Добірка наукової літератури з теми "Programmable quantum computer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Programmable quantum computer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Programmable quantum computer"

1

Ivancova, Olga, Vladimir Korenkov, Olga Tyatyushkina, Sergey Ulyanov, and Toshio Fukuda. "Quantum supremacy in end-to-end intelligent IT. PT. III. Quantum software engineering – quantum approximate optimization algorithm on small quantum processors." System Analysis in Science and Education, no. 2 (2020) (June 30, 2020): 115–76. http://dx.doi.org/10.37005/2071-9612-2020-2-115-176.

Повний текст джерела
Анотація:
Principles and methodologies of quantum algorithmic gate-based design on small quantum computer described. The possibilities of quantum algorithmic gates simulation on classical computers discussed. A new approach to a circuit implementation design of quantum algorithm gates for fast quantum massive parallel computing presented. SW & HW support sophisticated smart toolkit of supercomputing accelerator of quantum algorithm simulation on small quantum programmable computer algorithm gate (that can program in SW to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates) described
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wilkins, Alex. "First fully programmable atom-based quantum computer." New Scientist 253, no. 3370 (January 2022): 9. http://dx.doi.org/10.1016/s0262-4079(22)00078-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Madsen, Lars S., Fabian Laudenbach, Mohsen Falamarzi Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, et al. "Quantum computational advantage with a programmable photonic processor." Nature 606, no. 7912 (June 1, 2022): 75–81. http://dx.doi.org/10.1038/s41586-022-04725-x.

Повний текст джерела
Анотація:
AbstractA quantum computer attains computational advantage when outperforming the best classical computers running the best-known algorithms on well-defined tasks. No photonic machine offering programmability over all its quantum gates has demonstrated quantum computational advantage: previous machines1,2 were largely restricted to static gate sequences. Earlier photonic demonstrations were also vulnerable to spoofing3, in which classical heuristics produce samples, without direct simulation, lying closer to the ideal distribution than do samples from the quantum hardware. Here we report quantum computational advantage using Borealis, a photonic processor offering dynamic programmability on all gates implemented. We carry out Gaussian boson sampling4 (GBS) on 216 squeezed modes entangled with three-dimensional connectivity5, using a time-multiplexed and photon-number-resolving architecture. On average, it would take more than 9,000 years for the best available algorithms and supercomputers to produce, using exact methods, a single sample from the programmed distribution, whereas Borealis requires only 36 μs. This runtime advantage is over 50 million times as extreme as that reported from earlier photonic machines. Ours constitutes a very large GBS experiment, registering events with up to 219 photons and a mean photon number of 125. This work is a critical milestone on the path to a practical quantum computer, validating key technological features of photonics as a platform for this goal.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bužek, Vladimír, Mark Hillery, Mário Ziman, and Marián Roško. "Programmable Quantum Processors." Quantum Information Processing 5, no. 5 (July 12, 2006): 313–420. http://dx.doi.org/10.1007/s11128-006-0028-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sousa, P. B. M., and R. V. Ramos. "Universal quantum circuit for n-qubit quantum gate: a programmable quantum gate." Quantum Information and Computation 7, no. 3 (March 2007): 228–42. http://dx.doi.org/10.26421/qic7.3-4.

Повний текст джерела
Анотація:
Quantum computation has attracted much attention, among other things, due to its potentialities to solve classical NP problems in polynomial time. For this reason, there has been a growing interest to build a quantum computer. One of the basic steps is to implement the quantum circuit able to realize a given unitary operation. This task has been solved using decomposition of unitary matrices in simpler ones till reach quantum circuits having only single-qubits and CNOTs gates. Usually the goal is to find the minimal quantum circuit able to solve a given problem. In this paper we go in a different direction. We propose a general quantum circuit able to implement any specific quantum circuit by just setting correctly the parameters. In other words, we propose a programmable quantum circuit. This opens the possibility to construct a real quantum computer where several different quantum operations can be realized in the same hardware. The configuration is proposed and its optical implementation is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Jaehyun, Jae-Seung Lee, Taesoon Hwang, and Soonchil Lee. "Experimental demonstration of a programmable quantum computer by NMR." Journal of Magnetic Resonance 166, no. 1 (January 2004): 35–38. http://dx.doi.org/10.1016/j.jmr.2003.10.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

La Cour, Brian R., Corey I. Ostrove, Granville E. Ott, Michael J. Starkey, and Gary R. Wilson. "Classical emulation of a quantum computer." International Journal of Quantum Information 14, no. 04 (June 2016): 1640004. http://dx.doi.org/10.1142/s0219749916400049.

