Добірка наукової літератури з теми "Produit de Blaschke"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Produit de Blaschke".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Produit de Blaschke"
Barza, Ilie, and Dorin Ghisa. "Blaschke product generated covering surfaces." Mathematica Bohemica 134, no. 2 (2009): 173–82. http://dx.doi.org/10.21136/mb.2009.140652.
Повний текст джерелаLI, HONG, LUOQING LI, and YUAN Y. TANG. "MONO-COMPONENT DECOMPOSITION OF SIGNALS BASED ON BLASCHKE BASIS." International Journal of Wavelets, Multiresolution and Information Processing 05, no. 06 (November 2007): 941–56. http://dx.doi.org/10.1142/s0219691307002130.
Повний текст джерелаVAN VLIET, DANIEL. "PROPERTIES OF A NONLINEAR BLASCHKE PRODUCT DECOMPOSITION ALGORITHM." Advances in Adaptive Data Analysis 01, no. 04 (October 2009): 529–42. http://dx.doi.org/10.1142/s1793536909000229.
Повний текст джерелаVasylkiv, YA V., A. A. Kondratyuk, and S. I. Tarasyuk. "ON BOUNDEDNESS OF INTEGRAL MEANS OF BLASCHKE PRODUCT LOGARITHMS." Mathematical Modelling and Analysis 8, no. 3 (September 30, 2003): 259–65. http://dx.doi.org/10.3846/13926292.2003.9637228.
Повний текст джерелаKhemphet, Anchalee, and Justin R. Peters. "Semicrossed Products of the Disk Algebra and the Jacobson Radical." Canadian Mathematical Bulletin 57, no. 1 (March 14, 2014): 80–89. http://dx.doi.org/10.4153/cmb-2012-018-8.
Повний текст джерелаGuillory, Carroll. "A Characterization of a Sparse Blaschke Product." Canadian Mathematical Bulletin 32, no. 4 (December 1, 1989): 385–90. http://dx.doi.org/10.4153/cmb-1989-056-0.
Повний текст джерелаGirela, Daniel, José Ángel Peláez, and Dragan Vukotić. "INTEGRABILITY OF THE DERIVATIVE OF A BLASCHKE PRODUCT." Proceedings of the Edinburgh Mathematical Society 50, no. 3 (October 2007): 673–87. http://dx.doi.org/10.1017/s0013091504001014.
Повний текст джерелаShamoyan, F. A., V. A. Bednazh, and V. A. Kustova. "Blaschke product in Privalov classes." Sibirskie Elektronnye Matematicheskie Izvestiya 18, no. 1 (March 5, 2021): 168–75. http://dx.doi.org/10.33048/semi.2021.18.014.
Повний текст джерелаMashreghi, Javad. "Expanding a Finite Blaschke Product." Complex Variables, Theory and Application: An International Journal 47, no. 3 (March 2002): 255–58. http://dx.doi.org/10.1080/02781070290001418.
Повний текст джерелаBogatyrev, A. B. "Blaschke product for bordered surfaces." Analysis and Mathematical Physics 9, no. 4 (February 13, 2019): 1877–86. http://dx.doi.org/10.1007/s13324-019-00284-z.
Повний текст джерелаДисертації з теми "Produit de Blaschke"
Fouchet, Karine. "Powers of Blaschke factors and products : Fourier coefficients and applications." Thesis, Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0647.
Повний текст джерелаIn this thesis we first compute asymptotic formulas for Fourier coefficients of the n th-power of a Blaschke factor as n gets large which extend and sharpen known estimates on those coefficients. To perform this study we use standard tools of asymptotic analysis: the so-called method of the stationary phase and the method of the steepest descent. Next as an application of our asymptotic formulas we construct strongly annular functions with Taylor coefficients satisfying sharp summation properties. This allows us to generalize and sharpen results by D.D. Bonar, F.W. Carroll and G. Piranian (1977). Making use of properties of flat polynomials, we also present another construction of such functions built on a theorem by E. Bombieri and J. Bourgain (2009). In another part of the thesis we obtain sharp upper bounds as n gets large, on the sequence (\widehat{B^{n}}(k))_{k\geq0} of the Fourier coefficients of the n th-power of an arbitrary finite Blaschke product B, which we apply in the last part of the thesis to a question raised by J.J. Schäffer (1970) in matrix analysis/operator theory. We also provide constructive examples of finite Blaschke products that achieve our upper bounds. The last chapter is dedicated to the study of the condition numbers of large matrices T\in\mathcal{M}_{n}(\mathbb{C}) with given spectrum acting on a Hilbert space or on a Banach space, espacially for some specific classes of matrices, the so-called Kreiss matrices. In the Banach case, we use our upper bound on (\widehat{B^{n}}(k))_{k\geq0} where B is arbitrary to exhibit matrices with arbitrary given spectrum refuting Schäffer's conjecture
Moruz, Marilena. "Étude des sous-variétés dans les variétés kählériennes, presque kählériennes et les variétés produit." Thesis, Valenciennes, 2017. http://www.theses.fr/2017VALE0003/document.
Повний текст джерелаAbstract in English not available
Van, Wyk Hans-Werner. "The Blaschke-Santalo inequality." Pretoria : [s.n.], 2007. http://upetd.up.ac.za/thesis/available/etd-06112008-165838.
Повний текст джерелаTsang, Chiu-yin, and 曾超賢. "Finite Blaschke products versus polynomials." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B4784971X.
Повний текст джерелаpublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Jones, Gavin L. "The iteration theory of Blaschke products." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308237.
Повний текст джерелаCanela, Sánchez Jordi. "On a Family of Degree 4 Blaschke Products." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/292612.
Повний текст джерелаAquesta tesi doctoral pertany a l’àmbit dels sistemes dinàmics discrets al pla complex, és a dir, la iteració de funcions analítiques en una variable complexa. Donada una funció racional f de l'esfera de Riemann en ella mateixa, considerem el sistema dinàmic donat pels seus iterats. L'esfera de Riemann es divideix en dos conjunts completament invariants per f el conjunt de Fatou, definit com el conjunt de punts z on la família {f^n} és normal en algun entorn de z, i el seu complement, el conjunt de Julià. La dinàmica de les òrbites del conjunt de Fatou és estable en el sentit de normalitat o equicontinuitat mentre que la dinàmica al conjunt de Julià presenta un caràcter caòtic. Aquesta tesi se centra en l'estudi de la família de productes de Blaschke Ba(z)=z^3(z-a)/(1-\bar{a}z), on a i z són nombres complexos. Estudiem el seu pla de paràmetres i el seu pla dinàmic fent us intensiu de les eines de cirurgia quasiconforme, que ens permeten construir funcions racionals amb una dinàmica prescrita fent servir funcions quasiregulars com a models. Al capítol 1 fem un repàs dels resultats preliminars usats al llarg del text. Primer expliquem els conceptes bàsics de la dinàmica de les funcions racionals. Després fem un repàs de les aplicacions del cercle, tot introduint els conceptes de producte de Blaschke i llengües. Finalment, presentem la fórmula de Riemann-Hurwitz i com s’aplica a la dinàmica de funcions racionals. Al capítol 2 donem una introducció a la cirurgia quasiconforme. Primer de tot definim els conceptes d’aplicació quasiconforme, estructures quasiconformes i “pullback” sota funcions que preserven l’orientació i introduïm el Teorema Mesurable de Riemann. Tot seguit mostrem com els conceptes previs són generalitzats per a funcions que giren l’orientació i veiem com això s’aplica a aplicacions que són simètriques respecte del cercle unitat. Finalment introduïm els conceptes d’aplicació polynomial-like i antipolynomial-like. Al capítol 3 donem una visió general del pla dinàmic dels productes de Blaschke Ba. Comencem estudiant les seves propietats bàsiques. Tot seguit mostrem que les funcions Ba. no poden tenir dominis de rotació doblement connexos (anells de Herman) (Proposició 3.2.3) i provem un criteri de connectivitat del conjunt de Julià dels Ba (Teorema 3.2.1). Al capítol 4 introduïm la família Mb de polinomis cúbics amb un punt fix superatractor. A continuació veiem com construir polinomis Mb a partir de productes de Blaschke Ba, tot obtenint una aplicació Γ que envia un subconjunt de l’espai de paràmetres de Ba a l’espai de paràmetres dels polinomis Mb. També provem que l’aplicació Γ és continua i és un homeomorfisme restringida a cada component hiperbòlica disjunta. Al capítol 5 estudiem l’espai de paràmetres dels productes de Blaschke Ba. Primer de tot en descrivim les simetries. A continuació classifiquem els diferents tipus de comportaments hiperbòlics que es poden donar i veiem a quines regions de l’espai de paràmetres poden aparèixer. Tot seguit construïm una aplicació polynomial-like al voltant de tot paràmetre de no escapament contingut en una regió d’intercanvi que, sota certes condicions, pot relacionar la dinàmica de Ba amb la dels antipolinomis pc(z)=\bar{z}^2+c (Teorema 5.3.4). Finalment parametritzem tota component hiperbòlica disjunta els cicles atractors de la qual són acotats i no rauen al cercle unitat (Teorema 5.4.2). Al capítol 6 estudiem les llengües dels productes de Blaschke Ba. Inicialment provem algunes de les seves propietats topològiques bàsiques com ara la seva connectivitat mòdul simetria, la seva connectivitat simple i l’existència d’una única punta per a cada llengua (Teorema 6.2.1). Tot seguit mostrem com es produeixen les bifurcacions en un entorn de la punta de cada llengua (Teorema 6.3.2). Finalment estudiem com les llengües s’estenen per a paràmetres a tals que 1<|a|< 2. Al capítol 7 estudiem com els productes de Blaschke Ba generalitzen a funcions racionals de grau m+2 per m>2.
Walmsley, David. "A Constructive Approach to the Universality Criterion for Semigroups." Bowling Green State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1490028671735536.
Повний текст джерелаShabankhah, Mahmood. "Integral means of the derivatives of Blaschke products and zero sequences for the Dirichlet space." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25900/25900.pdf.
Повний текст джерелаNoël, Jérôme. "Structures algébriques dans des anneaux fonctionnels." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0222/document.
Повний текст джерелаIn this thesis, we are interested in various problems of algebraic structures of some functional rings, in particular in the space H infinity of bounded analytic functions in the unit disc, in the Sarason algebra H infinity + C and in C(X,t)={fEC(X) : fot=f} with X compact Hausdorff space and t a topological involution on X. More precisely, we have characterized the finitely generated radical ideals in H infinity + C. Secondly, we have demonstrated that the absolute stable rank of C (X, t) coincides with Bass stable rank and topological stable rank. Finally, we are interested in the generalized corona problem in H infinity
Van, Wyk Hans-Werner. "The Blaschke-Santaló inequality." Diss., 2008. http://hdl.handle.net/2263/25447.
Повний текст джерелаКниги з теми "Produit de Blaschke"
Mashreghi, Javad. Blaschke Products and Their Applications. Boston, MA: Springer US, 2013.
Знайти повний текст джерелаBlaschke products: Bounded analytic functions. Ann Arbor: University of Michigan Press, 1985.
Знайти повний текст джерелаMashreghi, Javad, and Emmanuel Fricain, eds. Blaschke Products and Their Applications. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3.
Повний текст джерелаGarcia, Stephan Ramon, Javad Mashreghi, and William T. Ross. Finite Blaschke Products and Their Connections. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78247-8.
Повний текст джерелаMashreghi, Javad, and Emmanuel Fricain. Blaschke Products and Their Applications. Springer, 2012.
Знайти повний текст джерелаColwell, Peter. Blaschke Products: Bounded Analytic Functions. University of Michigan Press, 2016.
Знайти повний текст джерелаMashreghi, Javad, and Emmanuel Fricain. Blaschke Products and Their Applications. Springer, 2014.
Знайти повний текст джерелаT, Ross William, Javad Mashreghi, and Stephan Ramon Garcia. Finite Blaschke Products and Their Connections. Springer, 2018.
Знайти повний текст джерелаT, Ross William, Javad Mashreghi, and Stephan Ramon Garcia. Finite Blaschke Products and Their Connections. Springer, 2018.
Знайти повний текст джерелаFinding Ellipses: What Blaschke Products, Poncelet's Theorem, and the Numerical Range Know about Each Other. American Mathematical Society, 2018.
Знайти повний текст джерелаЧастини книг з теми "Produit de Blaschke"
Ng, Tuen Wai, and Chiu Yin Tsang. "Polynomials Versus Finite Blaschke Products." In Blaschke Products and Their Applications, 249–73. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3_14.
Повний текст джерелаDaepp, Ulrich, Pamela Gorkin, Gunter Semmler, and Elias Wegert. "The Beauty of Blaschke Products." In Handbook of the Mathematics of the Arts and Sciences, 1–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-70658-0_88-1.
Повний текст джерелаGarcia, Stephan Ramon, Javad Mashreghi, and William T. Ross. "Finite Blaschke Products: The Basics." In Finite Blaschke Products and Their Connections, 39–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78247-8_3.
Повний текст джерелаGarcia, Stephan Ramon, Javad Mashreghi, and William T. Ross. "Approximation by Finite Blaschke Products." In Finite Blaschke Products and Their Connections, 59–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78247-8_4.
Повний текст джерелаDaepp, Ulrich, Pamela Gorkin, Gunter Semmler, and Elias Wegert. "The Beauty of Blaschke Products." In Handbook of the Mathematics of the Arts and Sciences, 45–78. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-57072-3_88.
Повний текст джерелаGrudsky, Sergei, and Eugene Shargorodsky. "Applications of Blaschke Products to the Spectral Theory of Toeplitz Operators." In Blaschke Products and Their Applications, 1–30. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3_1.
Повний текст джерелаBaribeau, Line. "Hyperbolic Derivatives Determine a Function Uniquely." In Blaschke Products and Their Applications, 187–92. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3_10.
Повний текст джерелаFeichtinger, Hans G., and Margit Pap. "Hyperbolic Wavelets and Multiresolution in the Hardy Space of the Upper Half Plane." In Blaschke Products and Their Applications, 193–208. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3_11.
Повний текст джерелаMartín, María J., and Dragan Vukotić. "Norms of Composition Operators Induced by Finite Blaschke Products on Möbius Invariant Spaces." In Blaschke Products and Their Applications, 209–22. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3_12.
Повний текст джерелаMcNicholl, Timothy H. "On the Computable Theory of Bounded Analytic Functions." In Blaschke Products and Their Applications, 223–48. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-5341-3_13.
Повний текст джерелаТези доповідей конференцій з теми "Produit de Blaschke"
BARZA, ILIE, and DORIN GHISA. "THE GEOMETRY OF BLASCHKE PRODUCTS MAPPINGS." In Proceedings of the 6th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837332_0013.
Повний текст джерелаJafarzadeh, Bagher. "Some Structural Properties of Weighted Sub‐Bergman Spaces Associated to Finite Blaschke Products." In ICMS INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCE. American Institute of Physics, 2010. http://dx.doi.org/10.1063/1.3525152.
Повний текст джерела