Книги з теми "Propagation spatial"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Propagation spatial.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-15 книг для дослідження на тему "Propagation spatial".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Heuvelink, Gerard B. M. Error propagation in quantitative spatial modelling: Applications in geographical information systems. [Amsterdam]: Koninklijk Nederlands Aardrijkskundig Genootschap, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Groters, Douglas J. The temporal and spatial variability of the marine atmospheric boundary layer and its effect on electromagnetic propagation in and around the Greenland Sea marginal ice zone. Monterey, California: Naval Postgraduate School, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Barué, Gérard. Télécommunications et infrastructure: Liaisons hertziennes, spatiales, optiques. Paris: Ellipses, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Laboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lataitis, R. J. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Laboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Laboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Willis, Zdenka S. The spatial and temporal variability of the Arctic atmospheric boundary layer and its effect on electromagnetic (EM) propagation. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Bin. Intraseasonal Modulation of the Indian Summer Monsoon. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The strongest Indian summer monsoon (ISM) on the planet features prolonged clustered spells of wet and dry conditions often lasting for two to three weeks, known as active and break monsoons. The active and break monsoons are attributed to a quasi-periodic intraseasonal oscillation (ISO), which is an extremely important form of the ISM variability bridging weather and climate variation. The ISO over India is part of the ISO in global tropics. The latter is one of the most important meteorological phenomena discovered during the 20th century (Madden & Julian, 1971, 1972). The extreme dry and wet events are regulated by the boreal summer ISO (BSISO). The BSISO over Indian monsoon region consists of northward propagating 30–60 day and westward propagating 10–20 day modes. The “clustering” of synoptic activity was separately modulated by both the 30–60 day and 10–20 day BSISO modes in approximately equal amounts. The clustering is particularly strong when the enhancement effect from both modes acts in concert. The northward propagation of BSISO is primarily originated from the easterly vertical shear (increasing easterly winds with height) of the monsoon flows, which by interacting with the BSISO convective system can generate boundary layer convergence to the north of the convective system that promotes its northward movement. The BSISO-ocean interaction through wind-evaporation feedback and cloud-radiation feedback can also contribute to the northward propagation of BSISO from the equator. The 10–20 day oscillation is primarily produced by convectively coupled Rossby waves modified by the monsoon mean flows. Using coupled general circulation models (GCMs) for ISO prediction is an important advance in subseasonal forecasts. The major modes of ISO over Indian monsoon region are potentially predictable up to 40–45 days as estimated by multiple GCM ensemble hindcast experiments. The current dynamical models’ prediction skills for the large initial amplitude cases are approximately 20–25 days, but the prediction of developing BSISO disturbance is much more difficult than the prediction of the mature BSISO disturbances. This article provides a synthesis of our current knowledge on the observed spatial and temporal structure of the ISO over India and the important physical processes through which the BSISO regulates the ISM active-break cycles and severe weather events. Our present capability and shortcomings in simulating and predicting the monsoon ISO and outstanding issues are also discussed.
11

Roberts, Timothy P. L., and Luke Bloy. Neuroimaging in Pediatric Psychiatric Disorders. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Noninvasive imaging and electrophysiological techniques have been developed to probe specific aspects of brain function and dysfunction, providing exquisite spatial maps of functional centers and temporal characteristics. The evolution of these techniques has advanced from single-modality methods identifying functional localization, specialization and segregation, through real-time measures of neuronal activity, toward multimodality integration of structural, functional, and spectro-temporal approaches. While these have an immediate impact in conditions where physical brain lesions are evident (e.g., brain tumor and stroke), making a commensurate contribution within neuropsychiatry is more complex. Nonetheless, by combining concepts of morphology, neurochemistry, neural signal propagation, and regional connectivity, there appears to be ample opportunity to contribute not only to the diagnosis of patients with mental illness but to the stratification and subtyping across behavioral phenotypes and, ultimately, to patient management. Here we present an overview of the most common noninvasive neuroimaging methodologies and their applications to pediatric neurodevelopmental disorders.
12

Schomer, Andrew, Margitta Seeck, Andres M. Kanner, and Donald L. Schomer. Anterotemporal, Basal Temporal, Nasopharyngeal, and Sphenoidal Electrodes and High-Density Arrays. Edited by Donald L. Schomer and Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Temporal lobe epilepsy is the most frequent type of epilepsy of focal origin in adults. Electroencephalographic evaluation for surgical treatment requires accurate localization of epileptic foci. The yield of detection with scalp electrodes depends on three variables: source and extent of the epileptogenic area relative to the scalp electrodes’ position; electric field generated by the epileptiform activity and the electric vectors’ orientation; and extent of propagation of the epileptiform activity from mesial to temporal lateral regions. Recordings of epileptiform activity of presumed mesial-temporal origin should include additional electrodes such as anterior temporal or basal temporal electrodes or a subtemporal chain. Nasopharyngeal electrodes appear to yield no advantage over anterior temporal or basal temporal electrodes or a subtemporal chain and are associated with discomfort. Sphenoidal electrodes should be considered in special circumstances; reliability is improved if placed under fluoroscopy. High-density scalp recordings allow for even greater resolution and improved spatial sampling.
13

Zeitlin, Vladimir. Wave Motions in Rotating Shallow Water with Boundaries, Topography, at the Equator, and in Laboratory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The chapter illustrates the influence of lateral boundaries, bottom topography, outcroppings, equatorial tangent plane approximation, and cylindrical channel geometry in laboratory experiments on the wave spectrum, and characteristics of waves in rotating shallow-water model. It is shown that all these effects lead to appearance of wave-guide modes, localised in one spatial direction, and freely propagating in another one. These modes are coastal and equatorial Kelvin waves, topographic and equatorial Rossby waves, shelf and edge waves, equatorial Yanai and inertia–gravity waves, and frontal waves. Their dispersion and polarisation relations are established, and their properties explained. Mountain (lee) waves are also treated.
14

The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Pineda, Jesús, and Nathalie Reyns, eds. Larval Transport in the Coastal Zone: Biological and Physical Processes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786962.003.0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Larval transport is fundamental to several ecological processes, yet it remains unresolved for the majority of systems. We define larval transport, and describe its components, namely, larval behavior and the physical transport mechanisms accounting for advection, diffusion, and their variability. We then discuss other relevant processes in larval transport, including swimming proficiency, larval duration, accumulation in propagating features, episodic larval transport, and patchiness and spatial variability in larval abundance. We address challenges and recent approaches associated with understanding larval transport, including autonomous sampling, imaging, -omics, and the exponential growth in the use of poorly tested numerical simulation models to examine larval transport and population connectivity. Thus, we discuss the promises and pitfalls of numerical modeling, concluding with recommendations on moving forward, including a need for more process-oriented understanding of the mechanisms of larval transport and the use of emergent technologies.

До бібліографії