Добірка наукової літератури з теми "Process flowsheet"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Process flowsheet".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Process flowsheet"
Ali, Syed Sadiq, Mohammad Asif, and Avijit Basu. "Design and simulation of high purity biodiesel reactive distillation process." Polish Journal of Chemical Technology 21, no. 3 (September 1, 2019): 1–7. http://dx.doi.org/10.2478/pjct-2019-0022.
Повний текст джерелаZhang, Tie Min, Jian Jun Fang, Tai Guo Jiang, Shan Wang, and Ying Bo Mao. "Impact of Closed Flowsheet Structure on Oxidised Copper Ores in Huidong." Advanced Materials Research 926-930 (May 2014): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amr.926-930.337.
Повний текст джерелаKos, Peter. "Short SRT (solids retention time) nitrification process/flowsheet." Water Science and Technology 38, no. 1 (July 1, 1998): 23–29. http://dx.doi.org/10.2166/wst.1998.0007.
Повний текст джерелаBarrett Jr, W. M., and J. van Baten. "Evaluating Process Sustainability Using Flowsheet Monitoring." Chemical Engineering & Technology 35, no. 8 (July 3, 2012): 1405–11. http://dx.doi.org/10.1002/ceat.201100603.
Повний текст джерелаGarner, K. C., N. J. Peberdy, and C. N. Moreton. "Process and process control design using dynamic flowsheet simulation." Mining, Metallurgy & Exploration 3, no. 1 (February 1986): 41–45. http://dx.doi.org/10.1007/bf03402634.
Повний текст джерелаStephenson, Tom. "A process engineering approach to water and wastewater treatment education." Water Science and Technology 34, no. 12 (December 1, 1996): 191–95. http://dx.doi.org/10.2166/wst.1996.0334.
Повний текст джерелаFarkas, Tivadar, Endre Rev, and Zoltan Lelkes. "Process flowsheet superstructures: Structural multiplicity and redundancy." Computers & Chemical Engineering 29, no. 10 (September 2005): 2180–97. http://dx.doi.org/10.1016/j.compchemeng.2005.07.007.
Повний текст джерелаFarkas, Tivadar, Endre Rev, and Zoltan Lelkes. "Process flowsheet superstructures: Structural multiplicity and redundancy." Computers & Chemical Engineering 29, no. 10 (September 2005): 2198–214. http://dx.doi.org/10.1016/j.compchemeng.2005.07.008.
Повний текст джерелаMarquardt, W., P. Holl, and E. D. Gilles. "Dynamic Process Flowsheet Simulation - An Important Tool in Process Control." IFAC Proceedings Volumes 20, no. 5 (July 1987): 369–74. http://dx.doi.org/10.1016/s1474-6670(17)55465-8.
Повний текст джерелаBuchholz, Moritz, Johannes Haus, Lukas Blesinger, Christian Riemann, Swantje Pietsch, Frank Kleine Jäger, and Stefan Heinrich. "Process Design of a Multistage Drying Process via Flowsheet Simulation." Chemie Ingenieur Technik 93, no. 8 (March 2021): 1287–94. http://dx.doi.org/10.1002/cite.202000207.
Повний текст джерелаДисертації з теми "Process flowsheet"
Alqahtani, Abdullah. "Integrated approach to chemical process flowsheet synthesis." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/4034.
Повний текст джерелаHutton, Douglas. "Knowledge based flowsheet modelling for chemical process design." Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/15084.
Повний текст джерелаPalmer, Kurt D. "Data collection plans and meta models for chemical process flowsheet simulators." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/24511.
Повний текст джерелаKisala, Thomas P. "Successive Quadratic Programming in sequential modular process flowsheet simulation and optimization." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/99554.
Повний текст джерелаMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Bibliography: leaves 244-248.
by Thomas Patrick Kisala.
Sc.D.
Van, Wyk Andries Pieter. "Flowsheet development and comparison for the recovery of precious metals from cyanide leach solutions." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86302.
Повний текст джерелаENGLISH ABSTRACT: The Platreef ore deposit, situated in the Bushveld Igneous Complex, is one of the world’s largest platinum group metal (PGM) resources. The mineralogy of this resource is, however, unique as it consists of complex PGM mineralization with mainly copper and nickel, at very low PGM grades. The PGMs are mainly present in the ore as slow floating refractory minerals resulting in marginal process economics when processing via traditional mill-float-smelt processes. A new process is currently being investigated to extract PGMs from low grade Platreef ore and concentrate using a sequential heap leach process entailing heap bioleaching and high temperature cyanide leaching. The heap bioleach extracts the base metals in an acidic sulphate medium using a mixed culture of mesophiles and thermophiles. After heap bioleaching, the heap will be reclaimed, rinsed and restacked for high temperature cyanide leaching where the cyanide liquor is directly heated via solar energy in panels. Platinum, palladium and gold are extracted during the cyanide leaching stage and then recovered from the pregnant liquor either by adsorption onto activated carbon or ion exchange resins. Final metal recovery will proceed by techniques such as electrowinning and precipitation. In this thesis, process options for the recovery of platinum group metals from cyanide solutions were identified with different flowsheet alternatives developed utilizing these options. Simulations were made for the different processing alternatives with the objective of finding the alternative flowsheet to maximise net present value. The various processing options were simulated, combining data from concurrent experimental studies and data reported in literature with kinetic adsorption models. This was combined with economic models to arrive at an optimum design for each flowsheet alternative. Seven different processing alternatives for the recovery of platinum group metals from cyanide solutions were developed and investigated. These included two different activated carbon flowsheets as well as five different ion exchange resin flowsheets. The flowsheets differ in the elution procedures as well as the use of single or multiple resins. The well-known Merrill Crowe precipitation process was investigated but was found to yield unsatisfactory results. In each alternative, the cyanide solution is sent to a SART (sulphidization, acidification, recycling and thickening) plant to remove copper, nickel and zinc from solution prior to upgrading by means of adsorption onto activated carbon or ion exchange resins and subsequent elution. The platinum group metals are recovered from the eluate by precipitation using an autoclave, producing a solid product consisting of base and precious metals, while gold is recovered by electrowinning. It was found that the overall performance of the resin-in-solution (RIS) flowsheets were superior to that of the carbon-in-solution (CIS) flowsheets, from an overall PGM recovery perspective and product grades. The superior adsorption kinetics and high selectivity of the resins for the PGMs resulted in excellent overall plant performances, with PGM extractions in excess of 97%. Gold extraction efficiencies with resins were found to be lower than those achieved in the CIS flowsheets, mainly due to the higher selectivity of the resins for the divalent platinum and palladium cyanide complexes and poor gold elution efficiencies. The gold concentrations in the feed streams to these processes were, however, very low, at only 8.5% of the total precious metal content. The overall precious metal recoveries of the RIS flowsheets were thus higher than the CIS flowsheets due to the superior PGM extractions. From the cost analyses performed it was found that the RIS flowsheets requires lower initial capital costs, almost 28% lower than that require for the CIS flowsheets, while the operating cost requirements were found to be ±10% lower. This, combined with the high overall precious metal extractions, resulted in the RIS flowsheets to achieve higher net present values than those of the CIS flowsheets over an assumed project life of 15 years. The optimum flowsheet proposed for the recovery of precious metals from cyanide leach solutions was a RIS flowsheet option that employed the Amberlite PWA 5 resin, capable of extracting platinum, palladium and gold from solution, with elution being performed with a zinc cyanide solution. This process option had the lowest capital and operating cost requirements while achieving similar overall precious metal recoveries as the other flowsheets. Economic analysis of this process yielded the highest net present value, with a 31% increase in the overall return on investment compared to the optimal CIS flowsheet. Based on this, it was concluded that resin technology would be the best process option for recovering precious metals from cyanide leach solutions, however, additional research is required as the current level of process development is only at a concept phase.
AFRIKAANSE OPSOMMING: Die Platrif-erts, geleë in die Bosveld Kompleks, is een van die wêreld se grootste platinum groep metaal (PGM) reserwes. Die mineralogie van hierdie reserwe is uniek en bestaan uit komplekse PGM mineralisasie met hoofsaaklik koper en nikkel, teen baie lae PGM inhoud. Die PGMe is hoofsaaklik teenwoordig in die erts as stadig drywende minerale en dit lei tot marginale ekonomiese uitsigte wanneer hierdie reserwe deur tradisionele metodes verwerk word. Tans word ʼn nuwe proses ondersoek om die PGMe vanuit lae graad Platrif-erts en konsentraat te ontgin deur gebruik te maak van ʼn sekwensiële hooploogproses wat uit ʼn bio-loog en hoë temperatuur sianied loog stappe bestaan. Die bio-loog stap is verantwoordelik vir die ontginning van die basis metale deur gebruik te maak van ʼn suur sulfaat medium bestaande uit ʼn gemengde kultuur van mesofiele en termofiele. Nadat die bio-hooploog stap voltooi is, word die hoop herwin, gewas en herpak vir die daaropvolgende hoë temperatuur sianied loog, waar die sianied oplossing direk verhit word deur die gebruik van son panele. Platinum, palladium en goud word tydens hierdie stap ontgin en kan dan herwin word vanuit die loog oplossing deur gebruik te maak van adsorpsie deur geaktiveerde koolstof of ioon-uitruilings harse. Finale metaal herwinning kan deur elektroplatering en presipitasie vermag word. In hierdie tesis word verskeie proses opsies vir die ontginning en herwinning van PGMe vanuit sianied loog oplossings ondersoek waarna verskeie proses vloei diagram alternatiewe ontwikkel is met die doel om die opsie te vind wat die hoogste netto ekonomiese waarde sal oplewer. Die verskillende opsies is gesimuleer deur gebruik te maak van eksperimentele data gepubliseer in die literatuur en dit te kombineer met kinetiese adsorpsie modelle. Dit was dan gekombineer met ekonomiese modelle om ʼn optimum ontwerp van elke proses te verkry. Sewe verskillende proses vloei diagramme vir die herwinning en ontginning van PGMe vanuit sianied loog oplossings is ontwikkel en ondersoek. Hierdie het twee verkillende geaktiveerde koolstof prosesse en vyf verskillende ioon-uitruilings hars prosesse beslaan. Die opsies het verskil van eluerings metodes en adsorpsie medium. Die alombekende Merrill Crowe presipitasie proses is ook ondersoek, maar daar is gevind dat hierdie proses oneffektiewe resultate oplewer met betrekking tot die herwinning van die drie edel metale. In elke alternatief word die sianied oplossing in ʼn SART proses verwerk, waar die basis metale herwin word, gevolg deur die opgradering van die edel metale d.m.v. geaktiveerde koolstof adsorpsie of ekstraksie m.b.v. ioon-uitruilings harse, gevolg deur eluering. Die PGMe word dan herwin vanuit die eluerings oplossing deur termiese degradering van die metaal sianied komplekse, wat ʼn hoë graad presipitaat lewer bestaande uit die basis en edel metale. Goud word herwin d.m.v. elektroplatering. Daar is bevind dat die algehele verrigting van die ioon-uitruilings hars opsies beter was as die van die geaktiveerde koolstof opsies, beide van ʼn algehele edel metaal herwinnings en produk suiwerheid perspektief. Die verhoogde adsorpsie kinetika en hoër PGM selektiwiteit van die harse het daartoe gelei dat uitstekende algehele PGM herwinning verkry is in hierdie opsies, meer as 97%. Goud ekstraksie deur die harse was laer as wat verkry was deur die geaktiveerde koolstof opsies, weens die hoër selektiwiteit van die harse vir die divalente platinum en palladium sianied komplekse en laer hars eluering effektiwiteit. Die goud konsentrasies in die voer strome na die prosesse was laag, en het sowat 8.5% van die totale edel metale uitgemaak, wat bygedra het tot die lae goud herwinning. Algeheel was die edel metaal herwinning van die hars prosesse beter as die van die koolstof prosesse a.g.v. die hoër PGM adsorpsie. Koste evaluerings van die verskillende vloeidiagramme het getoon dat die hars opsies laer kapitaal kostes benodig, omtrent 28% minder as die koolstof opsies, terwyl bedryfskostes omtrent 10% minder was. Dit het bygedra tot die feit dat die ioon-uitruiling hars opsies ʼn hoër algehele netto ekonomiese waarde oor ʼn projek leeftyd van 15 jaar sal hê, aangesien de PGM ekstraksie, en dus die jaarlikse inkomste, ook hoër was. Die algehele proses vloei diagram wat voorgestel is vir die herwinning van edel metale vanuit sianied loog oplossings is die hars opsie wat gebruik maak van die Amberlite PWA 5 hars, wat in staat is om platinum, palladium en goud terselfdertyd te absorbeer, gevolg deur die eluering van die hars deur die gebruik van ʼn sink sianied oplossing. Hierdie proses het die laagste kapitaal en bedryfskostes getoon terwyl algehele PGM herwinning om en by dieselfde was as al die ander opsies. Hierdie proses sal verder ʼn 31% verhoging in die opbrengs op belegging lewer in vergelyking met die optimum geaktiveerde koolstof opsie. Die algehele gevolgtrekking is dat hars tegnologie die beter opsie sal wees vir die herwinning van edel metale vanuit sianied loog oplossings. Addisionele navorsing is dus nodig om resultate te verbeter aangesien hierdie studie slegs op ʼn konsep fase benadering was.
Gaubert, Emmanuel. "Mass transfer and flowsheet modelling in the PUREX process with minature annular centrifugal contactors." Thesis, University of Manchester, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.495658.
Повний текст джерелаRaymead, B. "Synthesis of process flowsheets." Thesis, London South Bank University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618638.
Повний текст джерелаPardoe, Julie. "Optimisation strategies and methods for thermal desalination process flowsheets." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278067.
Повний текст джерелаОвчаренко, Ольга Олександрівна. "Композиційні електрохімічні покриття на основі міді та нікелю, модифіковані ультрадисперсними частинками". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22725.
Повний текст джерелаThesis for granting the Degree of Candidate of Technical sciences in specialty 05.17.03 – Technical Electrochemistry. – National Technical University "Kharkiv Polytechnic Institute". Kharkiv, 2016. Dissertation is devoted to development of the technology of composite electrochemical coatings based on copper and nickel, reinforced nanoscale aluminium. The method of chemical dispersion to produce a hydrosol of corundum Al2O3 is proposed. Electrochemical processes regularities of the copper and nickel composite coatings deposition have established. The influence of a dispersed phase concentration in electrolytes-suspensions on the physico-mechanical properties of materials, such as microhardness, tensile strength and yield strength, has detected. It has shown the resulting composites have higher strength at sufficiently low concentrations in the Al₂O₃-electrolyte (1-2 g/dm³) compared with samples obtained by the introduction of the coarse-dispersion aluminium electrolyte. The influence of the corundum content on the composition and morphology of coatings has been found experimentally. The electron microscopy results detects to a continuation of a crystal lattice. The results of atomic force microscopy have allowed to determine the crystallite size and evaluate the topography of the surface. The flowchart of the electrochemical formation of Cu-Al₂O₃ and Ni-Al₂O₃ composites are proposed.
Овчаренко, Ольга Олександрівна. "Композиційні електрохімічні покриття на основі міді та нікелю, модифіковані ультрадисперсними частинками". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22724.
Повний текст джерелаThesis for granting the Degree of Candidate of Technical sciences in specialty 05.17.03 – Technical Electrochemistry. – National Technical University "Kharkiv Polytechnic Institute". Kharkiv, 2016. Dissertation is devoted to development of the technology of composite electrochemical coatings based on copper and nickel, reinforced nanoscale aluminium. The method of chemical dispersion to produce a hydrosol of corundum Al2O3 is proposed. Electrochemical processes regularities of the copper and nickel composite coatings deposition have established. The influence of a dispersed phase concentration in electrolytes-suspensions on the physico-mechanical properties of materials, such as microhardness, tensile strength and yield strength, has detected. It has shown the resulting composites have higher strength at sufficiently low concentrations in the Al₂O₃-electrolyte (1-2 g/dm³) compared with samples obtained by the introduction of the coarse-dispersion aluminium electrolyte. The influence of the corundum content on the composition and morphology of coatings has been found experimentally. The electron microscopy results detects to a continuation of a crystal lattice. The results of atomic force microscopy have allowed to determine the crystallite size and evaluate the topography of the surface. The flowchart of the electrochemical formation of Cu-Al₂O₃ and Ni-Al₂O₃ composites are proposed.
Книги з теми "Process flowsheet"
Ponce-Ortega, José María, and Luis Germán Hernández-Pérez. Optimization of Process Flowsheets through Metaheuristic Techniques. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-91722-1.
Повний текст джерелаProdof: A rule-based process flowsheet diagnostic program. Ottawa: National Library of Canada, 1990.
Знайти повний текст джерелаPonce-Ortega, José María, and Luis Germán Hernández-Pérez. Optimization of Process Flowsheets through Metaheuristic Techniques. Springer, 2018.
Знайти повний текст джерелаPonce-Ortega, José María, and Luis Germán Hernández-Pérez. Optimization of Process Flowsheets through Metaheuristic Techniques. Springer, 2019.
Знайти повний текст джерелаProcess Design Principles Synthesis, Analysis and Evaluation, Simulation of Process Flowsheets. John Wiley & Sons Inc, 2000.
Знайти повний текст джерелаSimulation of Process Flowsheets: Version 2.0 for IBM Compatibles. John Wiley & Sons, 2000.
Знайти повний текст джерелаWauquier, Jean-Pierre. Petroleum Refining: Crude Oil, Petroleum Products, Process Flowsheets (Publications De L'institut Francais Du Petrole.). Editions Technip, 1996.
Знайти повний текст джерелаKott, Alexander. Artificial Invention: Synthesis of Innovative Thermal Networks, Power Cycles, Process Flowsheets and Other Systems. Dissertation.com, 2005.
Знайти повний текст джерелаЧастини книг з теми "Process flowsheet"
Spinola, Michele, Alexander Keimer, Doris Segets, Lukas Pflug, and Günter Leugering. "Modeling, Simulation and Optimization of Process Chains." In Dynamic Flowsheet Simulation of Solids Processes, 549–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_16.
Повний текст джерелаFragnière, Greta, Ann-Christin Böttcher, Christoph Thon, Carsten Schilde, and Arno Kwade. "Dynamic Process Models for Fine Grinding and Dispersing." In Dynamic Flowsheet Simulation of Solids Processes, 199–236. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_6.
Повний текст джерелаMarkauskas, Darius, and Harald Kruggel-Emden. "Development of a Dynamic-Physical Process Model for Sieving." In Dynamic Flowsheet Simulation of Solids Processes, 141–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_5.
Повний текст джерелаCozzi, A. D. "Flammable Gasses in the Saltstone Process Flowsheet." In Ceramic Transactions Series, 31–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470930991.ch4.
Повний текст джерелаSander, Sören, Lizoel Buss, and Udo Fritsching. "Process Modeling for Dynamic Disperse Particle Separation and Deposition Processes." In Dynamic Flowsheet Simulation of Solids Processes, 3–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_1.
Повний текст джерелаGrund, Friedrich, Klaus Ehrhardt, Jürgen Borchardt, and Dietmar Horn. "Heterogeneous Dynamic Process Flowsheet Simulation of Chemical Plants." In Mathematics — Key Technology for the Future, 184–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55753-8_15.
Повний текст джерелаLindmüller, Lennard, Johannes Haus, Ernst-Ulrich Hartge, and Stefan Heinrich. "Dynamic Modelling of Reactive Fluidized Bed Systems Using the Example of the Chemical Looping Combustion Process for Solid Fuels." In Dynamic Flowsheet Simulation of Solids Processes, 37–65. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_2.
Повний текст джерелаVerbaan, Niels, Mike Johnson, Tassos Grammatikopoulos, Eric Larochelle, Scott Honan, Kelton Smith, and Rick Sixberry. "A Process Flowsheet for the Extraction of Niobium, Titanium, and Scandium from Niocorp’s Elk Creek Deposit." In The Minerals, Metals & Materials Series, 2523–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_213.
Повний текст джерелаPonce-Ortega, José María, and Luis Germán Hernández-Pérez. "Process Simulators." In Optimization of Process Flowsheets through Metaheuristic Techniques, 5–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91722-1_2.
Повний текст джерелаKotalczyk, Gregor, and Frank Einar Kruis. "Compartmental Population Balances by Means of Monte Carlo Methods." In Dynamic Flowsheet Simulation of Solids Processes, 519–48. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45168-4_15.
Повний текст джерелаТези доповідей конференцій з теми "Process flowsheet"
Homma, Shunji, Jun-Ichi Ishii, Jiro Koga, Shiro Matsumoto, Toshiaki Kikuchi, Takahiro Chikazawa, and Atsuhiro Shibata. "Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89196.
Повний текст джерелаSorin, M., A. Hammache, and O. Diallo. "A Thermodynamic Approach for Conceptual Design of Chemical Processes." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0859.
Повний текст джерелаRoyyuru, Haritha, Lijian Sun, Yitung Chen, Hsuan-Tsung Hsieh, Randy Clarksean, Darrell W. Pepper, George Vandegrift, Jackie Copple, and James Laidler. "Development of Systems Engineering Model for UREX Process." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42043.
Повний текст джерелаLaw, Jack, Dean Peterman, Cathy Riddle, David Meikrantz, and Terry Todd. "Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium From Spent Nuclear Fuel." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7077.
Повний текст джерелаCho, Wonchul, Kikwang Bae, Chusik Park, Changhee Kim, and Kyoungsoo Kang. "Conceptual Design of Sulfur-Iodine Hydrogen Production Cycle of Korea Institute of Energy Research." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58305.
Повний текст джерелаWashiya, Tadahiro, Toshiaki Kikuchi, Atsuhiro Shibata, Takahiro Chikazawa, and Shunji Homma. "Development of Crystallizer for Advanced Aqueous Reprocessing Process." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89292.
Повний текст джерелаTakata, Takeshi, Yoshikazu Koma, Koji Sato, Takashi Shimada, Yukihide Mori, Shinya Ogumo, and Yasuhiro Ishida. "Conceptual Design Study on Fast Reactor Fuel Reprocessing System Using Super-DIREX Process." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49183.
Повний текст джерелаZitney, Stephen E., Michael T. Prinkey, Mehrdad Shahnam, and William A. Rogers. "Coupled CFD and Process Simulation of a Fuel Cell Auxiliary Power Unit." In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2490.
Повний текст джерелаSun, Lijian, Haritha Royyuru, Hsuan-Tsung Hsieh, Yitung Chen, George Vandegrift, Jackie Copple, and James Laidler. "Development of Systems Engineering Model for Spent Fuel Extraction Process." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60178.
Повний текст джерелаKattke, K. J., and R. J. Braun. "Implementing Thermal Management Modeling Into SOFC System-Level Design." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33351.
Повний текст джерелаЗвіти організацій з теми "Process flowsheet"
Karraker, D. G. Modern Pit Process: Flowsheet Studies. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/809396.
Повний текст джерелаPereira, C., and G. F. Vandegrift. Centrifugal Contactor Operations for UREX Process Flowsheet. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1132242.
Повний текст джерелаPereira, C., and G. F. Vandegrift. Centrifugal Contactor Operations for UREX Process Flowsheet. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1131396.
Повний текст джерелаPereira, Candido, and George F. Vandegrift. Centrifugal contactor operations for UREX process flowsheet. An update. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1226919.
Повний текст джерелаFernandez, A., and D. Koopman. SLUDGE BATCH 7 QUALIFICATION AND FLOWSHEET CHEMICAL PROCESS CELL SIMULATIONS. Office of Scientific and Technical Information (OSTI), May 2011. http://dx.doi.org/10.2172/1014153.
Повний текст джерелаFernandez, A. Sludge Batch 7 Qualification and Flowsheet Chemical Process Cell Simulations. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1009417.
Повний текст джерелаZamecnik, J. R., and T. B. Edwards. DWPF nitric-glycolic flowsheet chemical process cell chemistry. Part 1. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1237318.
Повний текст джерелаLaw, J. D., R. S. Herbst, K. N. Brewer, and T. A. Todd. Countercurrent flowsheet testing of the TRUEX process with ICPP calcine. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/656585.
Повний текст джерелаWashenfelder, D. J. Technology development in support of the TWRS process flowsheet. Revision 1. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/409860.
Повний текст джерелаNichols, Todd Travis, Dean Dalton Taylor, Lance Lauerhass, and Charles Marshall Barnes. Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/911464.
Повний текст джерела