Добірка наукової літератури з теми "Propositional Quantifiers"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Propositional Quantifiers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Propositional Quantifiers"

1

FINE, KIT. "Propositional quantifiers in modal logic1." Theoria 36, no. 3 (February 11, 2008): 336–46. http://dx.doi.org/10.1111/j.1755-2567.1970.tb00432.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Golińska-Pilarek, Joanna, and Taneli Huuskonen. "Non-Fregean Propositional Logic with Quantifiers." Notre Dame Journal of Formal Logic 57, no. 2 (2016): 249–79. http://dx.doi.org/10.1215/00294527-3470547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Artemov, Sergei N., and Lev D. Beklemishev. "On propositional quantifiers in provability logic." Notre Dame Journal of Formal Logic 34, no. 3 (June 1993): 401–19. http://dx.doi.org/10.1305/ndjfl/1093634729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Leivant, Daniel. "Propositional Dynamic Logic with Program Quantifiers." Electronic Notes in Theoretical Computer Science 218 (October 2008): 231–40. http://dx.doi.org/10.1016/j.entcs.2008.10.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Crawford, Sean. "Quantifiers and propositional attitudes: Quine revisited." Synthese 160, no. 1 (February 15, 2007): 75–96. http://dx.doi.org/10.1007/s11229-006-9080-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

O'Hearn, Peter W., and David J. Pym. "The Logic of Bunched Implications." Bulletin of Symbolic Logic 5, no. 2 (June 1999): 215–44. http://dx.doi.org/10.2307/421090.

Повний текст джерела
Анотація:
AbstractWe introduce a logic BI in which a multiplicative (or linear) and an additive (or intuitionistic) implication live side-by-side. The propositional version of BI arises from an analysis of the proof-theoretic relationship between conjunction and implication; it can be viewed as a merging of intuitionistic logic and multiplicative intuitionistic linear logic. The naturality of BI can be seen categorically: models of propositional BI's proofs are given by bicartesian doubly closed categories, i.e., categories which freely combine the semantics of propositional intuitionistic logic and propositional multiplicative intuitionistic linear logic. The predicate version of BI includes, in addition to standard additive quantifiers, multiplicative (or intensional) quantifiers and which arise from observing restrictions on structural rules on the level of terms as well as propositions. We discuss computational interpretations, based on sharing, at both the propositional and predicate levels.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Cheng. "How to Deduce the Other 91 Valid Aristotelian Modal Syllogisms from the Syllogism IAI-3." Applied Science and Innovative Research 7, no. 1 (January 27, 2023): p46. http://dx.doi.org/10.22158/asir.v7n1p46.

Повний текст джерела
Анотація:
This paper firstly formalizes Aristotelian modal syllogisms by taking advantage of the trisection structure of (modal) categorical propositions. And then making full use of the truth value definition of (modal) categorical propositions, the transformable relations between an Aristotelian quantifier and its three negative quantifiers, the reasoning rules of classical propositional logic, and the symmetry of the two Aristotelian quantifiers (i.e. some and no), this paper shows that at least 91 valid Aristotelian modal syllogisms can be deduced from IAI-3 on the basis of possible world semantics and set theory. The reason why these valid Aristotelian modal syllogisms can be reduced is that any Aristotelian quantifier can be defined by the other three Aristotelian quantifiers, and the necessary modality ( ) and possible modality ( ) can also be defined mutually. This research method is universal. This innovative study not only provides a unified mathematical research paradigm for the study of generalized modal syllogistic and other kinds of syllogistic, but also makes contributions to knowledge representation and knowledge reasoning in computer science.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pascucci, Matteo. "Propositional quantifiers in labelled natural deduction for normal modal logic." Logic Journal of the IGPL 27, no. 6 (April 25, 2019): 865–94. http://dx.doi.org/10.1093/jigpal/jzz008.

Повний текст джерела
Анотація:
Abstract This article concerns the treatment of propositional quantification in a framework of labelled natural deduction for modal logic developed by Basin, Matthews and Viganò. We provide a detailed analysis of a basic calculus that can be used for a proof-theoretic rendering of minimal normal multimodal systems with quantification over stable domains of propositions. Furthermore, we consider variations of the basic calculus obtained via relational theories and domain theories allowing for quantification over possibly unstable domains of propositions. The main result of the article is that fragments of the labelled calculi not exploiting reductio ad absurdum enjoy the Church–Rosser property and the strong normalization property; such result is obtained by combining Girard’s method of reducibility candidates and labelled languages of lambda calculus codifying the structure of modal proofs.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Montagna, Franco. "Δ-core Fuzzy Logics with Propositional Quantifiers, Quantifier Elimination and Uniform Craig Interpolation". Studia Logica 100, № 1-2 (9 лютого 2012): 289–317. http://dx.doi.org/10.1007/s11225-012-9379-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rönnedal, Daniel. "The Moral Law and The Good in Temporal Modal Logic with Propositional Quantifiers." Australasian Journal of Logic 17, no. 1 (April 7, 2020): 22. http://dx.doi.org/10.26686/ajl.v17i1.5674.

Повний текст джерела
Анотація:
The Moral Law is fulfilled (in a possible world w at a time t) iff (if and only if) everything that ought to be the case is the case (in w at t), and The Good (or The Highest Possible Good) is realised in a possible world w' at a time t' iff w' is deontically accessible from w at t. In this paper, I will introduce a set of temporal alethic deontic systems with propositional quantifiers that can be used to prove some interesting theorems about The Moral Law and The Good. First, I will describe a set of systems without any propositional quantifiers. Then, I will show how these systems can be extended by a couple of propositional quantifiers. I will use a kind of TxW semantics to describe the systems semantically and semantic tableaux to describe them syntactically. Every system will include a constant · that stands for The Good. ‘·’ is read as ‘The Good is realised’. All systems that contain the propositional quantifiers will also include a constant '*' that stands for The Moral Law. '*' is read as ‘The Moral Law is fulfilled’. I will prove that all systems (without the propositional quantifiers) are sound and complete with respect to their semantics and that all systems (including the extended systems) are sound with respect to their semantics. It is left as an open question whether or not the extended systems are complete.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Propositional Quantifiers"

1

Reggio, Luca. "Quantifiers and duality." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC210/document.

Повний текст джерела
Анотація:
Le thème central de la présente thèse est le contenu sémantique des quantificateurs logiques. Dans leur forme la plus simple, les quantificateurs permettent d’établir l’existence, ou la non-existence, d’individus répondant à une propriété. En tant que tels, ils incarnent la richesse et la complexité de la logique du premier ordre, par delà la logique propositionnelle. Nous contribuons à l’analyse sémantique des quantificateurs, du point de vue de la théorie de la dualité, dans trois domaines différents des mathématiques et de l’informatique théorique. D’une part, dans la théorie des langages formels à travers la logique sur les mots. D’autre part, dans la logique intuitionniste propositionnelle et dans l’étude de l’interpolation uniforme. Enfin, dans la topologie catégorique et dans la sémantique catégorique de la logique du premier ordre
The unifying theme of the thesis is the semantic meaning of logical quantifiers. In their basic form quantifiers allow to state theexistence, or non-existence, of individuals satisfying a property. As such, they encode the richness and the complexity of predicate logic, as opposed to propositional logic. We contribute to the semantic understanding of quantifiers, from the viewpoint of duality theory, in three different areas of mathematics and theoretical computer science. First, in formal language theory through the syntactic approach provided by logic on words. Second, in intuitionistic propositional logic and in the study of uniform interpolation. Third, in categorical topology and categorical semantics for predicate logic
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Walton, Matthew. "First-order lax logic : a framework for abstraction, constraints and refinement." Thesis, University of Sheffield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liétard, Ludovic. "Contribution a l'interrogation flexible de bases de donnees : etude des propositions quantifiees floues." Rennes 1, 1995. http://www.theses.fr/1995REN10125.

Повний текст джерела
Анотація:
Dans le modele relationnel de bases de donnees, les deux quantificateurs (, ) de la logique du premier ordre sont utilises dans des expressions quantifiees pour exprimer des contraintes d'integrite ou des requetes. Le travail de cette these consiste a etudier l'integration de l'imprecision dans les expressions quantifiees et ceci pour permettre principalement l'expression de termes quantifies imprecis dans des requetes adressees au sgbd. Nous considerons les bases de donnees relationnelles ordinaires et le langage de requetes sqlf qui permet l'expression de conditions flexibles par la theorie des ensembles flous. Notre but est d'enrichir le langage sqlf afin d'y autoriser des termes quantifies imprecis
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Döcker, Janosch Otto [Verfasser]. "Placing problems from phylogenetics and (quantified) propositional logic in the polynomial hierarchy / Janosch Otto Döcker." Tübingen : Universitätsbibliothek Tübingen, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1187027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Letombe, Florian. "De la validité des formules booléennes quantifiées : étude de complexité et exploitation de classes traitables au sein d'un prouveur QBF." Artois, 2005. http://www.theses.fr/2005ARTO0407.

Повний текст джерела
Анотація:
Cette thèse est centrée sur le problème QBF de décision de la validité des formules booléennes quantifiées : étant donnée une formule de la forme Σ = ∀y1 Ǝx1. . . ∀yn Ǝxn. ø où ø est une formule propositionnelle construite sur {x1, y1,. . . , xn, yn} (la matrice de Σ), il s’agit de déterminer si pour toute affectation d’une valeur de vérité à y1 dans ø, il existe une affectation d’une valeur de vérité à x1 dans ø,. . . , pour toute affectation d’une valeur de vérité à yn dans ø, il existe une affectation d’une valeur de vérité à xn dans ø qui rend ø valide. Le problème QBF est calculatoirement difficile (PSPACE-complet). Il importe donc de mettre en évidence des cas particuliers où sa résolution pratique est envisageable. Dans cette thèse, nous avons considéré des restrictions de QBF portant sur la matrice des instances. Notre objectif principal était double : (1) identifier la complexité de QBF pour des restrictions non considérées jusqu’ici et (2) explorer dans quelle mesure les classes polynomiales pour QBF peuvent être exploitées au sein d’un prouveur QBF général afin d’améliorer son efficacité. Concernant le premier point, nous avons montré que QBF restreint aux fragments cibles pour la compilation de « connaissances » étudiés dans (Darwiche & Marquis 2002), qui sont traitables pour SAT, reste PSPACE-complet et donc intraitable en pratique. Nous avons également mis en évidence le lien étroit qui existe entre notre étude et le problème de compilabilité de QBF. Concernant le second point, nous avons décrit une nouvelle heuristique de branchement Δ visant à promouvoir la génération de formules Horn renommables quantifiées durant le parcours de l’arbre de recherche effectué par une procédure de type Q-DPLL pour QBF. Les résultats expérimentaux présentés montrent qu’en pratique, hormis notre prouveur Qbfl, les prouveurs QBF actuels ne sont pas capables de résoudre facilement les instances Horn quantifiées ou Horn renommables quantifiées ; ceci suffit à justifier l’intérêt de l’approche suivie. Les résultats obtenus montrent également que, muni de l’heuristique Δ, Qbfl améliore significativement ses performances sur certains types d’instances, même s’il obtient des résultats moyens en général, comparé aux autres prouveurs QBF actuels
This thesis is centered on QBF, the validity problem for quantified Boolean formulae: given a formula of the form Σ = ∀y1 Ǝx1. . . ∀yn Ǝxn. ø where ø is a propositional formula built on {x1, y1,. . . , xn, yn} (the matrix of Σ), is it the case that for each assignment of a truth value to y1 in ø, there exists an assignment of a truth value to x1 in ø,. . . , for each assignment of a truth value to yn in ø, there exists an assignment of a truth value to xn in ø that makes ø valid ? Since QBF is computationally hard (PSPACE-complete), it is important to point out some specific cases for which the practical solving of QBF could be achieved. In this thesis, we have considered some restrictions of QBF based on the matrices of instances. Our main purpose was (1) to identify the complexity of QBF for some restrictions not considered so far and (2) to explore how to take advantage of polynomial classes for QBF within a general QBF solver in order to increase its efficiency. As to the first point, we have shown that QBF, when restricted to the target fragments for knowledge compilation studied in (Darwiche & Marquis 2002), remain typically PSPACE-complete. We have shown a close connexion between this study and the compilability issue for QBF. As to the second point, we have presented a new branching heuristics Δ which aims at promoting the generation of quantified renamable Horn formulae into the search-tree developed by a Q-DPLL procedure for QBF. We have obtained experimental results showing that, in practice, state-of-the-art QBF solvers, except our solver Qbfl, are unable to solve quantified Horn instances or quantified renamable Horn instances of medium size. This observation is sufficient to show the interest of our approach. Our experiments have also shown the heuristics Δ to improve the efficiency of Qbfl, even if this solver does not appear as one of the best QBF solvers at this time
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Da, Mota Benoit. "Formules booléennes quantifiées : transformations formelles et calculs parallèles." Phd thesis, Université d'Angers, 2010. http://tel.archives-ouvertes.fr/tel-00578083.

Повний текст джерела
Анотація:
De nombreux problèmes d'intelligence artificielle et de vérification formelle se ramènent à un test de validité d'une formule booléenne quantifiée (QBF). Mais, pour effectuer ce test les solveurs QBF actuels ont besoin d'une formule sous une forme syntaxique restrictive, comme la forme normale conjonctive ou la forme normale de négation. L'objectif de notre travail est donc de s'affranchir de ces contraintes syntaxiques fortes de manière à utiliser le langage des QBF dans toute son expressivité et nous traitons ce sujet de manière formelle et calculatoire. Notre première contribution est un ensemble d'équivalences et d'algorithmes qui permettent de traiter un motif particulier, les résultats intermédiaires. Ce motif apporte une alternative efficace en espace et en temps de résolution, à la suppression naïve des biimplications et des ou-exclusifs lors de la mise sous forme prénexe. Il offre également de nouvelles possibilités de transformations dans différents fragments du langage QBF. Notre deuxième contribution est d'ordre calculatoire et a pour but d'exploiter la puissance des architectures de calcul parallèles afin de traiter des QBF sans restriction syntaxique. Nous élaborons donc une architecture innovante pour la parallélisation du problème de validité des QBF. Son originalité réside dans son architecture dite de « parallélisation syntaxique » par opposition aux architectures de parallélisation basée sur la sémantique des quantificateurs.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Slama, Olfa. "Flexible querying of RDF databases : a contribution based on fuzzy logic." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S089/document.

Повний текст джерела
Анотація:
Cette thèse porte sur la définition d'une approche flexible pour interroger des graphes RDF à la fois classiques et flous. Cette approche, basée sur la théorie des ensembles flous, permet d'étendre SPARQL qui est le langage de requête standardisé W3C pour RDF, de manière à pouvoir exprimer i) des préférences utilisateur floues sur les données (par exemple, l'année de publication d'un album est récente) et sur la structure du graphe (par exemple, le chemin entre deux amis doit être court) et ii) des préférences utilisateur plus complexes, prenant la forme de propositions quantifiées floues (par exemple, la plupart des albums qui sont recommandés par un artiste, sont très bien notés et ont été créés par un jeune ami de cet artiste). Nous avons effectué des expérimentations afin d'étudier les performances de cette approche. L'objectif principal de ces expérimentations était de montrer que le coût supplémentaire dû à l'introduction du flou reste limité/acceptable. Nous avons également étudié, dans un cadre plus général, celui de bases de données graphe, la question de l'intégration du même type de propositions quantifiées floues dans une extension floue de Cypher qui est un langage déclaratif pour l'interrogation des bases de données graphe classiques. Les résultats expérimentaux obtenus montrent que le coût supplémentaire induit par la présence de conditions quantifiées floues dans les requêtes reste également très limité dans ce cas
This thesis concerns the definition of a flexible approach for querying both crisp and fuzzy RDF graphs. This approach, based on the theory of fuzzy sets, makes it possible to extend SPARQL which is the W3C-standardised query language for RDF, so as to be able to express i) fuzzy user preferences on data (e.g., the release year of an album is recent) and on the structure of the data graph (e.g., the path between two friends is required to be short) and ii) more complex user preferences, namely, fuzzy quantified statements (e.g., most of the albums that are recommended by an artist, are highly rated and have been created by a young friend of this artist). We performed some experiments in order to study the performances of this approach. The main objective of these experiments was to show that the extra cost due to the introduction of fuzziness remains limited/acceptable. We also investigated, in a more general framework, namely graph databases, the issue of integrating the same type of fuzzy quantified statements in a fuzzy extension of Cypher which is a declarative language for querying (crisp) graph databases. Some experimental results are reported and show that the extra cost induced by the fuzzy quantified nature of the queries also remains very limited
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Johannesson, Eric. "Analyticity, Necessity and Belief : Aspects of two-dimensional semantics." Doctoral thesis, Stockholms universitet, Filosofiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-141565.

Повний текст джерела
Анотація:
A glass couldn't contain water unless it contained H2O-molecules. Likewise, a man couldn't be a bachelor unless he was unmarried. Now, the latter is what we would call a conceptual or analytical truth. It's also what we would call a priori. But it's hardly a conceptual or analytical truth that if a glass contains water, then it contains H2O-molecules. Neither is it a priori. The fact that water is composed of H2O-molecules was an empirical discovery made in the eighteenth century. The fact that all bachelors are unmarried was not. But neither is a logical truth, so how do we explain the difference? Two-dimensional semantics is a framework that promises to shed light on these issues. The main purpose of this thesis is to understand and evaluate this framework in relation to various alternatives, to see whether some version of it can be defended. I argue that it fares better than the alternatives. However, much criticism of two-dimensionalism has focused on its alleged inability to provide a proper semantics for certain epistemic operators, in particular the belief operator and the a priori operator. In response to this criticism, a two-dimensional semantics for belief ascriptions is developed using structured propositions. In connection with this, a number of other issues in the semantics of belief ascriptions are addressed, concerning indexicals, beliefs de se, beliefs de re, and the problem of logical omniscience.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

PASCUCCI, Matteo. "Modal logics with propositional constants." Doctoral thesis, 2016. http://hdl.handle.net/11562/944281.

Повний текст джерела
Анотація:
Questa dissertazione cerca di fornire un trattamento unificato delle costanti proposizionali in logica modale. I linguaggi arricchiti con costanti vengono usati almeno a partire dalla metà del secolo scorso, ma ancora non è stato fatto uno studio sistematico. Il principale contributo del mio lavoro consiste nello sviluppo di un approccio semantico basato su strutture con insiemi di interpretazioni possibili per le costanti proposizionali, chiamati restrizioni specifiche; tali strutture sono confrontate con quelle in cui ogni costante ha una interpretazione fissa, solitamente utilizzate nella letteratura. Viene mostrato che la presenza di restrizioni specifiche permette di definire la nozione di strict range di una formula (traducibile come "varietà stretta di modelli"), che risulta essere importante per questioni di teoria dei modelli. Inoltre, l'approccio semantico qui introdotto viene usato per formulare sistemi di logica del tempo il cui linguaggio include operatori primitivi di contingenza; per tali sistemi si dimostrano risultati di caratterizzazione in riferimento a diverse classi di strutture temporali. Infine, la tesi propone una generalizzazione dello studio dei linguaggi modali arricchiti passando da linguaggi con costanti proposizionali a linguaggi con quantificatori proposizionali e di questi ultimi viene studiata la teoria della dimostrazione con sistemi di deduzione naturale etichettata.
This dissertation aims at providing a unified treatment of propositional constants in modal logic. Languages enriched with constants have been used at least from the Fifties, but a systematic study of them is still not available.The main contribution consists in the development of a semantic approach based on structures with sets of possible interpretations for propositional constants, called specific restrictions; such structures are compared with those in which every constant has a fixed interpretation, usually adopted in the literature. We show that the presence of specific restrictions allows one to define the notion of strict range of a formula, that turns out to be important for model-theoretic purposes. Furthermore, we use the semantic approach here introduced to develop systems of temporal logic whose language includes primitive operators of contingency, showing that propositional constants are useful to obtain characterization results with reference to different classes of temporal frames. Finally, we move from languages with propositional constants to languages with propositional quantifiers (the latter being intended as a generalization of the former) and analyse their proof theory in natural deduction calculi.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pan, Guoqiang. "Complexity and structural heuristics for propositional and quantified satisfiability." Thesis, 2007. http://hdl.handle.net/1911/20686.

Повний текст джерела
Анотація:
Decision procedures for various logics are used as general-purpose solvers in computer science. A particularly popular choice is propositional logic, which is simultaneously powerful enough to model problems in many application domains, including formal verification and planning, while at the same time simple enough to be efficiently solved for many practical cases. Similarly, there are also recent interests in using QBF, an extension of propositional logic, as a modeling language to be used in a similar fashion. The hope is that QBF, being a more powerful language, can compactly encode, and in turn, be used to solve, a larger range of applications. Still, propositional logic and QBF are respectively complete for the complexity classes NP and PSPACE, thus, both can be theoretically considered intractable. A popular hypothesis is that real-world problems contain underlying structure that can be exploited by the decision procedures. In this dissertation, we study the impact of structural constraints (in the form of bounded width) and heuristics on the performance of propositional and QBF decision procedures. The results presented in this dissertation can be seen as a contrast on how bounded-width impacts propositional and quantified problems differently. Starting with a size bound on BDDs under bounded width, we proceed to compare symbolic decision procedures against the standard DPLL search-based approach for propositional logic, as well as compare different width-based heuristics for the symbolic approaches. In general, symbolic approaches for propositional satisfiability are only competitive for a small range of problems, and the theoretical tractability for the bounded-width case rarely applies in practice. However, the picture is very different for quantified satisfiability. To that end, we start with a series of "intractability in tractability" results which shows that although the complexity of QBF with constant width and alternation is tractable, there is an inherent non-elementary blowup in the width and alternation depth such that a width-bound that is slightly above constant leads to intractability. To contrast the theoretical intractability, we apply structural heuristics to a symbolic decision procedure of QBF and show that symbolic approaches complement search-based approaches quite well for QBF.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Propositional Quantifiers"

1

Quantifiers, propositions, and identity: Admissible semantics for quantified modal and substructural logics. Cambridge: Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

J, Cresswell M. Semantic indexicality. Dordrecht: Kluwer Academic Publishers, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goldblatt, Robert. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge University Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Goldblatt, Robert. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goldblatt, Robert. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Substructural Logics. Cambridge University Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morioka, Tsuyoshi. Logical approaches to the complexity of search problems: Proof complexity, quantified propositional calculus, and bounded arithmetic. 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meyer, Ulrich. Time and Modality. Edited by Craig Callender. Oxford University Press, 2011. http://dx.doi.org/10.1093/oxfordhb/9780199298204.003.0005.

Повний текст джерела
Анотація:
This chapter discusses modal logic: the logic of possibility and necessity. After a brief review of modal logic in the second section, the third section presents basic results of propositional tense logic. The fourth section develops a system of quantified tense logic. With these technical preliminaries out of the way, the fifth section explains why tense logic ultimately fails as a linguistic theory of verb tense. The sixth section presents the main objection to tense primitivism: that tense logic has insufficient expressive resources to serve as a metaphysical theory of time. The seventh section argues that the tense primitivist can overcome these problems by treating times as maximally consistent sets of sentences. The eighth section discusses a key difference between time and modality: the lack of a temporal analogue of actualism.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kishida, Kohei. Categories and Modalities. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198748991.003.0009.

Повний текст джерела
Анотація:
Category theory provides various guiding principles for modal logic and its semantic modeling. In particular, Stone duality, or “syntax-semantics duality”, has been a prominent theme in semantics of modal logic since the early days of modern modal logic. This chapter focuses on duality and a few other categorical principles, and brings to light how they underlie a variety of concepts, constructions, and facts in philosophical applications as well as the model theory of modal logic. In the first half of the chapter, I review the syntax-semantics duality and illustrate some of its functions in Kripke semantics and topological semantics for propositional modal logic. In the second half, taking Kripke’s semantics for quantified modal logic and David Lewis’s counterpart theory as examples, I demonstrate how we can dissect and analyze assumptions behind different semantics for first-order modal logic from a structural and unifying perspective of category theory. (As an example, I give an analysis of the import of the converse Barcan formula that goes farther than just “increasing domains”.) It will be made clear that categorical principles play essential roles behind the interaction between logic, semantics, and ontology, and that category theory provides powerful methods that help us both mathematically and philosophically in the investigation of modal logic.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

J, Cresswell M. Semantic Indexicality. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Propositional Quantifiers"

1

Lokhorst, Gert-Jan C. "Propositional Quantifiers in Deontic Logic." In Deontic Logic and Artificial Normative Systems, 201–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11786849_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ebner, Gabriel, Jasmin Blanchette, and Sophie Tourret. "A Unifying Splitting Framework." In Automated Deduction – CADE 28, 344–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79876-5_20.

Повний текст джерела
Анотація:
AbstractAVATAR is an elegant and effective way to split clauses in a saturation prover using a SAT solver. But is it refutationally complete? And how does it relate to other splitting architectures? To answer these questions, we present a unifying framework that extends a saturation calculus (e.g., superposition) with splitting and embeds the result in a prover guided by a SAT solver. The framework also allows us to study locking, a subsumption-like mechanism based on the current propositional model. Various architectures are instances of the framework, including AVATAR, labeled splitting, and SMT with quantifiers.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kroening, Daniel, and Ofer Strichman. "From Propositional to Quantifier-Free Theories." In Decision Procedures, 59–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-50497-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brauer, Jörg, and Andy King. "Approximate Quantifier Elimination for Propositional Boolean Formulae." In Lecture Notes in Computer Science, 73–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20398-5_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goldberg, Eugene, and Panagiotis Manolios. "Software for Quantifier Elimination in Propositional Logic." In Mathematical Software – ICMS 2014, 291–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44199-2_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Besnard, Philippe, Torsten Schaub, Hans Tompits, and Stefan Woltran. "Representing Paraconsistent Reasoning via Quantified Propositional Logic." In Inconsistency Tolerance, 84–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30597-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baaz, Matthias, Christian Fermüller, and Helmut Veith. "An Analytic Calculus for Quantified Propositional Gödel Logic." In Lecture Notes in Computer Science, 112–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/10722086_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

French, Tim. "Decidability of Propositionally Quantified Logics of Knowledge." In Lecture Notes in Computer Science, 352–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24581-0_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Snelgrove, Todd. "Implementing pricing strategies via quantified value propositions." In Pricing Strategy Implementation, 136–41. Abingdon, Oxon; New York, NY: Routledge, 2020.: Routledge, 2019. http://dx.doi.org/10.4324/9780429446849-14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ayari, Abdelwaheb, and David Basin. "Qubos: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers." In Formal Methods in Computer-Aided Design, 187–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36126-x_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Propositional Quantifiers"

1

Férée, Hugo, and Sam van Gool. "Formalizing and Computing Propositional Quantifiers." In CPP '23: 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3573105.3575668.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bo, Chen, Wu Cheng, Zhang Bing, Ma Changhui, and Sui Yuefei. "Quantified Propositional Logic and Translations." In 2017 13th International Conference on Semantics, Knowledge and Grids (SKG). IEEE, 2017. http://dx.doi.org/10.1109/skg.2017.00010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tamani, Nouredine, and Yacine Ghamri-Doudane. "On Quantitative Interpretation of Fuzzy Quantified Propositions for User Preference Handling." In 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2018. http://dx.doi.org/10.1109/fuzz-ieee.2018.8491661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Okamoto, Wataru, Shun'ichi Tano, Atsushi Inoue, and Rvosuke Fujioka. "Inference results for fuzzy quantified natural language propositions qualified by false." In 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4413862.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Okamoto, W., S. Tano, A. Inoue, and R. Fujioka. "Rule-based Inference Method for Fuzzy-Quantified and Truth-Qualified Natural Language Propositions." In 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Okamoto, Wataru, Shun'ichi Tano, Atsushi Inoue, and Ryosuke Fujioka. "A generalized four-step inference method for fuzzy quantified and truth-qualified natural language propositions." In 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5584544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wataru Okamoto, Shun'ichi Tano, Toshiharu Iwatani, and Atsushi Inoue. "An inference method for fuzzy quantified natural language propositions based on new interpretation of truth qualification." In 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Caleiro, Carlos, Filipe Casal, and Andreia Mordido. "Classical Generalized Probabilistic Satisfiability." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/126.

Повний текст джерела
Анотація:
We analyze a classical generalized probabilistic satisfiability problem (GGenPSAT) which consists in deciding the satisfiability of Boolean combinations of linear inequalities involving probabilities of classical propositional formulas. GGenPSAT coincides precisely with the satisfiability problem of the probabilistic logic of Fagin et al. and was proved to be NP-complete. Here, we present a polynomial reduction of GGenPSAT to SMT over the quantifier-free theory of linear integer and real arithmetic. Capitalizing on this translation, we implement and test a solver for the GGenPSAT problem. As previously observed for many other NP-complete problems, we are able to detect a phase transition behavior for GGenPSAT.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Nian-Ze, Yen-Shi Wang, and Jie-Hong R. Jiang. "Solving Stochastic Boolean Satisfiability under Random-Exist Quantification." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/96.

Повний текст джерела
Анотація:
Stochastic Boolean Satisfiability (SSAT) is a powerful formalism to represent computational problems with uncertainly, such as belief network inference and propositional probabilistic planning. Solving SSAT formulas lies in the same complexity class (PSPACE-complete) as solving Quantified Boolean Formula (QBF). While many endeavors have been made to enhance QBF solving, SSAT has drawn relatively less attention in recent years. This paper focuses on random-exist quantified SSAT formulas, and proposes an algorithm combining binary decision diagram (BDD), logic synthesis, and modern SAT techniques to improve computational efficiency. Unlike prior exact SSAT algorithms, the proposed method can be easily modified to solve approximate SSAT by deriving upper and lower bounds of satisfying probability. Experimental results show that our method outperforms the state-of-the-art algorithm on random k-CNF formulas and has effective application to approximate SSAT on circuit benchmarks.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Chun-Lin, Nandan Shettigar, and C. Steve Suh. "A Proposition for Describing Real-World Network Dynamics." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73360.

Повний текст джерела
Анотація:
Abstract This study presents a proposition for describing the dynamics of real-world networks under the general framework of complex networks. Outward behaviors of complex networks are the manifestation of the coupled dynamics at the macroscopic level and the individual dynamics at the microscopic level. At the macroscopic level a law of coupling governs the interactions of network constituents. At the microscopic level, the dynamics of individual constituent is defined by energy that follows normal distribution. Constituent dynamics are bounded by physical constraints. Consequently, network dynamics can be quantified using information entropy which is a function of constituent energy. In real-world networks, differences between individual constituents exist due to differing mechanical properties and dynamics. Consequently, network dynamics are of different layers and hierarchies. Construct of network governing equations formulated under the general framework of complex networks are demonstrated using two real-world networks — a brain network and a lymph node network. Brain network is constructed by the neurons that each connected by the synapse. Brain network dynamics is composed by the law of coupling defined by the synaptic dynamics through the transmitting of neurotransmitters that couples the individual neuron dynamics. Since different classifications exist among neurotransmitters and neurons, the post synaptic neuron can present either inhibitory or excitatory action. The inhibitory and excitatory behavior of the neurons changes the mechanical properties of each neuron and further alters the brain network dynamics. Consequently, the brain network emerges dynamics with different layers. Lymph node network drains fluid from blood vessels, filter the lymph (the interstitial fluid lymphatic system collects from the blood circulation) through lymph nodes, and transport the lymph back to the blood circulation. Lymph node dynamics is composed by the dynamics of lymph transportation along the lymph node network and the individual lymph node dynamics that involves lymphocytes-pathogens interactions (adaptive immune response). In each lymph node, lymphocytes fight off the pathogens which also emerges a network dynamics such as the interaction between T cells and HIV viruses. Finally, the lymph is collected from each lymph nodes and drained back to the blood circulation. As a result, the lymph node network has the dynamics of different hierarchies where the lymphocytes-pathogens dynamics exists within each lymph node at the lower hierarchy is further under the influence of the lymph transportation dynamics among the whole lymph node network on the higher hierarchy. Since the constituent dynamics of the brain network and lymph node network can be defined by energy that follows normal distribution and both are bounded by physical constraints, the network dynamics of both cases can be quantified through information entropy. Features pertaining to the global as well as individual constituent dynamics of the networks are identified that are insightful to the control of such complex networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії