, are antigenically variable but have in common a strong propensity to form coiled coils. Paradoxically, these sequences are also replete with coiled-coil destabilizing residues. These features are evident in the irregular coiled-coil structure and thermal instability of M proteins. We present an explanation for this paradox through studies of the B repeats of the medically important M1 protein. The B repeats are required for interaction of M1 with fibrinogen (Fg) and consequent proinflammatory activation. The B repeats sample multiple conformations, including intrinsically disordered, dissociated, as well as two alternate coiled-coil conformations: a Fg-nonbinding register 1 and a Fg-binding register 2. Stabilization of M1 in the Fg-nonbinding register 1 resulted in attenuation of Fg binding as expected, but counterintuitively, so did stabilization in the Fg-binding register 2. Strikingly, these register-stabilized M1 proteins gained the ability to bind Fg when they were destabilized by a chaotrope. These results indicate that M1 stability is antithetical to Fg interaction and that M1 conformational dynamics, as specified by destabilizing residues, are essential for interaction. A “capture-and-collapse” model of association accounts for these observations, in which M1 captures Fg through a dynamic conformation and then collapses into a register 2-coiled coil as a result of stabilization provided by binding energy. Our results support the general conclusion that destabilizing residues are evolutionarily conserved in M proteins to enable functional interactions necessary for pathogenesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Li, Qingxin, and CongBao Kang. "Insights into Structures and Dynamics of Flavivirus Proteases from NMR Studies." International Journal of Molecular Sciences 21, no. 7 (April 5, 2020): 2527. http://dx.doi.org/10.3390/ijms21072527.

Повний текст джерела
Анотація:
Nuclear magnetic resonance (NMR) spectroscopy plays important roles in structural biology and drug discovery, as it is a powerful tool to understand protein structures, dynamics, and ligand binding under physiological conditions. The protease of flaviviruses is an attractive target for developing antivirals because it is essential for the maturation of viral proteins. High-resolution structures of the proteases in the absence and presence of ligands/inhibitors were determined using X-ray crystallography, providing structural information for rational drug design. Structural studies suggest that proteases from Dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV) exist in open and closed conformations. Solution NMR studies showed that the closed conformation is predominant in solution and should be utilized in structure-based drug design. Here, we reviewed solution NMR studies of the proteases from these viruses. The accumulated studies demonstrated that NMR spectroscopy provides additional information to understand conformational changes of these proteases in the absence and presence of substrates/inhibitors. In addition, NMR spectroscopy can be used for identifying fragment hits that can be further developed into potent protease inhibitors.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Fidy, Judit, Monique Laberge, Beata Ullrich, Laszlo Polgar, Zoltan Szeltner, Jacques Gallay, and Michel Vincent. "Tryptophan rotamers that report the conformational dynamics of proteins." Pure and Applied Chemistry 73, no. 3 (January 1, 2001): 415–19. http://dx.doi.org/10.1351/pac200173030415.

Повний текст джерела
Анотація:
The binding of acetyl­pepstatin to the Q7K/L33I/L63I mutant of HIV-1 protease was studied by fluorescence, phosphorescence, and 500-ps molecular dynamics. The protease is a homodimer with two tryptophans per monomer. Maximum entropy method (MEM) analysis and acrylamide quenching results show two tryptophyl, tryptophan (Trp) populations in the apoenzyme that merge into one in the complex. These results are in agreement with molecular dynamics simulations indicative of Trp asymmetry in the apoenzyme as revealed by the occurrence of nonequivalent Trp42 indole rotamer interconversions, not observed for the complex. Analysis of the local Trp42B environments of the apoenzyme with respect to possible quencher groups shows that the c2 interconversions do not influence the lifetime, while the c1 interconversions do. Upon binding the inhibitor, Trp42B acquires a single conformation with the same lifetime and orientation as that of Trp42, and also with less quenching accessibility. Thus, protein conformational dynamics become constrained with inhibitor binding. This conclusion is supported by red-edge effect experiments and phosphorescence lifetime measurements. The low temperature tp (~5.8 s) is quenched to ~200 ms as protein motions become activated around the glass transition temperature. In the case of the complex, the phosphorescence lifetime data show a more cooperative activation of the quenching mechanisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Rief, Matthias, Filipp Oesterhelt, Hauke Clausen-Schaumann, and Hermann E. Gaub. "Structural Forces in Biomolecules." Microscopy and Microanalysis 5, S2 (August 1999): 1016–17. http://dx.doi.org/10.1017/s1431927600018407.

Повний текст джерела
Анотація:
The high spatial resolution and the force sensitivity of the Atomic Force Microscope have made it possible to perform mechanical experiments with single molecules. These experiments give direct access to the forces that stabilize biomolecule structure. In a variety of examples we show how different molecular interactions determine the mechanical stability of polysaccharides, proteins, DNA and other biomolecules.Under the influence of a stretching force of around 750 pN the polysaccharide dextran undergoes a transition into a stretched conformation during which bond angles flip into a new conformation. Molecular dynamics simulations corroborated this conformational change.Proteins fold into compact domains. Especially for structural proteins the mechanical stability of these domains is of importance. We show that the immunoglobulin and fibronectin III domains of the muscle protein titin exhibit exceptionally high unfolding forces (150-250 pN) when stretched at speeds of normal muscle operation (Fig. 1).
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Camacho, Inês S., Alina Theisen, Linus O. Johannissen, L. Aranzazú Díaz-Ramos, John M. Christie, Gareth I. Jenkins, Bruno Bellina, Perdita Barran, and Alex R. Jones. "Native mass spectrometry reveals the conformational diversity of the UVR8 photoreceptor." Proceedings of the National Academy of Sciences 116, no. 4 (January 4, 2019): 1116–25. http://dx.doi.org/10.1073/pnas.1813254116.

Повний текст джерела
Анотація:
UVR8 is a plant photoreceptor protein that regulates photomorphogenic and protective responses to UV light. The inactive, homodimeric state absorbs UV-B light, resulting in dissociation into monomers, which are considered to be the active state and comprise a β-propeller core domain and intrinsically disordered N- and C-terminal tails. The C terminus is required for functional binding to signaling partner COP1. To date, however, structural studies have only been conducted with the core domain where the terminal tails have been truncated. Here, we report structural investigations of full-length UVR8 using native ion mobility mass spectrometry adapted for photoactivation. We show that, while truncated UVR8 photoconverts from a single conformation of dimers to a single monomer conformation, the full-length protein exists in numerous conformational families. The full-length dimer adopts both a compact state and an extended state where the C terminus is primed for activation. In the monomer the extended C terminus destabilizes the core domain to produce highly extended yet stable conformations, which we propose are the fully active states that bind COP1. Our results reveal the conformational diversity of full-length UVR8. We also demonstrate the potential power of native mass spectrometry to probe functionally important structural dynamics of photoreceptor proteins throughout nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Langan, Patricia S., Venu Gopal Vandavasi, Wojciech Kopec, Brendan Sullivan, Pavel V. Afonne, Kevin L. Weiss, Bert L. de Groot, and Leighton Coates. "The structure of a potassium-selective ion channel reveals a hydrophobic gate regulating ion permeation." IUCrJ 7, no. 5 (July 25, 2020): 835–43. http://dx.doi.org/10.1107/s2052252520008271.

Повний текст джерела
Анотація:
Protein dynamics are essential to function. One example of this is the various gating mechanisms within ion channels, which are transmembrane proteins that act as gateways into the cell. Typical ion channels switch between an open and closed state via a conformational transition which is often triggered by an external stimulus, such as ligand binding or pH and voltage differences. The atomic resolution structure of a potassium-selective ion channel named NaK2K has allowed us to observe that a hydrophobic residue at the bottom of the selectivity filter, Phe92, appears in dual conformations. One of the two conformations of Phe92 restricts the diameter of the exit pore around the selectivity filter, limiting ion flow through the channel, while the other conformation of Phe92 provides a larger-diameter exit pore from the selectivity filter. Thus, it can be concluded that Phe92 acts as a hydrophobic gate, regulating the flow of ions through the selectivity filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wen, Lai, Alex Marki, Payel Roy, Sara McArdle, Hao Sun, Zhichao Fan, Alexandre R. Gingras, Mark H. Ginsberg та Klaus Ley. "Recruitment of kindlin-3 to plasma membrane through its PH domain precedes high affinity β2 integrin activation and neutrophil arrest". Journal of Immunology 204, № 1_Supplement (1 травня 2020): 220.7. http://dx.doi.org/10.4049/jimmunol.204.supp.220.7.

Повний текст джерела
Анотація:
Abstract Leukocytes including neutrophils must adhere to the vascular endothelium in order to respond to injury or infection. Integrin-mediated neutrophil adhesion starts by arrest from rolling. Activation of integrins involves conformational changes from an inactive bent conformation to an extended conformation (E+) with high affinity for ligand binding (H+). The cytoplasmic protein kindlin-3 is required for leukocyte adhesion; mutations of kindlin-3 cause leukocyte adhesion deficiency type III syndrome. However, the molecular mechanism by which kindlin-3 regulates β2 integrin activation is unknown. Here we measured the spatiotemporal dynamics of kindlin-3 and β2 integrin conformation changes during neutrophil and HL-60 cell rolling and arrest under flow. Using high-resolution quantitative dynamic footprinting (qDF) microscopy and kindlin-3-fluorescent protein (FP) fusion proteins, we find that kindlin-3 is recruited to the plasma membrane prior to induction of the H+ β2 integrin conformation. Deletion of kindlin-3 or its lipid-binding pleckstrin homology (PH) domain completely abolished H+ β2 integrin induction. Intravital imaging of bone marrow chimeric mice revealed that EGFP-tagged kindlin-3-expressing neutrophils, but not control kindlin-3-deficient neutrophils, arrested in cremaster venules in vivo in response to CXCL1. Our data show that kindlin-3 is indispensable for the H+ β2 integrin conformation and crucial for integrin-mediated leukocyte adhesion during inflammation.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Tyagi, Vivek, Victor Vasquez-Montes, J. Alfredo Freites, Alexander Kyrychenko, Douglas J. Tobias, and Alexey S. Ladokhin. "Effects of Cardiolipin on the Conformational Dynamics of Membrane-Anchored Bcl-xL." International Journal of Molecular Sciences 22, no. 17 (August 30, 2021): 9388. http://dx.doi.org/10.3390/ijms22179388.

Повний текст джерела
Анотація:
The anti-apoptotic protein Bcl-xL regulates apoptosis by preventing the permeation of the mitochondrial outer membrane by pro-apoptotic pore-forming proteins, which release apoptotic factors into the cytosol that ultimately lead to cell death. Two different membrane-integrated Bcl-xL constructs have been identified: a membrane-anchored and a membrane-inserted conformation. Here, we use molecular dynamics simulations to study the effect of the mitochondrial specific lipid cardiolipin and the protein protonation state on the conformational dynamics of membrane-anchored Bcl-xL. The analysis reveals that the protonation state of the protein and cardiolipin content of the membrane modulate the orientation of the soluble head region (helices α1 through α7) and hence the exposure of its BH3-binding groove, which is required for its interaction with pro-apoptotic proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Craggs, Timothy D., Marko Sustarsic, Anne Plochowietz, Majid Mosayebi, Hendrik Kaju, Andrew Cuthbert, Johannes Hohlbein, et al. "Substrate conformational dynamics facilitate structure-specific recognition of gapped DNA by DNA polymerase." Nucleic Acids Research 47, no. 20 (September 23, 2019): 10788–800. http://dx.doi.org/10.1093/nar/gkz797.

Повний текст джерела
Анотація:
Abstract DNA-binding proteins utilise different recognition mechanisms to locate their DNA targets; some proteins recognise specific DNA sequences, while others interact with specific DNA structures. While sequence-specific DNA binding has been studied extensively, structure-specific recognition mechanisms remain unclear. Here, we study structure-specific DNA recognition by examining the structure and dynamics of DNA polymerase I Klenow Fragment (Pol) substrates both alone and in DNA–Pol complexes. Using a docking approach based on a network of 73 distances collected using single-molecule FRET, we determined a novel solution structure of the single-nucleotide-gapped DNA–Pol binary complex. The structure resembled existing crystal structures with regards to the downstream primer-template DNA substrate, and revealed a previously unobserved sharp bend (∼120°) in the DNA substrate; this pronounced bend was present in living cells. MD simulations and single-molecule assays also revealed that 4–5 nt of downstream gap-proximal DNA are unwound in the binary complex. Further, experiments and coarse-grained modelling showed the substrate alone frequently adopts bent conformations with 1–2 nt fraying around the gap, suggesting a mechanism wherein Pol recognises a pre-bent, partially-melted conformation of gapped DNA. We propose a general mechanism for substrate recognition by structure-specific enzymes driven by protein sensing of the conformational dynamics of their DNA substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Beier, David H., Tucker J. Carrocci, Clarisse van der Feltz, U. Sandy Tretbar, Joshua C. Paulson, Nikolai Grabowski, and Aaron A. Hoskins. "Dynamics of the DEAD-box ATPase Prp5 RecA-like domains provide a conformational switch during spliceosome assembly." Nucleic Acids Research 47, no. 20 (September 6, 2019): 10842–51. http://dx.doi.org/10.1093/nar/gkz765.

Повний текст джерела
Анотація:
Abstract The DEAD-box family of proteins are ATP-dependent, RNA-binding proteins implicated in many aspects of RNA metabolism. Pre-mRNA splicing in eukaryotes requires three DEAD-box ATPases (Prp5, Prp28 and Sub2), the molecular mechanisms of which are poorly understood. Here, we use single molecule FRET (smFRET) to study the conformational dynamics of yeast Prp5. Prp5 is essential for stable association of the U2 snRNP with the intron branch site (BS) sequence during spliceosome assembly. Our data show that the Prp5 RecA-like domains undergo a large conformational rearrangement only in response to binding of both ATP and RNA. Mutations in Prp5 impact the fidelity of BS recognition and change the conformational dynamics of the RecA-like domains. We propose that BS recognition during spliceosome assembly involves a set of coordinated conformational switches among U2 snRNP components. Spontaneous toggling of Prp5 into a stable, open conformation may be important for its release from U2 and to prevent competition between Prp5 re-binding and subsequent steps in spliceosome assembly.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Tarjányi, Tamás, Ferenc Bogár, Janos Minarovits, Márió Gajdács, and Zsolt Tóth. "Interaction of KRSR Peptide with Titanium Dioxide Anatase (100) Surface: A Molecular Dynamics Simulation Study." International Journal of Molecular Sciences 22, no. 24 (December 9, 2021): 13251. http://dx.doi.org/10.3390/ijms222413251.

Повний текст джерела
Анотація:
Due to its tensile strength and excellent biocompatibility, titanium (Ti) is commonly used as an implant material in medicine and dentistry. The success of dental implants depends on the formation of a contact between the oxidized surface of Ti implant and the surrounding bone tissue. The adsorption of proteins and peptides to the implant surface allows the bone-forming osteoblast cells to adhere to such modified surfaces. Recently, it has been observed that tetrapeptide KRSR (Lys-Arg-Ser-Arg) functionalization could promote osteoblast adhesion to implant surfaces. This may facilitate the establishment of an efficient bone-to implant contact and improve implant stability during the healing process. GROMACS, a molecular dynamics software package was used to perform a 200 ns simulation of adsorption of the KRSR peptide to the TiO2 (anatase) surface in an aqueous environment. The molecule conformations were mapped with Replica Exchange Molecular Dynamics (REMD) simulations to assess the possible peptide conformations on the anatase surface, and the umbrella sampling method was used to calculate the binding energy of the most common conformation. The simulations have shown that the KRSR peptide migrates and attaches to the surface in a stable position. The dominant amino acid residue interacting with the TiO2 surface was the N-terminal charged lysine (K) residue. REMD indicated that there is a distinct conformation that is taken by the KRSR peptide. In this conformation the surface interacts only with the lysine residue while the ser (S) and arg (R) residues interact with water molecules farther from the surface. The binding free energy of the most common conformation of KRSR peptide to the anatase (100) surface was ΔG = −8.817 kcal/mol. Our result suggests that the N-terminal lysine residue plays an important role in the adhesion of KRSR to the TiO2 surface and may influence the osseointegration of dental implants.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Goricanec, David, Ralf Stehle, Pascal Egloff, Simina Grigoriu, Andreas Plückthun, Gerhard Wagner та Franz Hagn. "Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding". Proceedings of the National Academy of Sciences 113, № 26 (13 червня 2016): E3629—E3638. http://dx.doi.org/10.1073/pnas.1604125113.

Повний текст джерела
Анотація:
Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein–coupled receptor (GPCR) activation. Agonist–receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Mott, Helen R., and Darerca Owen. "Allostery and dynamics in small G proteins." Biochemical Society Transactions 46, no. 5 (October 9, 2018): 1333–43. http://dx.doi.org/10.1042/bst20170569.

Повний текст джерела
Анотація:
The Ras family of small guanine nucleotide-binding proteins behave as molecular switches: they are switched off and inactive when bound to GDP but can be activated by GTP binding in response to signal transduction pathways. Early structural analysis showed that two regions of the protein, which change conformation depending on the nucleotide present, mediate this switch. A large number of X-ray, NMR and simulation studies have shown that this is an over-simplification. The switch regions themselves are highly dynamic and can exist in distinct sub-states in the GTP-bound form that have different affinities for other proteins. Furthermore, regions outside the switches have been found to be sensitive to the nucleotide state of the protein, indicating that allosteric change is more widespread than previously thought. Taken together, the accrued knowledge about small G protein structures, allostery and dynamics will be essential for the design and testing of the next generation of inhibitors, both orthosteric and allosteric, as well as for understanding their mode of action.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hu, Gang, Jiye Fu, Yi Qiao, Hao Meng, Zunliang Wang, Jing Tu, and Zuhong Lu. "Molecular dynamics discrimination of the conformational states of calmodulin through solid-state nanopores." Physical Chemistry Chemical Physics 22, no. 34 (2020): 19188–94. http://dx.doi.org/10.1039/d0cp02500c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Lakomek, Nils-Alexander, Halenur Yavuz, Reinhard Jahn, and Ángel Pérez-Lara. "Structural dynamics and transient lipid binding of synaptobrevin-2 tune SNARE assembly and membrane fusion." Proceedings of the National Academy of Sciences 116, no. 18 (April 11, 2019): 8699–708. http://dx.doi.org/10.1073/pnas.1813194116.

Повний текст джерела
Анотація:
Intrinsically disordered proteins (IDPs) and their conformational transitions play an important role in neurotransmitter release at the neuronal synapse. Here, the SNARE proteins are essential by forming the SNARE complex that drives vesicular membrane fusion. While it is widely accepted that the SNARE proteins are intrinsically disordered in their monomeric prefusion form, important mechanistic aspects of this prefusion conformation and its lipid interactions, before forming the SNARE complex, are not fully understood at the molecular level and remain controversial. Here, by a combination of NMR and fluorescence spectroscopy methods, we find that vesicular synaptobrevin-2 (syb-2) in its monomeric prefusion conformation shows high flexibility, characteristic for an IDP, but also a high dynamic range and increasing rigidity from the N to C terminus. The gradual increase in rigidity correlates with an increase in lipid binding affinity from the N to C terminus. It could also explain the increased rate for C-terminal SNARE zippering, known to be faster than N-terminal SNARE zippering. Also, the syb-2 SNARE motif and, in particular, the linker domain show transient and weak membrane binding, characterized by a high off-rate and low (millimolar) affinity. The transient membrane binding of syb-2 may compensate for the repulsive forces between the two membranes and/or the SNARE motifs and the membranes, helping to destabilize the hydrophilic-hydrophobic boundary in the bilayer. Therefore, we propose that optimum flexibility and membrane binding of syb-2 regulate SNARE assembly and minimize repulsive forces during membrane fusion.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Martini, Silvia, Claudia Bonechi, Alberto Foletti, and Claudio Rossi. "Water-Protein Interactions: The Secret of Protein Dynamics." Scientific World Journal 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/138916.

Повний текст джерела
Анотація:
Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS) and selective (R1SE) spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Das, Ananya, Nichole Adiletta, and Dmitri N. Ermolenko. "Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases." International Journal of Molecular Sciences 24, no. 8 (April 7, 2023): 6878. http://dx.doi.org/10.3390/ijms24086878.

Повний текст джерела
Анотація:
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Biedermannová, Lada, and Bohdan Schneider. "Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures." Acta Crystallographica Section D Biological Crystallography 71, no. 11 (October 27, 2015): 2192–202. http://dx.doi.org/10.1107/s1399004715015679.

Повний текст джерела
Анотація:
Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Giampà, Marco, and Elvira Sgobba. "Insight to Functional Conformation and Noncovalent Interactions of Protein-Protein Assembly Using MALDI Mass Spectrometry." Molecules 25, no. 21 (October 28, 2020): 4979. http://dx.doi.org/10.3390/molecules25214979.

Повний текст джерела
Анотація:
Noncovalent interactions are the keys to the structural organization of biomolecule e.g., proteins, glycans, lipids in the process of molecular recognition processes e.g., enzyme-substrate, antigen-antibody. Protein interactions lead to conformational changes, which dictate the functionality of that protein-protein complex. Besides biophysics techniques, noncovalent interaction and conformational dynamics, can be studied via mass spectrometry (MS), which represents a powerful tool, due to its low sample consumption, high sensitivity, and label-free sample. In this review, the focus will be placed on Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) and its role in the analysis of protein-protein noncovalent assemblies exploring the relationship within noncovalent interaction, conformation, and biological function.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Devlin, Jason, Jesus Alonso, Grant Keller, Sara Bobisse, Alexandre Harari, and Brian Baker. "4094 Structural Determinants of Immunogenicity for Peptide-Based Immunotherapy." Journal of Clinical and Translational Science 4, s1 (June 2020): 16. http://dx.doi.org/10.1017/cts.2020.92.

Повний текст джерела
Анотація:
OBJECTIVES/GOALS: Neoantigen vaccine immunotherapies have shown promise in clinical trials, but identifying which peptides to include in a vaccine remains a challenge. We aim to establish that molecular structural features can help predict which neoantigens to target to achieve tumor regression. METHODS/STUDY POPULATION: Proteins were prepared by recombinant expression in E. coli followed by in vitro refolding. Correctly folded proteins were purified by chromatography. Affinities of protein-protein interactions were measured by surface plasmon resonance (SPR) and thermal stabilities of proteins were determined by differential scanning fluorimetry. All experiments were performed at least in triplicate. Protein crystals were obtained by hanging drop vapor diffusion. The protein crystal structures were solved by molecular replacement and underwent several rounds of automated refinement. Molecular dynamics simulations were performed using the AMBER molecular dynamics package. RESULTS/ANTICIPATED RESULTS: A T cell receptor (TCR) expressed by tumor-infiltrating T cells exhibited a 20-fold stronger binding affinity to the neoantigen peptide compared to the self-peptide. X-ray crystal structures of the peptides with the major histocompatibility complex (MHC) protein demonstrated that a non-mutated residue in the peptide samples different positions with the mutation. The difference in conformations of the non-mutated residue was supported by molecular dynamics simulations. Crystal structures of the TCR engaging both peptide/MHCs suggested that the conformation favored by the mutant peptide was crucial for TCR binding. The TCR bound the neoantigen/MHC with faster binding kinetics. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that the mutation impacts the conformation of another residue in the peptide, and this alteration allows for more favorable T cell receptor binding to the neoantigen. This highlights the potential of non-mutated residues in contributing to neoantigen recognition.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії