Добірка наукової літератури з теми "Probabilistic preorder"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Probabilistic preorder".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Probabilistic preorder"
BAIER, CHRISTEL, and MARTA KWIATKOWSKA. "Domain equations for probabilistic processes." Mathematical Structures in Computer Science 10, no. 6 (December 2000): 665–717. http://dx.doi.org/10.1017/s0960129599002984.
Повний текст джерелаHERNANDEZ, ENRIC, and JORDI RECASENS. "ON POSSIBILISTIC AND PROBABILISTIC APPROXIMATIONS OF UNRESTRICTED BELIEF FUNCTIONS BASED ON THE CONCEPT OF FUZZY T-PREORDER." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, no. 02 (April 2002): 185–200. http://dx.doi.org/10.1142/s0218488502001417.
Повний текст джерелаCleaveland, Rance, Zeynep Dayar, Scott A. Smolka, and Shoji Yuen. "Testing Preorders for Probabilistic Processes." Information and Computation 154, no. 2 (November 1999): 93–148. http://dx.doi.org/10.1006/inco.1999.2808.
Повний текст джерелаJonsson, Bengt, and Wang Yi. "Testing preorders for probabilistic processes can be characterized by simulations." Theoretical Computer Science 282, no. 1 (June 2002): 33–51. http://dx.doi.org/10.1016/s0304-3975(01)00044-5.
Повний текст джерелаDeng, Yuxin, та Alwen Tiu. "Characterisations of testing preorders for a finite probabilistic π-calculus". Formal Aspects of Computing 24, № 4-6 (29 червня 2012): 701–26. http://dx.doi.org/10.1007/s00165-012-0238-3.
Повний текст джерелаAguirre, Alejandro, and Lars Birkedal. "Step-Indexed Logical Relations for Countable Nondeterminism and Probabilistic Choice." Proceedings of the ACM on Programming Languages 7, POPL (January 9, 2023): 33–60. http://dx.doi.org/10.1145/3571195.
Повний текст джерелаDeng, Yuxin, Robert van Glabbeek, Matthew Hennessy, and Carroll Morgan. "Characterising Testing Preorders for Finite Probabilistic Processes." Logical Methods in Computer Science 4, no. 4 (October 28, 2008). http://dx.doi.org/10.2168/lmcs-4(4:4)2008.
Повний текст джерелаWild, Paul, and Lutz Schröder. "Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions." Logical Methods in Computer Science Volume 18, Issue 2 (June 15, 2022). http://dx.doi.org/10.46298/lmcs-18(2:19)2022.
Повний текст джерелаДисертації з теми "Probabilistic preorder"
Sato, Tetsuya. "Identifying All Preorders on the Subdistribution Monad." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199080.
Повний текст джерелаPARMA, Augusto. "Axiomatic and logical characterizations of probabilistic preorders and trace semantics." Doctoral thesis, 2008. http://hdl.handle.net/11562/337598.
Повний текст джерелаRandomization was first introduced in computer science in order to improve the efficiency of several problems that were classified unfeasible or particularly inefficient, by giving algorithms the ability to flip coins, that is, of making probabilistic choices at some point of the computation. In the paper Probabilistic Algorithms, Rabin proposed efficient solutions to the problems of determining the nearest neighbor and to state the primality of a given number, for which there were no efficient non-probabilistic solutions. Later, he applied probability to a problem of distributed computing, which was not feasible without the use of randomiza- tion. On the base of these important results, a large set of problems were solved with the use of probabilistic choices in the computation, and a wide range of applications and modelings were proposed in the framework of concurrency theory. However, together with probabilistic behaviors, in the modeling and verification of concurrent processes it is crucial to take into account the presence of a phenomenon called nondeterminism. In general, nondeterminism is a way to model the lack of knowledge about the relative speeds of two or more processes running in parallel, as it may not be possible to determine which of the processes is performing the next action. On the other hand, there are further circumstances in which nondeterminism arises and must be modeled in order to obtain a correct description of the possible behaviors of a process. In particular, the external choices made by the environment in order to condition the execution of a process are modeled as nondeterministic choices, since the decisions taken by a user or by a malicious entity may not be predictable a priori by the system. Furthermore, since a semantic model of a process can be seen as a specification of the process, the introduction of nondeterministic choices in the model may reflect the ability to implement the specification by choosing one of the possible alternatives given, all leading to consistent implementations. The kinds of nondeterministic behaviors described can be all referred to as pure nondeterminism, in contrast with the probabilistic nondeterminism, which models the fact that events are governed by probability distributions.
Частини книг з теми "Probabilistic preorder"
Cleaveland, Rance, Scott A. Smolka, and Amy Zwarico. "Testing preorders for probabilistic processes." In Automata, Languages and Programming, 708–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55719-9_116.
Повний текст джерелаYuen, Shoji, Rance Cleaveland, Zeynep Dayar, and Scott A. Smolka. "Fully Abstract Characterizations of Testing Preorders for Probabilistic Processes." In CONCUR '94: Concurrency Theory, 497–512. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-540-48654-1_36.
Повний текст джерелаHöhle, Ulrich. "Many-Valued Preorders II: The Symmetry Axiom and Probabilistic Geometry." In Enric Trillas: A Passion for Fuzzy Sets, 151–65. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16235-5_11.
Повний текст джерелаGaboardi, Marco, Shin-ya Katsumata, Dominic Orchard, and Tetsuya Sato. "Graded Hoare Logic and its Categorical Semantics." In Programming Languages and Systems, 234–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72019-3_9.
Повний текст джерелаCastagnoli, Erio, Marzia De Donno, Gino Favero, and Paola Modesti. "A Different Way to Look at Random Variables." In Analyzing Risk through Probabilistic Modeling in Operations Research, 179–99. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9458-3.ch008.
Повний текст джерелаТези доповідей конференцій з теми "Probabilistic preorder"
Deng, Yuxin, Rob van Glabbeek, Matthew Hennessy, Carroll Morgan, and Chenyi Zhang. "Characterising Testing Preorders for Finite Probabilistic Processes." In 2007 22nd Annual IEEE Symposium on Logic in Computer Science. IEEE, 2007. http://dx.doi.org/10.1109/lics.2007.15.
Повний текст джерела