Повний текст джерела
Анотація:
This paper describes a novel approach to emulate a universal quantum computer with a wholly classical system, one that uses a signal of bounded duration and amplitude to represent an arbitrary quantum state. The signal may be of any modality (e.g. acoustic, electromagnetic, etc.) but this paper will focus on electronic signals. Individual qubits are represented by in-phase and quadrature sinusoidal signals, while unitary gate operations are performed using simple analog electronic circuit devices. In this manner, the Hilbert space structure of a multi-qubit quantum state, as well as a universal set of gate operations, may be fully emulated classically. Results from a programmable prototype system are presented and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Debnath, S., N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe. "Demonstration of a small programmable quantum computer with atomic qubits." Nature 536, no. 7614 (August 2016): 63–66. http://dx.doi.org/10.1038/nature18648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ivancova, Olga, Vladimir Korenkov, Olga Tyatyushkina, Sergey Ulyanov, and Toshio Fukuda. "Quantum supremacy in end-to-end intelligent IT. Pt. I:Quantum software engineering–quantum gate level applied models simulators." System Analysis in Science and Education, no. 1 (2020) (2020): 52–84. http://dx.doi.org/10.37005/2071-9612-2020-1-52-84.

Повний текст джерела
Анотація:
Principles and methodologies of quantum algorithmic gates design for master course and PhD students in computer science, control engineering and intelligent robotics described. The possibilities of quantum algorithmic gates simulation on classical computers discussed. Applications of quantum gate of nanotechnology in intelligent quantum control introduced. Anew approach to a circuit implementation design of quantum algorithm gates for fast quantum massive parallel computing presented. The main attention focused on the development of design method of fast quantum algorithm operators as superposition, entanglement and interference, which are in general time-consuming operations due to the number of products that have performed. SW & HW support sophisticated smart toolkit of supercomputing accelerator of quantum algorithm simulation on small quantum programmable computer algorithm gate (that can program in SW to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates) described. As example, the method for performing Grover’s interference operator without product operations introduced. The background of developed information technology is the "Quantum / Soft Computing Optimizer" (QSCOptKBTM) SW based on soft and quantum computational intelligence toolkit.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Melnyk, Oleksandr, and Viktoriia Kozarevych. "SIMULATION OF PROGRAMMABLE SINGLE-ELECTRON NANOCIRCUITS." Bulletin of the National Technical University "KhPI". Series: Mathematical modeling in engineering and technologies, no. 1 (March 5, 2021): 64–68. http://dx.doi.org/10.20998/2222-0631.2020.01.05.

Повний текст джерела
Анотація:
The speed and specializations of large-scale integrated circuits always contradict their versatility, which expands their range and causes the rise in price of electronic devices. It is possible to eliminate the contradictions between universality and specialization by developing programmable nanoelectronic devices, the algorithms of which are changed at the request of computer hardware developers, i.e. by creating arithmetic circuits with programmable characteristics. The development of issues of theory and practice of the majority principle is now an urgent problem, since the nanoelectronic execution of computer systems with programmable structures will significantly reduce their cost and significantly simplify the design stage of automated systems. Today there is an important problem of developing principles for building reliable computer equipment. The use of mathematical and circuit modeling along with computer-aided design systems (CAD) can significantly increase the reliability of the designed devices. The authors prove the advantages of creating programmable nanodevices to overcome the physical limitations of micro-rominiatization. This continuity contributes to the accelerated introduction of mathematical modeling based on programmable nanoelectronics devices. The simulation and computer-aided design of reliable programmable nanoelectronic devices based on the technology of quantum automata is described. While constructing single-electron nanocircuits of combinational and sequential types the theory of majority logic is used. The order of construction and programming of various types of arithmetic-logic units is analyzed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Programmable quantum computer"

1

Steinbrecher, Gregory R. "Programmable photonics for quantum and classical information processing." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122554.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 143-156).
In this thesis, I explore the application of integrated photonic systems to quantum information processing as well as quantum and classical communications. The common thread throughout this work is the efficacy of variational numerical optimization in the design and optimization of photonic/bosonic systems. I present the programmable nanophotonic processor (PNP) platform that we developed, which is one way to realize an arbitrarily reconfigurable linear optics platform. I explore the prospects of realizing high fidelity quantum gates in this system, demonstrating through black box numerical optimization that we can compensate for a realistic model of fabrication error in the silicon photonics platform. Next, I discuss the design and construction of a next-generation PNP laboratory testbed, from the silicon photonics design up through the thermal and mechanical packaging, and the custom control and monitoring electronics. I discuss experiments using PNPs as a novel type of optical network switch, capable of both unicast and multicast operation, demonstrating its benefits in a small network testbed. Looking towards the future, I show that the integration of optical nonlinearities with PNPs would enable a quantum optical neural network (QONN) platform, demonstrating through simulation that these QONNs can be optimized to perform a variety of quantum and classical information processing tasks. I then expand the application of these systems from information processing to communications, showing that QONNs provide a natural platform to realize one-way quantum repeaters. Finally, I demonstrate the efficacy of the numerical techniques used in this thesis to a related system: cold atoms trapped in an optical lattice, the dynamics of which are similar to photons with interactions. We show that the optimization of the parameters of a simple one-dimensional model of this system can realize a universal gate set for quantum computing.
by Gregory R. Steinbrecher.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Harris, Nicholas Christopher. "Programmable nanophotonics for quantum information processing and artificial intelligence." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/114001.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Over the past decade, progress in digital electronic computing systems has slowed as traditional, transistor-based silicon technologies approach their scaling limits. Quantum computing and non-Von Neumann computing architectures have emerged as promising alternatives for continued computational advancement-garnering significant investment and public interest. As a hardware platform, silicon photonics may play an important role in enabling quantum and classical information processing architectures. Here, I will discuss my thesis work on developing a programmable nanophotonic processor in silicon, as well as applications of this processor within the fields of quantum simulation, quantum computing, and deep learning. I will also cover results on environment-assisted quantum transport, deep learning with coherent nanophotonics, heralded single-photon sources, and highly integrable superconducting nanowire single-photon detectors.
by Nicholas Christopher Harris.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kapkar, Rohan Viren. "Modeling and Simulation of Altera Logic Array Block using Quantum-Dot Cellular Automata." University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1304616947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lagana, Antonio. "Quantum computation and a universal quantum computer." Thesis, 2012. http://hdl.handle.net/2440/77320.

Повний текст джерела
Анотація:
This thesis covers two main topics in quantum computing: universal quantum computation and quantum search. We first demonstrate how a quantum harmonic oscillator can be used to implement the universal set of quantum gates and thereby serve as one possible building block for a universal quantum computer. We then address the core and primary focus of this thesis, the theoretical construction of a machine that can compute every computable function, that is, a universal (i.e.programmable) quantum computer. We thereby settle the questions that have been raised over the years regarding the validity of the UQTM proposed by Deutsch in 1985. We then demonstrate how to interface the universal quantum computer to external quantum devices by developing programs that implement well-known oracle based algorithms, including the well-known Grover search algorithm, using networked quantum oracle devices. Finally, we develop a partial search oracle and explore symmetry based partial search algorithms utilizing this oracle.
Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2012
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Programmable quantum computer"

1

McCarthy, Wil. Hacking Matter: Levitating Chairs, Quantum Mirages, and the Infinite Weirdness of Programmable Atoms. Basic Books, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Programmable quantum computer"

1

Wang, Yang, Junjie Wu, Yuhua Tang, Huiquan Wang, and Dongyang Wang. "Programmable Two-Particle Bosonic-Fermionic Quantum Simulation System." In Communications in Computer and Information Science, 142–56. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2209-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lakhtaria, Kamaljit I., and Vrunda Gadesha. "Fundamentals of Quantum Computing, Quantum Supremacy, and Quantum Machine Learning." In Limitations and Future Applications of Quantum Cryptography, 21–46. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6677-0.ch002.

Повний текст джерела
Анотація:
When we aim to demonstrate that a programmable quantum device can solve complex problems which cannot be addressed by classic computers, this fundamental goal is known as quantum supremacy. This concept has changed every fundamental rule of computation. In this chapter, the detailed concept of quantum computing and quantum supremacy is explained along with various open source tools and real-time applications of this technology. The major base concepts, quantum computing, the difference between classical and quantum computer on physical level, programing quantum device, and the experiment-quantum supremacy are explained conceptually. This chapter also includes an introduction of the tools Cirq and OpenFermion plus the applications like quantum simulation, error mitigation technique, quantum machine learning, and quantum optimization, which are explained with illustrations.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Programmable quantum computer"

1

Enomoto, Yutaro, Keitaro Anai, Kenta Udagawa, and Shuntaro Takeda. "Quantum Approximate Optimization for Continuous Problems on a Programmable Photonic Quantum Computer." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.fm5b.3.

Повний текст джерела
Анотація:
We demonstrate a continuous-variable version of the quantum approximate optimization algorithm on a programmable single-mode photonic quantum computer, minimizing one-variable continuous functions. The results highlight the potential of continuous-variable quantum computing in near-term applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Allen, Stewart, Jungsang Kim, David L. Moehring, and Christopher R. Monroe. "Reconfigurable and Programmable Ion Trap Quantum Computer." In 2017 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 2017. http://dx.doi.org/10.1109/icrc.2017.8123665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Mingliang, Wenqiang Li, Liguo Yang, Maolu Zhuang, Xing Lan, Yiming Ji, and Sen Wang. "A Programmable Hamming Encoder/Decoder System Design with Quantum-dot Cellular Automata." In 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). IEEE, 2019. http://dx.doi.org/10.1109/eitce47263.2019.9094803.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Linke, Norbert M., Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. "Comparing the architectures of the first programmable quantum computers." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії