Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Properties loss.

Статті в журналах з теми "Properties loss"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Properties loss".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Okamoto, H., H. Hayashi, A. Tomioka, M. Konno, M. Owa, A. Kawagoe, F. Sumiyoshi, et al. "AC loss properties in YBCO model coils for loss reduction." Physica C: Superconductivity 468, no. 15-20 (September 2008): 1731–33. http://dx.doi.org/10.1016/j.physc.2008.05.185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tanaka, Kazuhide, Kazuo Funaki, Takahiro Sueyoshi, Yushi Sasashige, Kazuhiro Kajikawa, Masataka Iwakuma, Michiya Okada, Hiroaki Kumakura, and Hidemi Hayashi. "AC loss properties of MgB2multifilament wires." Superconductor Science and Technology 21, no. 9 (July 4, 2008): 095007. http://dx.doi.org/10.1088/0953-2048/21/9/095007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Chia-Li, and Ronald W. Wolff. "Loss probability properties in retrial queues." Operations Research Letters 37, no. 1 (January 2009): 47–50. http://dx.doi.org/10.1016/j.orl.2008.09.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Huan, Wen Sun, Yonghao Gui, Lixi Wang, Mingxun Yu, and Qitu Zhang. "Electromagnetic loss properties of ZnO nanofibers." Journal of Materials Science: Materials in Electronics 27, no. 12 (July 27, 2016): 12846–51. http://dx.doi.org/10.1007/s10854-016-5419-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Spišák, Emil, and Janka Majerníková. "The Loss of Plasticity Stability." Applied Mechanics and Materials 693 (December 2014): 346–51. http://dx.doi.org/10.4028/www.scientific.net/amm.693.346.

Повний текст джерела
Анотація:
The real values of plastic properties of steel sheets are basic input parameters for objectification of deep drawing technological processes. The loss of stability of plastic properties is the criterion of evaluation of plastic properties of steel sheets in most cases. The loss of stability of plastic properties depends on stress-strain scheme in real conditions of deep drawing of sheets. In the contribution will be evaluated the loss of plastic properties stability of thin double reduced packaging sheets made from low carbon steels. For evaluation of strength and plastic properties of thin packaging sheets is the tensile test most used at present. The material is stressed by uniaxial tension during this test. In the conditions of technological processes of drawing, which thin packaging sheets are mostly treating, is this way of stress not very objective. In most cases it deals about multiaxial stress of sheet by deformation of sheet to require draw cup. At the present, the biggest problem of thin steel sheets by uniaxial tension test evaluation is the loss of plastic deformation stability (localization of plastic deformation). Therefore, obtained results of plastic deformation during this test do not correspond with real plastic properties of thin steel sheets. In the contribution, will be compared the evaluation of plastic properties of these sheets by uniaxial and biaxial load. Biaxial load is unfavourable from stress point, but less sensitive on loss stability of plastic deformation from conditions test influence point.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gomes, Lais, Bruna Alves, Rita de Cassia Nunes, Ricardo Michel, Ygor Ribeiro, Flavia da Silva, and Luciana Spinelli. "APHRONS OBTAINED FROM DIFFERENT NONIONIC SURFACTANTS: PROPERTIES AND FILTRATION LOSS EVALUATION." Chemistry & Chemical Technology 11, no. 3 (August 28, 2017): 349–57. http://dx.doi.org/10.23939/chcht11.03.349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peng, Qian, Yadong Qiao, and Yang Liu. "Temperature-dependent optical properties of low-loss plasmonic SrMoO3 thin films." Chinese Optics Letters 21, no. 5 (2023): 053601. http://dx.doi.org/10.3788/col202321.053601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Harel, Arie. "Convexity Properties of the Erlang Loss Formula." Operations Research 38, no. 3 (June 1990): 499–505. http://dx.doi.org/10.1287/opre.38.3.499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumaran, Krishnan, Michel Mandjes, and Alexander Stolyar. "Convexity properties of loss and overflow functions." Operations Research Letters 31, no. 2 (March 2003): 95–100. http://dx.doi.org/10.1016/s0167-6377(02)00191-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saotome, Hideo, Keisuke Azuma, Hiroki Kizuka, and Takuma Tanaka. "Properties of dynamic magnetic loss of ferrite." AIP Advances 8, no. 5 (May 2018): 056103. http://dx.doi.org/10.1063/1.5003858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Jakub, Lev, and Kumhála František. "Dielectric properties of hops – an effect of bulk density." Research in Agricultural Engineering 63, Special Issue (December 22, 2017): S18—S23. http://dx.doi.org/10.17221/34/2017-rae.

Повний текст джерела
Анотація:
Continuous detection of basic physical properties of freshly picked and cleaned wet hop cones would be very helpful for better control and automation of harvesting processes. That is why the main aim of this article was to determine the effects of bulk density changes on dielectric properties of freshly picked hop cones. Relative permittivity and loss factor were measured using a newly developed capacitance measuring device. A strong linear correlation between fresh hops relative permittivity and bulk density was found. This finding could be used e.g. for consequent hop drying process control. Significant differences between tested hop varieties were observed for both relative permittivity and loss factor measurements. These differences cannot be explained only by a slightly different moisture content of the measured varieties and ambient temperature changes. Measured material loss factor was only slightly affected by bulk density changes. However, relative permittivity was affected by bulk density changes significantly. These facts could be used for other properties of wet hop cones estimation.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sørensen, T., J. Broeng, A. Bjarklev, E. Knudsen, and S. E. Barkou Libori. "Macro-bending loss properties of photonic crystal fibre." Electronics Letters 37, no. 5 (2001): 287. http://dx.doi.org/10.1049/el:20010227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Solovyov, M., J. Šouc, and F. Gömöry. "AC loss properties of single-layer CORC cables." Journal of Physics: Conference Series 507, no. 2 (May 12, 2014): 022034. http://dx.doi.org/10.1088/1742-6596/507/2/022034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Song, Daisheng, Bradleigh E. Navalsky, Wei Guan, Cassandra Ingersoll, Tao Wang, Emanuele Loro, Lydia Eeles, et al. "TibetanPHD2, an allele with loss-of-function properties." Proceedings of the National Academy of Sciences 117, no. 22 (May 15, 2020): 12230–38. http://dx.doi.org/10.1073/pnas.1920546117.

Повний текст джерела
Анотація:
Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway,PHD2andHIF2A. The product of the former induces the degradation of the product of the latter. Key issues regarding TibetanPHD2are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that TibetanPHD2is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the TibetanPhd2allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation inp23that abrogates the PHD2:p23 interaction.Hif2ahaploinsufficiency, but not the TibetanPhd2allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The TibetanPhd2allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

LEUNG, BARTHOLOMEW P. K., and FRED A. SPIRING. "The inverted beta loss function: properties and applications." IIE Transactions 34, no. 12 (December 2002): 1101–9. http://dx.doi.org/10.1080/07408170208928938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sebastian, M. T., R. Ubic, and H. Jantunen. "Low-loss dielectric ceramic materials and their properties." International Materials Reviews 60, no. 7 (July 23, 2015): 392–412. http://dx.doi.org/10.1179/1743280415y.0000000007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ueno, Tatsuhito, Masataka Iwakuma, T. Ito, Kiwook Yun, Kazuhisa Adachi, Akira Tomioka, Y. Hase, et al. "AC Loss Properties of Stacked REBCO Superconducting Tapes." IEEE Transactions on Applied Superconductivity 27, no. 4 (June 2017): 1–6. http://dx.doi.org/10.1109/tasc.2017.2658118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Mondio, G., F. Neri, S. Patanè, A. Arena, G. Marletta, and F. Iacona. "Optical properties from reflection electron energy loss spectroscopy." Thin Solid Films 207, no. 1-2 (January 1992): 313–18. http://dx.doi.org/10.1016/0040-6090(92)90143-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Huang, Xiaogu, Yunyun Chen, Jianghua Yu, Jing Zhang, Tianyi Sang, Gaixin Tao, and Hongli Zhu. "Fabrication and electromagnetic loss properties of Fe3O4 nanofibers." Journal of Materials Science: Materials in Electronics 26, no. 6 (February 25, 2015): 3474–78. http://dx.doi.org/10.1007/s10854-015-2857-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Arena, A., R. Girlanda, G. Martino, F. Neri, and G. Saitta. "Energy loss measurements and electronic properties of thianthren." Il Nuovo Cimento D 14, no. 9 (September 1992): 881–902. http://dx.doi.org/10.1007/bf02451674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Akhtar, S., and S. S. Bhagawan. "Dynamic Mechanical Properties of NR-HDPE Blends." Rubber Chemistry and Technology 60, no. 4 (September 1, 1987): 591–99. http://dx.doi.org/10.5254/1.3536143.

Повний текст джерела
Анотація:
Abstract Dynamic mechanical properties such as storage modulus, loss modulus, and loss tangent have been evaluated over a wide range of temperatures for thermoplastic elastomers prepared from blends of NR and HDPE. It was observed that above room temperature, both storage and loss moduli increased and loss tangent decreased as the HDPE content in the blend increased. The effects of dynamic crosslinking and carbon black filler on dynamic mechanical behavior of 70/30 NR/HDPE blend were also examined. Carbon black increased the storage and loss moduli but lowered and broadened the tan δ peak. On the other hand, crosslinking increased storage modulus and decreased the loss modulus and loss tangent, particularly after the NR Tg. The tan δ peak area which appeared at Tg for NR was proportional to the rubber content in the blends.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Pande, Shilpa, Deepali Kelkar, and Dilip Peshwe. "Impact of Conducting Polymer Filler on the Dielectric Properties of Nylon 11." Chemistry & Chemical Technology 3, no. 1 (March 15, 2009): 47–51. http://dx.doi.org/10.23939/chcht03.01.047.

Повний текст джерела
Анотація:
The dielectric studies of semi-crystalline Nylon 11 filled with a conducting polymer (PANI) were investigated in a wide range of frequency and temperature by using Impedance Analyzer. The main focus was on the effects of conducting filler content on dielectric properties of Nylon 11. The prominent factors such as dielectric permittivity, loss factor, and loss tangent were studied at high frequency. Two different concentrations (1 % and 5 % w/w) of the conducting filler were used. It was observed that with the increase of fillers concentration, the value of dielectric permittivity (ε’)б The dissipation factor (ε’’) and loss (tan ) decrease compared to pure Nylon 11.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Novák, Ján. "Electric Properties Measurement of Lentil." Acta Technologica Agriculturae 21, no. 1 (March 1, 2018): 18–23. http://dx.doi.org/10.2478/ata-2018-0004.

Повний текст джерела
Анотація:
AbstractThis paper contains the results of the electric properties measurement of lentil set. Electric measurements with use of these materials are of fundamental importance in relation to the analysis of quantity of absorbed water and dielectric heating characteristics. The aim of this paper was to perform the measurements of conductivity, dielectric constant and loss tangent on samples of lentil, the electrical properties of which had not been sufficiently measured. Measurements were performed under various moisture contents, and the frequency of electric field ranged from 1 MHz to 16 MHz, using a Q meter with coaxial probe. It was concluded that conductivity, relative permittivity and loss tangent increased with an increase in moisture content, and dielectric constant and loss tangent decreased as the frequency of electric field increased.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Cvejic, Zeljka, Srdjan Rakic, Stevan Jankov, Sonja Skuban, and Agnes Kapor. "Dielectric properties of nanosized ZnFe2O4." Processing and Application of Ceramics 2, no. 1 (2008): 53–56. http://dx.doi.org/10.2298/pac0801053c.

Повний текст джерела
Анотація:
In this paper we present the results concerning the dielectric properties of the nanosized ZnFe2O4. Dielectric permittivity, the loss factor, as well as the conductivity, were measured in the temperature range 300-630 K and at 1 Hz, 10 Hz, 100 Hz, 1 kHz and 10 kHz frequencies. Significant improvements in permittivity, loss factor and ionic conductivity comparing to bulk samples have been observed.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wang, Jing, Xiaoyu Lin, Zengyong Chu, Zhenyu Huang, Taotao Guo, Lingni Yang, and Shun Li. "Magnetic MoS2: a promising microwave absorption material with both dielectric loss and magnetic loss properties." Nanotechnology 31, no. 13 (January 9, 2020): 135602. http://dx.doi.org/10.1088/1361-6528/ab5de7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Katti, Kalpana S., Maoxu Qian, Daniel W. Frech, and Mehmet Sarikaya. "Low-loss Electron Energy-loss Spectroscopy and Dielectric Function of Biological and Geological Polymorphs of CaCO3." Microscopy and Microanalysis 5, no. 5 (September 1999): 358–64. http://dx.doi.org/10.1017/s1431927699000197.

Повний текст джерела
Анотація:
Previous work on microstructural characterization has shown variations in terms of defects and organization of nanostructures in the two polymorphs of calcium carbonate, calcite, and aragonite in mollusc shells. Large variations in mechanical properties are observed between these sections which have been attributed to variations in composite microstructure as well as intrinsic properties of the inorganic phases. Here we present local low-loss electron energy-loss spectroscopic (EELS) study of calcitic and aragonitic regions of abalone shell that were compared to geological (single-crystal) counterpart polymorphs to reveal intrinsic differences that could be related to organismal effects in biomineralization. In both sets of samples, local dielectric function is computed using Kramer-Kronig analysis. The electronic structures of biogenic and geological calcitic materials are not significantly different. On the other hand, electronic structure of biogenic aragonite is remarkably different from that of geological aragonite. This difference is attributed to the increased contribution from single electron excitations in biogenic aragonite as compared to that of geological aragonite. Implications of these changes are discussed in the context of macromolecular involvement in the making of the microstructures and properties in biogenic phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Moriya, Takashi. "Constraining massive star mass loss through supernova radio properties." Proceedings of the International Astronomical Union 18, S361 (May 2022): 580–83. http://dx.doi.org/10.1017/s1743921322002472.

Повний текст джерела
Анотація:
AbstractSupernova properties in radio strongly depend on their circumstellar environment and they are an important probe to investigate the mass loss of supernova progenitors. Recently, core-collapse supernova observations in radio have been assembled and the rise time and peak luminosity distribution of core-collapse supernovae in radio has been obtained. In this talk, we will discuss the constraints on the mass-loss prescriptions of red supergiants obtained from the assembled radio properties of Type II supernovae. We take a couple of mass-loss prescriptions for red supergiants, calculate the rise time and peak luminosity distribution based on them, and compare the results with the observed distribution. We found that the widely spread radio rise time and peak luminosity distribution of Type II supernovae can only be explained by mass-loss prescriptions having strong dependence on the luminosity. Red supergiant mass-loss prescriptions should have steep luminosity dependence in the supernova progenitor range.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Pluta, Wojciech. "Directional properties of loss components in electrical steel sheets." International Journal of Applied Electromagnetics and Mechanics 44, no. 3-4 (March 18, 2014): 379–85. http://dx.doi.org/10.3233/jae-141800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Długosz, Tomasz, and Katarzyna Pentoś. "Numerical methods in loss tangent of honey – properties analysis." Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality 130, no. 1 (2022): 78–87. http://dx.doi.org/10.15193/zntj/2022/130/409.

Повний текст джерела
Анотація:
Background. The quality assessments of food products often involve evaluating their electrical properties, including impedance, permittivity and dielectric loss factor. The measurements of food electrical characteristics provide an interesting alternative to time-consuming and expensive methods based on chemical parameter measurements. This report describes investigations into the effects of frequency on the electrical properties of honey. Specifically, honey electrical properties were tested under an electromagnetic field with frequency ranging from 1 kHz to 1 MHz. Results and conclusion. Both experimental and numerical methods were used in this study. Double verification yielded identical results, which confirmed that the numerical method applied and the computational conditions were selected appropriately. The most important feature and the most significant advantage of the numerical approach is the possibility to predict the behavior of the actual object based on its mathematical model. It is much easier and faster to perform computer simulations than to perform the corresponding measurements under real-life conditions. Numerical simulations are also extremely useful when experiments are too dangerous to perform, i.e. when the electromagnetic field being studied can pose a threat to the health or life of a tested subject. The main drawbacks of computer simulations are the restraints of computing resources and the long duration of calculations.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Russell, Edward J. F., and Ron D. Barker. "Electrical properties of clay in relation to moisture loss." Near Surface Geophysics 8, no. 2 (January 1, 2010): 173–80. http://dx.doi.org/10.3997/1873-0604.2010001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Mantskava, M. M., N. G. Momtselidze, and L. Sh Davlianidze. "Blood Rheological Properties in Blood Loss (An experimental study)." General Reanimatology 10, no. 5 (October 21, 2014): 27. http://dx.doi.org/10.15360/1813-9779-2014-5-27-32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ramstedt, S., F. L. Schöier, H. Olofsson, and A. A. Lundgren. "Mass-loss properties of S-stars on the AGB." Astronomy & Astrophysics 454, no. 2 (July 11, 2006): L103—L106. http://dx.doi.org/10.1051/0004-6361:20065285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhu, Weiping. "Statistical Properties of Loss Rate Estimators in Tree Topology." IEEE Transactions on Information Theory 64, no. 5 (May 2018): 3883–93. http://dx.doi.org/10.1109/tit.2018.2803164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Coombs, A. "Improved low loss high permeability grades, processing and properties." Le Journal de Physique IV 08, PR2 (June 1998): Pr2–475—Pr2–482. http://dx.doi.org/10.1051/jp4:19982110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Jacob, M. V., J. Mazierska, K. Leong, and J. Krupka. "Microwave properties of low-loss polymers at cryogenic temperatures." IEEE Transactions on Microwave Theory and Techniques 50, no. 2 (2002): 474–80. http://dx.doi.org/10.1109/22.982226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhang, Jingji, Jiwei Zhai, and Xi Yao. "Dielectric tunable properties of low-loss Ba0.4Sr0.6Ti1−yMnyO3 ceramics." Scripta Materialia 61, no. 7 (October 2009): 764–67. http://dx.doi.org/10.1016/j.scriptamat.2009.06.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

OKAMOTO, Daisuke, Masayuki ISHIBASHI, Morihiro MATSUMOTO, and Naoki MORIGUCHI. "Study on Reduction of Gear loss by Surface Properties." Proceedings of Mechanical Engineering Congress, Japan 2017 (2017): S1120201. http://dx.doi.org/10.1299/jsmemecj.2017.s1120201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Huang, Xiaogu, and Siu Wing Or. "Unique electromagnetic loss properties of Co-doped ZnO Nanofiber." Materials Letters 238 (March 2019): 271–74. http://dx.doi.org/10.1016/j.matlet.2018.11.171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Fukuda, Y., M. Matsumura, K. Kajikawa, M. Iwakuma, K. Funaki, T. Hasegawa, H. Kasahara, S. Akita, and H. Sakaguchi. "AC loss properties of Bi-2212 Rutherford-type cables." Physica C: Superconductivity 357-360 (August 2001): 1263–66. http://dx.doi.org/10.1016/s0921-4534(01)00490-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Espinosa-Magaña, F., A. Duarte-Moller, R. Martínez-Sánchez, and F. Paraguay-Delgado. "Dielectric Properties of ZrC by Electron Energy Loss Spectroscopy." Microscopy and Microanalysis 7, S2 (August 2001): 1152–53. http://dx.doi.org/10.1017/s1431927600031834.

Повний текст джерела
Анотація:
Zirconium carbide belongs to the group of refractory compounds having NaCl structure with high chemical inertness and melting point, characteristics that have made these materials to play a prominent role as hard coatings and these properties are closely related to their electronic structure. The electronic configuration of ZrC is: (Xe) 5d2 6s2, one s electron being able to be promoted to a d orbital forming four equivalent sd3 hybrid orbitals, favoring covalent bonds maintaining, however, a percentage in ionic character of about 30%.Some attention has been paid in the last two decades in studying the optical properties of transition metal carbides and nitrides by electron energy loss spectroscopy (EELS), being TiC and TiN the most extensively reported.In this work the optical constants of commercial powder ZrC were obtained using a Gatan Parallel Detection Electron spectrometer (model 766) attached to the CM-200 transmission electron microscope (TEM).
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ding, Wenhao, Wen Sun, Chengfu Deng, Lixi Wang, and Qitu Zhang. "Laser and electromagnetic loss properties of Perovskite SmNixFe1−xO3." Journal of Materials Science: Materials in Electronics 28, no. 20 (July 3, 2017): 15050–55. http://dx.doi.org/10.1007/s10854-017-7379-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Liu, C. S., J. M. Wu, C. J. Chen, and M. J. Tung. "Power loss properties of Mn-Zn ferrites containing Er2O3." Journal of Magnetism and Magnetic Materials 133, no. 1-3 (May 1994): 478–80. http://dx.doi.org/10.1016/0304-8853(94)90600-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Liang, Guozheng, Zengping Zhang, and Jieying Yang. "Study on Properties of Low Dieletric loss Resin Matrix." Polymer Bulletin 58, no. 5-6 (January 26, 2007): 1021–29. http://dx.doi.org/10.1007/s00289-007-0733-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Choo, Shelly, Guy Marti, Manuel Nastai, Jessie Mallalieu, and Michele A. Shermak. "Biomechanical Properties of Skin in Massive Weight Loss Patients." Obesity Surgery 20, no. 10 (April 19, 2010): 1422–28. http://dx.doi.org/10.1007/s11695-010-0147-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Dlala, Emad, Anouar Belahcen, Katarzyna Anna Fonteyn, and Monear Belkasim. "Improving Loss Properties of the Mayergoyz Vector Hysteresis Model." IEEE Transactions on Magnetics 46, no. 3 (March 2010): 918–24. http://dx.doi.org/10.1109/tmag.2009.2034846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhou, Min, Fei Lu, Tianyi Lv, Xing Yang, Weiwei Xia, Xiaoshuang Shen, Hui He, and Xianghua Zeng. "Loss mechanism and microwave absorption properties of hierarchical NiCo2O4nanomaterial." Journal of Physics D: Applied Physics 48, no. 21 (April 24, 2015): 215305. http://dx.doi.org/10.1088/0022-3727/48/21/215305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Pearn, W. L., Y. C. Chang, and Chien-Wei Wu. "Distributional and Inferential Properties of the Process Loss Indices." Journal of Applied Statistics 31, no. 9 (November 2004): 1115–35. http://dx.doi.org/10.1080/0266476042000280364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Patton, Andrew J., and Allan Timmermann. "Properties of optimal forecasts under asymmetric loss and nonlinearity." Journal of Econometrics 140, no. 2 (October 2007): 884–918. http://dx.doi.org/10.1016/j.jeconom.2006.07.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wescott, Daniel J. "Postmortem change in bone biomechanical properties: Loss of plasticity." Forensic Science International 300 (July 2019): 164–69. http://dx.doi.org/10.1016/j.forsciint.2019.04.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Yumei, David Thompson, Giacomo Squicciarini, Jungsoo Ryue, Xinbiao Xiao, and Zefeng Wen. "Sound transmission loss properties of truss core extruded panels." Applied Acoustics 131 (February 2018): 134–53. http://dx.doi.org/10.1016/j.apacoust.2017.10.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії