Статті в журналах з теми "Protein micropatterning"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Protein micropatterning.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Protein micropatterning".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lanzerstorfer, Peter, Ulrike Müller, Klavdiya Gordiyenko, Julian Weghuber, and Christof M. Niemeyer. "Highly Modular Protein Micropatterning Sheds Light on the Role of Clathrin-Mediated Endocytosis for the Quantitative Analysis of Protein-Protein Interactions in Live Cells." Biomolecules 10, no. 4 (April 2, 2020): 540. http://dx.doi.org/10.3390/biom10040540.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Protein micropatterning is a powerful tool for spatial arrangement of transmembrane and intracellular proteins in living cells. The restriction of one interaction partner (the bait, e.g., the receptor) in regular micropatterns within the plasma membrane and the monitoring of the lateral distribution of the bait’s interaction partner (the prey, e.g., the cytosolic downstream molecule) enables the in-depth examination of protein-protein interactions in a live cell context. This study reports on potential pitfalls and difficulties in data interpretation based on the enrichment of clathrin, which is a protein essential for clathrin-mediated receptor endocytosis. Using a highly modular micropatterning approach based on large-area micro-contact printing and streptavidin-biotin-mediated surface functionalization, clathrin was found to form internalization hotspots within the patterned areas, which, potentially, leads to unspecific bait/prey protein co-recruitment. We discuss the consequences of clathrin-coated pit formation on the quantitative analysis of relevant protein-protein interactions, describe controls and strategies to prevent the misinterpretation of data, and show that the use of DNA-based linker systems can lead to the improvement of the technical platform.
2

Karimian, Tina, Roland Hager, Andreas Karner, Julian Weghuber, and Peter Lanzerstorfer. "A Simplified and Robust Activation Procedure of Glass Surfaces for Printing Proteins and Subcellular Micropatterning Experiments." Biosensors 12, no. 3 (February 25, 2022): 140. http://dx.doi.org/10.3390/bios12030140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Depositing biomolecule micropatterns on solid substrates via microcontact printing (µCP) usually requires complex chemical substrate modifications to initially create reactive surface groups. Here, we present a simplified activation procedure for untreated solid substrates based on a commercial polymer metal ion coating (AnteoBindTM Biosensor reagent) that allows for direct µCP and the strong attachment of proteins via avidity binding. In proof-of-concept experiments, we identified the optimum working concentrations of the surface coating, characterized the specificity of protein binding and demonstrated the suitability of this approach by subcellular micropatterning experiments in living cells. Altogether, this method represents a significant enhancement and simplification of existing µCP procedures and further increases the accessibility of protein micropatterning for cell biological research questions.
3

Wang, C., and Y. Zhang. "Protein Micropatterning via Self-Assembly of Nanoparticles." Advanced Materials 17, no. 2 (January 31, 2005): 150–53. http://dx.doi.org/10.1002/adma.200400418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Jian-Chun, Wenming Liu, Qin Tu, Chao Ma, Lei Zhao, Yaolei Wang, Jia Ouyang, Long Pang, and Jinyi Wang. "High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics." Analyst 140, no. 3 (2015): 827–36. http://dx.doi.org/10.1039/c4an01972e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kodali, Vamsi K., Jan Scrimgeour, Suenne Kim, John H. Hankinson, Keith M. Carroll, Walt A. de Heer, Claire Berger, and Jennifer E. Curtis. "Nonperturbative Chemical Modification of Graphene for Protein Micropatterning." Langmuir 27, no. 3 (February 2011): 863–65. http://dx.doi.org/10.1021/la1033178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

You, Changjiang, and Jacob Piehler. "Functional protein micropatterning for drug design and discovery." Expert Opinion on Drug Discovery 11, no. 1 (December 1, 2015): 105–19. http://dx.doi.org/10.1517/17460441.2016.1109625.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schwarzenbacher, Michaela, Martin Kaltenbrunner, Mario Brameshuber, Clemens Hesch, Wolfgang Paster, Julian Weghuber, Bettina Heise, Alois Sonnleitner, Hannes Stockinger, and Gerhard J. Schütz. "Micropatterning for quantitative analysis of protein-protein interactions in living cells." Nature Methods 5, no. 12 (November 9, 2008): 1053–60. http://dx.doi.org/10.1038/nmeth.1268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Salaun, Christine, Jennifer Greaves, and Luke H. Chamberlain. "The intracellular dynamic of protein palmitoylation." Journal of Cell Biology 191, no. 7 (December 27, 2010): 1229–38. http://dx.doi.org/10.1083/jcb.201008160.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation.
9

Bautista, Markville, Anthony Fernandez, and Fabien Pinaud. "A Micropatterning Strategy to Study Nuclear Mechanotransduction in Cells." Micromachines 10, no. 12 (November 24, 2019): 810. http://dx.doi.org/10.3390/mi10120810.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Micropatterning techniques have been widely used in biology, particularly in studies involving cell adhesion and proliferation on different substrates. Cell micropatterning approaches are also increasingly employed as in vitro tools to investigate intracellular mechanotransduction processes. In this report, we examined how modulating cellular shapes on two-dimensional rectangular fibronectin micropatterns of different widths influences nuclear mechanotransduction mediated by emerin, a nuclear envelope protein implicated in Emery–Dreifuss muscular dystrophy (EDMD). Fibronectin microcontact printing was tested onto glass coverslips functionalized with three different silane reagents (hexamethyldisilazane (HMDS), (3-Aminopropyl)triethoxysilane (APTES) and (3-Glycidyloxypropyl)trimethoxysilane (GPTMS)) using a vapor-phase deposition method. We observed that HMDS provides the most reliable printing surface for cell micropatterning, notably because it forms a hydrophobic organosilane monolayer that favors the retainment of surface antifouling agents on the coverslips. We showed that, under specific mechanical cues, emerin-null human skin fibroblasts display a significantly more deformed nucleus than skin fibroblasts expressing wild type emerin, indicating that emerin plays a crucial role in nuclear adaptability to mechanical stresses. We further showed that proper nuclear responses to forces involve a significant relocation of emerin from the inner nuclear envelope towards the outer nuclear envelope and the endoplasmic reticulum membrane network. Cell micropatterning by fibronectin microcontact printing directly on HMDS-treated glass represents a simple approach to apply steady-state biophysical cues to cells and study their specific mechanobiology responses in vitro.
10

Kim, Woo-Soo, Min-Gon Kim, Jun-Hyeong Ahn, Byeong-Soo Bae, and Chan Beum Park. "Protein Micropatterning on Bifunctional Organic−Inorganic Sol−Gel Hybrid Materials." Langmuir 23, no. 9 (April 2007): 4732–36. http://dx.doi.org/10.1021/la070074p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yap, Fung Ling, and Yong Zhang. "Protein Micropatterning Using Surfaces Modified by Self-Assembled Polystyrene Microspheres." Langmuir 21, no. 12 (June 2005): 5233–36. http://dx.doi.org/10.1021/la050454f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gropeanu, Mihaela, Maniraj Bhagawati, Radu A. Gropeanu, Gemma M. Rodríguez Muñiz, Subramanian Sundaram, Jacob Piehler, and Aránzazu del Campo. "A Versatile Toolbox for Multiplexed Protein Micropatterning by Laser Lithography." Small 9, no. 6 (November 19, 2012): 838–45. http://dx.doi.org/10.1002/smll.201201901.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yap, F. L., and Y. Zhang. "Protein and cell micropatterning and its integration with micro/nanoparticles assembly." Biosensors and Bioelectronics 22, no. 6 (January 2007): 775–88. http://dx.doi.org/10.1016/j.bios.2006.03.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lo, Kuo-Feng, and Yi-Je Juang. "Parametric study of protein solution evaporation inside the microwells for micropatterning." Journal of the Taiwan Institute of Chemical Engineers 44, no. 1 (January 2013): 131–37. http://dx.doi.org/10.1016/j.jtice.2012.09.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Sarikhani, Einollah, Lasse Klausen, Dhivya Pushpa Meganathan, Abel Marquez Serrano, Ching-Ting Tsai, Bianxiao Cui, and Zeinab Jahed. "Engineering cell morphology using maskless 2D protein micropatterning on 3D nanostructures." Biophysical Journal 122, no. 3 (February 2023): 553a. http://dx.doi.org/10.1016/j.bpj.2022.11.2925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Löchte, Sara, Sharon Waichman, Oliver Beutel, Changjiang You, and Jacob Piehler. "Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane." Journal of Cell Biology 207, no. 3 (November 10, 2014): 407–18. http://dx.doi.org/10.1083/jcb.201406032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching.
17

Scott, Mark A., Zachary D. Wissner-Gross, and Mehmet Fatih Yanik. "Ultra-rapid laser protein micropatterning: screening for directed polarization of single neurons." Lab on a Chip 12, no. 12 (2012): 2265. http://dx.doi.org/10.1039/c2lc21105j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

SIVAGNANAM, V., A. SAYAH, C. VANDEVYVER, and M. GIJS. "Micropatterning of protein-functionalized magnetic beads on glass using electrostatic self-assembly." Sensors and Actuators B: Chemical 132, no. 2 (June 16, 2008): 361–67. http://dx.doi.org/10.1016/j.snb.2007.09.076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hou, Jianwen, Qiang Shi, Wei Ye, Paola Stagnaro, and Jinghua Yin. "Micropatterning of hydrophilic polyacrylamide brushes to resist cell adhesion but promote protein retention." Chem. Commun. 50, no. 95 (2014): 14975–78. http://dx.doi.org/10.1039/c4cc03994g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

SUZUKI, Jun, Tatsuo YOSHINOBU, Wonchul MOON, Kumaran SHANMUGAM, and Hiroshi IWASAKI. "Micropatterning of Si Surface with Protein Molecules by the AFM Anodic Oxidation Method." Electrochemistry 74, no. 2 (2006): 131–34. http://dx.doi.org/10.5796/electrochemistry.74.131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zou, Yuquan, Po-Ying J. Yeh, Nicholas A. A. Rossi, Donald E. Brooks, and Jayachandran N. Kizhakkedathu. "Nonbiofouling Polymer Brush with Latent Aldehyde Functionality as a Template for Protein Micropatterning." Biomacromolecules 11, no. 1 (January 11, 2010): 284–93. http://dx.doi.org/10.1021/bm901159d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Arnold, Andreas M., Eva Sevcsik, and Gerhard J. Schütz. "Monte Carlo simulations of protein micropatterning in biomembranes: effects of immobile sticky obstacles." Journal of Physics D: Applied Physics 49, no. 36 (August 9, 2016): 364002. http://dx.doi.org/10.1088/0022-3727/49/36/364002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sunzenauer, Stefan, Verena Zojer, Mario Brameshuber, Andreas Tröls, Julian Weghuber, Hannes Stockinger, and Gerhard J. Schütz. "Determination of binding curves via protein micropatterning in vitro and in living cells." Cytometry Part A 83, no. 9 (November 2, 2012): 847–54. http://dx.doi.org/10.1002/cyto.a.22225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kim, Miju, Jong-Cheol Choi, Hong-Ryul Jung, Joshua S. Katz, Min-Gon Kim, and Junsang Doh. "Addressable Micropatterning of Multiple Proteins and Cells by Microscope Projection Photolithography Based on a Protein Friendly Photoresist." Langmuir 26, no. 14 (July 20, 2010): 12112–18. http://dx.doi.org/10.1021/la1014253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Otsuka, Hidenori. "Nanofabrication Technologies to Control Cell and Tissue Function in Three-Dimension." Gels 9, no. 3 (March 7, 2023): 203. http://dx.doi.org/10.3390/gels9030203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the 2000s, advances in cellular micropatterning using microfabrication contributed to the development of cell-based biosensors for the functional evaluation of newly synthesized drugs, resulting in a revolutionary evolution in drug screening. To this end, it is essential to utilize cell patterning to control the morphology of adherent cells and to understand contact and paracrine-mediated interactions between heterogeneous cells. This suggests that the regulation of the cellular environment by means of microfabricated synthetic surfaces is not only a valuable endeavor for basic research in biology and histology, but is also highly useful to engineer artificial cell scaffolds for tissue regeneration. This review particularly focuses on surface engineering techniques for the cellular micropatterning of three-dimensional (3D) spheroids. To establish cell microarrays, composed of a cell adhesive region surrounded by a cell non-adherent surface, it is quite important to control a protein-repellent surface in the micro-scale. Thus, this review is focused on the surface chemistries of the biologically inspired micropatterning of two-dimensional non-fouling characters. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single-cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., fibers and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. These important approaches to cell engineering result in their applications to tissue regeneration, where the cell-biomaterial composite is injected into diseased area. This approach allows the operating surgeon to implant the cell and polymer combinations with minimum invasiveness. The polymers utilized in hydrogels are structurally similar to components of the extracellular matrix in vivo, and are considered biocompatible. This review will provide an overview of the critical design to make hydrogels when used as cell scaffolds for tissue engineering. In addition, the new strategy of injectable hydrogel will be discussed as future directions.
26

van der Putten, Cas, Antonetta B. C. Buskermolen, Maike Werner, Hannah F. M. Brouwer, Paul A. A. Bartels, Patricia Y. W. Dankers, Carlijn V. C. Bouten, and Nicholas A. Kurniawan. "Protein Micropatterning in 2.5D: An Approach to Investigate Cellular Responses in Multi-Cue Environments." ACS Applied Materials & Interfaces 13, no. 22 (May 25, 2021): 25589–98. http://dx.doi.org/10.1021/acsami.1c01984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhong, Jian, Mengjia Ma, Juan Zhou, Daixu Wei, Zhiqiang Yan, and Dannong He. "Tip-Induced Micropatterning of Silk Fibroin Protein Using In Situ Solution Atomic Force Microscopy." ACS Applied Materials & Interfaces 5, no. 3 (January 16, 2013): 737–46. http://dx.doi.org/10.1021/am302271g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Oh, Y. J., W. Jo, J. Lim, S. Park, Y. S. Kim, and Y. Kim. "Micropatterning of bacteria on two-dimensional lattice protein surface observed by atomic force microscopy." Ultramicroscopy 108, no. 10 (September 2008): 1124–27. http://dx.doi.org/10.1016/j.ultramic.2008.04.055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Duffy, Rebecca M., Yan Sun, and Adam W. Feinberg. "Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle." Annals of Biomedical Engineering 44, no. 6 (March 16, 2016): 2076–89. http://dx.doi.org/10.1007/s10439-016-1592-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Arnold, Andreas M., Alexander W. A. F. Reismann, Eva Sevcsik, and Gerhard J. Schütz. "Monte Carlo simulations of protein micropatterning in biomembranes: effects of immobile nanofeatures with reduced diffusivity." Journal of Physics D: Applied Physics 53, no. 43 (August 6, 2020): 435401. http://dx.doi.org/10.1088/1361-6463/aba297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sevcsik, Eva, Stefan Sunzenauer, Mario Brameshuber, and Gerhard J. Schutz. "Protein Micropatterning in Live Cells: A Tool for Creating Membrane Domains with Raft-Like Properties." Biophysical Journal 104, no. 2 (January 2013): 192a. http://dx.doi.org/10.1016/j.bpj.2012.11.1081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

van der Putten, Cas, Antonetta B. C. Buskermolen, Maike Werner, Hannah F. M. Brouwer, Paul A. A. Bartels, Patricia Y. W. Dankers, Carlijn V. C. Bouten, and Nicholas A. Kurniawan. "Correction to “Protein Micropatterning in 2.5D: An Approach to Investigate Cellular Responses in Multi-Cue Environments”." ACS Applied Materials & Interfaces 14, no. 13 (March 24, 2022): 15859. http://dx.doi.org/10.1021/acsami.2c04641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Uppalapati, Maruti, Ying-Ming Huang, Vidhya Aravamuthan, Thomas N. Jackson, and William O. Hancock. "“Artificial mitotic spindle” generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads." Integr. Biol. 3, no. 1 (2011): 57–64. http://dx.doi.org/10.1039/c0ib00065e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

de Wet, Sholto, Andre Du Toit, and Ben Loos. "Spermidine and Rapamycin Reveal Distinct Autophagy Flux Response and Cargo Receptor Clearance Profile." Cells 10, no. 1 (January 7, 2021): 95. http://dx.doi.org/10.3390/cells10010095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Autophagy flux is the rate at which cytoplasmic components are degraded through the entire autophagy pathway and is often measured by monitoring the clearance rate of autophagosomes. The specific means by which autophagy targets specific cargo has recently gained major attention due to the role of autophagy in human pathologies, where specific proteinaceous cargo is insufficiently recruited to the autophagosome compartment, albeit functional autophagy activity. In this context, the dynamic interplay between receptor proteins such as p62/Sequestosome-1 and neighbour of BRCA1 gene 1 (NBR1) has gained attention. However, the extent of receptor protein recruitment and subsequent clearance alongside autophagosomes under different autophagy activities remains unclear. Here, we dissect the concentration-dependent and temporal impact of rapamycin and spermidine exposure on receptor recruitment, clearance and autophagosome turnover over time, employing micropatterning. Our results reveal a distinct autophagy activity response profile, where the extent of autophagosome and receptor co-localisation does not involve the total pool of either entities and does not operate in similar fashion. These results suggest that autophagosome turnover and specific cargo clearance are distinct entities with inherent properties, distinctively contributing towards total functional autophagy activity. These findings are of significance for future studies where disease specific protein aggregates require clearance to preserve cellular proteostasis and viability and highlight the need of discerning and better tuning autophagy machinery activity and cargo clearance.
35

de Wet, Sholto, Andre Du Toit, and Ben Loos. "Spermidine and Rapamycin Reveal Distinct Autophagy Flux Response and Cargo Receptor Clearance Profile." Cells 10, no. 1 (January 7, 2021): 95. http://dx.doi.org/10.3390/cells10010095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Autophagy flux is the rate at which cytoplasmic components are degraded through the entire autophagy pathway and is often measured by monitoring the clearance rate of autophagosomes. The specific means by which autophagy targets specific cargo has recently gained major attention due to the role of autophagy in human pathologies, where specific proteinaceous cargo is insufficiently recruited to the autophagosome compartment, albeit functional autophagy activity. In this context, the dynamic interplay between receptor proteins such as p62/Sequestosome-1 and neighbour of BRCA1 gene 1 (NBR1) has gained attention. However, the extent of receptor protein recruitment and subsequent clearance alongside autophagosomes under different autophagy activities remains unclear. Here, we dissect the concentration-dependent and temporal impact of rapamycin and spermidine exposure on receptor recruitment, clearance and autophagosome turnover over time, employing micropatterning. Our results reveal a distinct autophagy activity response profile, where the extent of autophagosome and receptor co-localisation does not involve the total pool of either entities and does not operate in similar fashion. These results suggest that autophagosome turnover and specific cargo clearance are distinct entities with inherent properties, distinctively contributing towards total functional autophagy activity. These findings are of significance for future studies where disease specific protein aggregates require clearance to preserve cellular proteostasis and viability and highlight the need of discerning and better tuning autophagy machinery activity and cargo clearance.
36

Xu, Yi, Pan Deng, Guang Yu, Xingxing Ke, Yongqing Lin, Xiaorong Shu, Yaping Xie, Shuo Zhang, Ruqiong Nie, and Zhigang Wu. "Thrombogenicity of microfluidic chip surface manipulation: Facile, one-step, none-protein technique for extreme wettability contrast micropatterning." Sensors and Actuators B: Chemical 343 (September 2021): 130085. http://dx.doi.org/10.1016/j.snb.2021.130085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kim, Kyuwon, Jaeyang Hwang, Inwoong Seo, Tae Hwan Youn, and Juhyoun Kwak. "Protein micropatterning based on electrochemically switched immobilization of bioligand on electropolymerized film of a dually electroactive monomer." Chemical Communications, no. 45 (2006): 4723. http://dx.doi.org/10.1039/b609491k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Narazaki, Aiko, Ayako Oyane, Saki Komuro, Ryozo Kurosaki, Tomoko Kameyama, Ikuko Sakamaki, Hiroko Araki, and Hirofumi Miyaji. "Bioactive micropatterning of apatite immobilizing cell adhesion protein by laser-induced forward transfer with a shock absorber." Optical Materials Express 9, no. 7 (June 7, 2019): 2807. http://dx.doi.org/10.1364/ome.9.002807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Patil, Prarthana, John M. Szymanski, and Adam W. Feinberg. "Defined Micropatterning of ECM Protein Adhesive Sites on Alginate Microfibers for Engineering Highly Anisotropic Muscle Cell Bundles." Advanced Materials Technologies 1, no. 4 (May 17, 2016): 1600003. http://dx.doi.org/10.1002/admt.201600003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Applegate, Matthew B., Jeannine Coburn, Benjamin P. Partlow, Jodie E. Moreau, Jessica P. Mondia, Benedetto Marelli, David L. Kaplan, and Fiorenzo G. Omenetto. "Laser-based three-dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds." Proceedings of the National Academy of Sciences 112, no. 39 (September 15, 2015): 12052–57. http://dx.doi.org/10.1073/pnas.1509405112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach.
41

Cady, Emily, Jacob A. Orkwis, Rachel Weaver, Lia Conlin, Nicolas N. Madigan, and Greg M. Harris. "Micropatterning Decellularized ECM as a Bioactive Surface to Guide Cell Alignment, Proliferation, and Migration." Bioengineering 7, no. 3 (August 31, 2020): 102. http://dx.doi.org/10.3390/bioengineering7030102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bioactive surfaces and materials have displayed great potential in a variety of tissue engineering applications but often struggle to completely emulate complex bodily systems. The extracellular matrix (ECM) is a crucial, bioactive component in all tissues and has recently been identified as a potential solution to be utilized in combination with biomaterials. In tissue engineering, the ECM can be utilized in a variety of applications by employing the biochemical and biomechanical cues that are crucial to regenerative processes. However, viable solutions for maintaining the dimensionality, spatial orientation, and protein composition of a naturally cell-secreted ECM remain challenging in tissue engineering. Therefore, this work used soft lithography to create micropatterned polydimethylsiloxane (PDMS) substrates of a three-dimensional nature to control cell adhesion and alignment. Cells aligned on the micropatterned PDMS, secreted and assembled an ECM, and were decellularized to produce an aligned matrix biomaterial. The cells seeded onto the decellularized, patterned ECM showed a high degree of alignment and migration along the patterns compared to controls. This work begins to lay the groundwork for elucidating the immense potential of a natural, cell-secreted ECM for directing cell function and offers further guidance for the incorporation of natural, bioactive components for emerging tissue engineering technologies.
42

Inglis, William, Martyn C. Davies, Clive J. Roberts, Saul J. B. Tendler, and Philip M. Williams. "Micro-Patterning of Polymers for High Resolution Microscopy Analysis." Microscopy and Microanalysis 7, S2 (August 2001): 128–29. http://dx.doi.org/10.1017/s1431927600026714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Micro-patterned surfaces are of interest in biology and chemistry due to the ability to confine functional sample materials to specific areas. If patterns are visible, either through optical microscopy, or topographically, with scanning probe microscopy, investigating samples in a manner that is cheap and accessible to most laboratories is possible. Examples include micropatterning cells in tissue engineering, and protein micro-array analysis. We have created a micro-patterned surface with tailored optical and topographic properties. These were investigated using the microscopy techniques, confocal microscopy (CM), atomic force microscopy (AFM) and near field scanning optical microscopy (NSOM). AFM and CM were used to investigate different aspects of the micro-pattern. to confirm the properties of the micro-pattern, we show the advantages of NSOM in investigating surfaces with both optical and topographic properties simultaneously. Micro-patterns were fabricated using a soft lithography technique, micro-contact printing, where reagents are ‘stamped’ upon substrates using an elastomeric moulding of a micro-template.
43

Sunzenauer, Stefan, Mario Brameshuber, Julian Weghuber, and Gerhard J. Schuetz. "Protein Micropatterning in the Plasma Membrane Allows for Kd Determination in Living Cells and Superresolution Analysis of Lipid Rafts." Biophysical Journal 102, no. 3 (January 2012): 26a. http://dx.doi.org/10.1016/j.bpj.2011.11.170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kim, Miju, Kwang Hoon Song, and Junsang Doh. "PDMS bonding to a bio-friendly photoresist via self-polymerized poly(dopamine) adhesive for complex protein micropatterning inside microfluidic channels." Colloids and Surfaces B: Biointerfaces 112 (December 2013): 134–38. http://dx.doi.org/10.1016/j.colsurfb.2013.07.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Brown, Grace E., and Salman R. Khetani. "Microfabrication of liver and heart tissues for drug development." Philosophical Transactions of the Royal Society B: Biological Sciences 373, no. 1750 (May 21, 2018): 20170225. http://dx.doi.org/10.1098/rstb.2017.0225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Drug-induced liver- and cardiotoxicity remain among the leading causes of preclinical and clinical drug attrition, marketplace drug withdrawals and black-box warnings on marketed drugs. Unfortunately, animal testing has proven to be insufficient for accurately predicting drug-induced liver- and cardiotoxicity across many drug classes, likely due to significant differences in tissue functions across species. Thus, the field of in vitro human tissue engineering has gained increasing importance over the last 10 years. Technologies such as protein micropatterning, microfluidics, three-dimensional scaffolds and bioprinting have revolutionized in vitro platforms as well as increased the long-term phenotypic stability of both primary cells and stem cell-derived differentiated cells. Here, we discuss advances in engineering approaches for constructing in vitro human liver and heart models with utility for drug development. Design features and validation data of representative models are presented to highlight major trends followed by the discussion of pending issues. Overall, bioengineered liver and heart models have significantly advanced our understanding of organ function and injury, which will prove useful for mitigating the risk of drug-induced organ toxicity to human patients, reducing animal usage for preclinical drug testing, aiding in the discovery of novel therapeutics against human diseases, and ultimately for applications in regenerative medicine. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’.
46

Hang, Benson, Eman Jassem, Hanan Mohammed, Leo Q. Wan, Jason I. Herschkowitz, and Jie Fan. "Interacting with tumor cells weakens the intrinsic clockwise chirality of endothelial cells." APL Bioengineering 6, no. 4 (December 1, 2022): 046107. http://dx.doi.org/10.1063/5.0115827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Endothelial cells (ECs) possess a strong intrinsic clockwise (CW, or rightward) chirality under normal conditions. Enervating this chirality of ECs significantly impairs the function of the endothelial barrier. Malignant tumor cells (TCs) undergo metastasis by playing upon the abnormal leakage of blood vessels. However, the impact of TCs on EC chirality is still poorly understood. Using a transwell model, we co-cultured the human umbilical vein endothelial cells or human lung microvascular endothelial cells and breast epithelial tumor cell lines to simulate the TC–EC interaction. Using a micropatterning method, we assessed the EC chirality changes induced by paracrine signaling of and physical contact with TCs. We found that the intrinsic clockwise chirality of ECs was significantly compromised by the TC's physical contact, while the paracrine signaling (i.e., without physical contact) of TCs causes minimal changes. In addition, ECs neighboring TCs tend to possess a left bias, while ECs spaced apart from TCs are more likely to preserve the intrinsic right bias. Finally, we found the chirality change of ECs could result from physical binding between CD44 and E-selectin, which activates protein kinase C alpha (PKCα) and induces pseudopodial movement of EC toward TC. Our findings together suggest the crucial role of EC–TC physical interaction in EC chirality and that weakening the EC chirality could potentially compromise the overall endothelial integrity which increases the probability of metastatic cancer spread.
47

Zhang, Yong. "Micropatterning of proteins on nanospheres." Colloids and Surfaces B: Biointerfaces 48, no. 1 (March 2006): 95–100. http://dx.doi.org/10.1016/j.colsurfb.2006.01.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wang, Yu Chi, and Chia‐Chi Ho. "Micropatterning of proteins and mammalian cells on biomaterials." FASEB Journal 18, no. 3 (January 8, 2004): 525–27. http://dx.doi.org/10.1096/fj.03-0490fje.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, Chun, Yong Zhang, Ho Soon Seng, and Low Lee Ngo. "Nanoparticle-assisted micropatterning of active proteins on solid substrate." Biosensors and Bioelectronics 21, no. 8 (February 2006): 1638–43. http://dx.doi.org/10.1016/j.bios.2005.07.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Shah, Sunny S., Michael C. Howland, Li-Jung Chen, Jaime Silangcruz, Stanislav V. Verkhoturov, Emile A. Schweikert, Atul N. Parikh, and Alexander Revzin. "Micropatterning of Proteins and Mammalian Cells on Indium Tin Oxide." ACS Applied Materials & Interfaces 1, no. 11 (October 30, 2009): 2592–601. http://dx.doi.org/10.1021/am900508m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії