Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Probabilistic number theory.

Дисертації з теми "Probabilistic number theory"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-15 дисертацій для дослідження на тему "Probabilistic number theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Harper, Adam James. "Some topics in analytic and probabilistic number theory." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/265539.

Повний текст джерела
Анотація:
This dissertation studies four problems in analytic and probabilistic number theory. Two of the problems are about a certain random number theoretic object, namely a random multiplicative function. The other two problems are about smooth numbers (i.e. numbers only having small prime factors), both in their own right and in their application to finding solutions to S-unit equations over the integers. Thus all four problems are concerned, in different ways, with _understanding the multiplicative structure of the integers. More precisely, we will establish that certain sums of a random multiplicative function satisfy a normal approximation (i.e. a central limit theorem) , but that the complete sum over all integers less than x does not satisfy such an approximation. This reflects certain facts about the number and size of the prime factors of a typical integer. Our proofs use martingale methods, as well as a conditioning argument special to this problem. Next, we will prove an almost sure omega result for the sum of a random multiplicative function, substantially improving the existing result of Halasz. We will do this using a connection between sums of a random multiplicative function and a certain random trigonometric sum process, so that the heart of our work is proving precise results about the suprema of a class of Gaussian random processes. Switching to the study of smooth numbers, we will establish an equidistribution result for the y-smooth numbers less than x among arithmetic progressions to modulus q, asymptotically as (logx)/(logq)-+ oo, subject to a certain condition on the relative sizes of y and q. The main point of this work is that it does not require any restrictions on the relative sizes of x and y. Our proofs use a simple majorant principle for trigonometric sums, together with general tools such as a smoothed explicit formula. Finally, we will prove lower bounds for the possible number of solutions of some S-unit equations over the integers. For example, we will show that there exist arbitrarily large sets S of prime numbers such that the equation a+ l = c has at least exp{(#S)116- �} solutions (a, c) with all their prime factors from S. We will do this by using discrete forms of the circle method, and the multiplicative large sieve, to count the solutions of certain auxiliary linear equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hughes, Garry. "Distribution of additive functions in algebraic number fields." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhao, Wenzhong. "Probabilistic databases and their application." Lexington, Ky. : [University of Kentucky Libraries], 2004. http://lib.uky.edu/ETD/ukycosc2004d00183/wzhao0.pdf.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Kentucky, 2004.
Title from document title page (viewed Jan. 7, 2005). Document formatted into pages; contains x, 180p. : ill. Includes abstract and vita. Includes bibliographical references (p. 173-178).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lloyd, James Robert. "Representation, learning, description and criticism of probabilistic models with applications to networks, functions and relational data." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Xiang, and 李想. "Managing query quality in probabilistic databases." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47753134.

Повний текст джерела
Анотація:
In many emerging applications, such as sensor networks, location-based services, and data integration, the database is inherently uncertain. To handle a large amount of uncertain data, probabilistic databases have been recently proposed, where probabilistic queries are enabled to provide answers with statistical guarantees. In this thesis, we study the important issues of managing the quality of a probabilistic database. We first address the problem of measuring the ambiguity, or quality, of a probabilistic query. This is accomplished by computing the PWS-quality score, a recently proposed measure for quantifying the ambiguity of query answers under the possible world semantics. We study the computation of the PWS-quality for the top-k query. This problem is not trivial, since directly computing the top-k query score is computationally expensive. To tackle this challenge, we propose efficient approximate algorithms for deriving the quality score of a top-k query. We have performed experiments on both synthetic and real data to validate their performance and accuracy. Our second contribution is to study how to use the PWS-quality score to coordinate the process of cleaning uncertain data. Removing ambiguous data from a probabilistic database can often give us a higher-quality query result. However, this operation requires some external knowledge (e.g., an updated value from a sensor source), and is thus not without cost. It is important to choose the correct object to clean, in order to (1) achieve a high quality gain, and (2) incur a low cleaning cost. In this thesis, we examine different cleaning methods for a probabilistic top-k query. We also study an interesting problem where different query users have their own budgets available for cleaning. We demonstrate how an optimal solution, in terms of the lowest cleaning costs, can be achieved, for probabilistic range and maximum queries. An extensive evaluation reveals that these solutions are highly efficient and accurate.
published_or_final_version
Computer Science
Master
Master of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rotondo, Pablo. "Probabilistic studies in number theory and word combinatorics : instances of dynamical analysis." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC213/document.

Повний текст джерела
Анотація:
L'analyse dynamique intègre des outils propres aux systèmes dynamiques (comme l'opérateur de transfert) au cadre de la combinatoire analytique, et permet ainsi l'analyse d'un grand nombre d'algorithmes et objets qu'on peut associer naturellement à un système dynamique. Dans ce manuscrit de thèse, nous présentons, dans la perspective de l'analyse dynamique, l'étude probabiliste de plusieurs problèmes qui semblent à priori bien différents : l'analyse probabiliste de la fonction de récurrence des mots de Sturm, et l'étude probabiliste de l'algorithme du “logarithme continu”. Les mots de Sturm constituent une famille omniprésente en combinatoire des mots. Ce sont, dans un sens précis, les mots les plus simples qui ne sont pas ultimement périodiques. Les mots de Sturm ont déjà été beaucoup étudiés, notamment par Morse et Hedlund (1940) qui en ont exhibé une caractérisation fondamentale comme des codages discrets de droites à pente irrationnelle. Ce résultat relie ainsi les mots de Sturm au système dynamique d'Euclide. Les mots de Sturm n'avaient jamais été étudiés d'un point de vue probabiliste. Ici nous introduisons deux modèles probabilistes naturels (et bien complémentaires) et y analysons le comportement probabiliste (et asymptotique) de la “fonction de récurrence” ; nous quantifions sa valeur moyenne et décrivons sa distribution sous chacun de ces deux modèles : l'un est naturel du point de vue algorithmique (mais original du point de vue de l'analyse dynamique), et l'autre permet naturellement de quantifier des classes de plus mauvais cas. Nous discutons la relation entre ces deux modèles et leurs méthodes respectives, en exhibant un lien potentiel qui utilise la transformée de Mellin. Nous avons aussi considéré (et c'est un travail en cours qui vise à unifier les approches) les mots associés à deux familles particulières de pentes : les pentes irrationnelles quadratiques, et les pentes rationnelles (qui donnent lieu aux mots de Christoffel). L'algorithme du logarithme continu est introduit par Gosper dans Hakmem (1978) comme une mutation de l'algorithme classique des fractions continues. Il calcule le plus grand commun diviseur de deux nombres naturels en utilisant uniquement des shifts binaires et des soustractions. Le pire des cas a été étudié récemment par Shallit (2016), qui a donné des bornes précises pour le nombre d'étapes et a exhibé une famille d'entrées sur laquelle l'algorithme atteint cette borne. Dans cette thèse, nous étudions le nombre moyen d'étapes, tout comme d'autres paramètres importants de l'algorithme. Grâce à des méthodes d'analyse dynamique, nous exhibons des constantes mathématiques précises. Le système dynamique ressemble à première vue à celui d'Euclide, et a été étudié d'abord par Chan (2005) avec des méthodes ergodiques. Cependant, la présence des puissances de 2 dans les quotients change la nature de l'algorithme et donne une nature dyadique aux principaux paramètres de l'algorithme, qui ne peuvent donc pas être simplement caractérisés dans le monde réel.C'est pourquoi nous introduisons un nouveau système dynamique, avec une nouvelle composante dyadique, et travaillons dans ce système à deux composantes, l'une réelle, et l'autre dyadique. Grâce à ce nouveau système mixte, nous obtenons l'analyse en moyenne de l'algorithme
Dynamical Analysis incorporates tools from dynamical systems, namely theTransfer Operator, into the framework of Analytic Combinatorics, permitting the analysis of numerous algorithms and objects naturally associated with an underlying dynamical system.This dissertation presents, in the integrated framework of Dynamical Analysis, the probabilistic analysis of seemingly distinct problems in a unified way: the probabilistic study of the recurrence function of Sturmian words, and the probabilistic study of the Continued Logarithm algorithm.Sturmian words are a fundamental family of words in Word Combinatorics. They are in a precise sense the simplest infinite words that are not eventually periodic. Sturmian words have been well studied over the years, notably by Morse and Hedlund (1940) who demonstrated that they present a notable number theoretical characterization as discrete codings of lines with irrationalslope, relating them naturally to dynamical systems, in particular the Euclidean dynamical system. These words have never been studied from a probabilistic perspective. Here, we quantify the recurrence properties of a ``random'' Sturmian word, which are dictated by the so-called ``recurrence function''; we perform a complete asymptotic probabilistic study of this function, quantifying its mean and describing its distribution under two different probabilistic models, which present different virtues: one is a naturaly choice from an algorithmic point of view (but is innovative from the point of view of dynamical analysis), while the other allows a natural quantification of the worst-case growth of the recurrence function. We discuss the relation between these two distinct models and their respective techniques, explaining also how the two seemingly different techniques employed could be linked through the use of the Mellin transform. In this dissertation we also discuss our ongoing work regarding two special families of Sturmian words: those associated with a quadratic irrational slope, and those with a rational slope (not properly Sturmian). Our work seems to show the possibility of a unified study.The Continued Logarithm Algorithm, introduced by Gosper in Hakmem (1978) as a mutation of classical continued fractions, computes the greatest common divisor of two natural numbers by performing division-like steps involving only binary shifts and substractions. Its worst-case performance was studied recently by Shallit (2016), who showed a precise upper-bound for the number of steps and gave a family of inputs attaining this bound. In this dissertation we employ dynamical analysis to study the average running time of the algorithm, giving precise mathematical constants for the asymptotics, as well as other parameters of interest. The underlying dynamical system is akin to the Euclidean one, and was first studied by Chan (around 2005) from an ergodic, but the presence of powers of 2 in the quotients ingrains into the central parameters a dyadic flavour that cannot be grasped solely by studying this system. We thus introduce a dyadic component and deal with a two-component system. With this new mixed system at hand, we then provide a complete average-case analysis of the algorithm by Dynamical Analysis
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pariente, Cesar Alberto Bravo. "Um método probabilístico em combinatória." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07052010-163719/.

Повний текст джерела
Анотація:
O presente trabalho é um esforço de apresentar, organizado em forma de survey, um conjunto de resultados que ilustram a aplicação de um certo método probabilístico. Embora não apresentemos resultados novos na área, acreditamos que a apresentação sistemática destes resultados pode servir para a compreensão de uma ferramenta útil para quem usa dos métodos probabilísticos na sua pesquisa em combinatória. Os resultados de que falaremos tem aparecido na última década na literatura especializada e foram usados na investigação de problemas que resitiram a outras aproximações mais clássicas. Em vez de teorizar sobre o método a apresentar, nós adotaremos a estratégia de apresentar três problemas, usando-os como exemplos práticos da aplicação do método em questão. Surpeendentemente, apesar da dificuldade que apresentaram para ser resolvidos, estes problemas compartilham a caraterística de poder ser formulados muito intuitivamente, como veremos no Capítulo 1. Devemos advertir que embora os problemas que conduzem nossa exposição pertençam a áreas tão diferentes quanto teoria de números, geometria e combinatória, nosso intuito é fazer énfase no que de comum tem as suas soluções e não das posteriores implicações que estes problemas tenham nas suas respectivas áreas. Ocasionalmente comentaremos sim, outras possíveis aplicações das ferramentas usadas para solucionar estes problemas de motivação. Os problemas de que trataremos tem-se caracterizado por aguardar várias décadas em espera de solução: O primeiro, da teoria de números, surgiu na pesquisa de séries de Fourier que Sidon realizava a princípios de século e foi proposto por ele a Erdös em 1932. Embora tenham havido, desde 1950, diversos avanços na pesquisa deste problema, o resultado de que falaremos data de 1981. Já o segundo problema, da geometria, é uma conjectura formulada em 1951 por Heilbronn e refutada finalmente em 1982. O último problema, de combinatória, é uma conjectura de Erdös e Hanani de 1963, que foi tratada em diversos casos particulares até ser finalmente resolvida em toda sua generalidade em 1985.
The following work is an effort to present, in survey form, a collection of results that illustrate the application of a certain probabilistic method in combinatorics. We do not present new results in the area; however, we do believe that the systematic presentation of these results can help those who use probabilistic methods comprenhend this useful technique. The results we refer to have appeared over the last decade in the research literature and were used in the investigation of problems which have resisted other, more classical, approaches. Instead of theorizing about the method, we adopted the strategy of presenting three problems, using them as practical examples of the application of the method in question. Surpisingly, despite the difficulty of solutions to these problems, they share the characteristic of being able to be formulated very intuitively, as we will see in Chapter One. We should warn the reader that despite the fact that the problems which drive our discussion belong to such different fields as number theory, geometry and combinatorics, our goal is to place emphasis on what their solutions have in common and not on the subsequent implications that these problems have in their respective fields. Occasionally, we will comment on other potential applications of the tools utilized to solve these problems. The problems which we are discussing can be characterized by the decades-long wait for their solution: the first, from number theory, arose from the research in Fourier series conducted by Sidon at the beginning of the century and was proposed by him to Erdös in 1932. Since 1950, there have been diverse advances in the understanding of this problem, but the result we talk of comes from 1981. The second problem, from geometry, is a conjecture formulated in 1951 by Heilbronn and finally refuted in 1982. The last problem, from combinatorics, is a conjecture formulated by Erdös and Hanani in 1963 that was treated in several particular cases but was only solved in its entirety in 1985.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schimit, Pedro Henrique Triguis. "Modelagem e controle de propagação de epidemias usando autômatos celulares e teoria de jogos." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-05122011-153541/.

Повний текст джерела
Анотація:
Estuda-se o espalhamento de doenças contagiosas utilizando modelos suscetível-infectado-recuperado (SIR) representados por equações diferenciais ordinárias (EDOs) e por autômatos celulares probabilistas (ACPs) conectados por redes aleatórias. Cada indivíduo (célula) do reticulado do ACP sofre a influência de outros, sendo que a probabilidade de ocorrer interação com os mais próximos é maior. Efetuam-se simulações para investigar como a propagação da doença é afetada pela topologia de acoplamento da população. Comparam-se os resultados numéricos obtidos com o modelo baseado em ACPs aleatoriamente conectados com os resultados obtidos com o modelo descrito por EDOs. Conclui-se que considerar a estrutura topológica da população pode dificultar a caracterização da doença, a partir da observação da evolução temporal do número de infectados. Conclui-se também que isolar alguns infectados causa o mesmo efeito do que isolar muitos suscetíveis. Além disso, analisa-se uma estratégia de vacinação com base em teoria dos jogos. Nesse jogo, o governo tenta minimizar os gastos para controlar a epidemia. Como resultado, o governo realiza campanhas quase-periódicas de vacinação.
The spreading of contagious diseases is studied by using susceptible-infected-recovered (SIR) models represented by ordinary differential equations (ODE) and by probabilistic cellular automata (PCA) connected by random networks. Each individual (cell) of the PCA lattice experiences the influence of others, where the probability of occurring interaction with the nearest ones is higher. Simulations for investigating how the disease propagation is affected by the coupling topology of the population are performed. The numerical results obtained with the model based on randomly connected PCA are compared to the results obtained with the model described by ODE. It is concluded that considering the topological structure of the population can pose difficulties for characterizing the disease, from the observation of the time evolution of the number of infected individuals. It is also concluded that isolating a few infected subjects can cause the same effect than isolating many susceptible individuals. Furthermore, a vaccination strategy based on game theory is analyzed. In this game, the government tries to minimize the expenses for controlling the epidemic. As consequence, the government implements quasi-periodic vaccination campaigns.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Silva, Everton Juliano da. "Uma demonstração analítica do teorema de Erdös-Kac." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-24032015-132813/.

Повний текст джерела
Анотація:
Em teoria dos números, o teorema de Erdös-Kac, também conhecido como o teorema fundamental de teoria probabilística dos números, diz que se w(n) denota a quantidade de fatores primos distintos de n, então a sequência de funções de distribuições N definidas por FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converge uniformemente sobre R para a distribuição normal padrão. Neste trabalho desenvolvemos todos os teoremas necessários para uma demonstração analítica, que nos permitirá encontrar a ordem de erro da convergência acima.
In number theory, the Erdös-Kac theorem, also known as the fundamental theorem of probabilistic number theory, states that if w(n) is the number of distinct prime factors of n, then the sequence of distribution functions N, defined by FN(x) = (1/N) #{n <= N : (w(n) log log N)/(log log N)^(1/2)} <= x}, converges uniformly on R to the standard normal distribution. In this work we developed all theorems needed to an analytic demonstration, which will allow us to find an order of error of the above convergence.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shi, Lingsheng. "Numbers and topologies." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2003. http://dx.doi.org/10.18452/14871.

Повний текст джерела
Анотація:
In der Ramsey Theorie fuer Graphen haben Burr und Erdos vor nunmehr fast dreissig Jahren zwei Vermutungen formuliert, die sich als richtungsweisend erwiesen haben. Es geht darum diejenigen Graphen zu charakterisieren, deren Ramsey Zahlen linear in der Anzahl der Knoten wachsen. Diese Vermutungen besagen, dass Ramsey Zahlen linear fuer alle degenerierten Graphen wachsen und dass die Ramsey Zahlen von Wuerfeln linear wachsen. Ein Ziel dieser Dissertation ist es, abgeschwaechte Varianten dieser Vermutungen zu beweisen. In der topologischen Ramseytheorie bewies Kojman vor kurzem eine topologische Umkehrung des Satzes von Hindman und fuehrte gleichzeitig sogenannte Hindman-Raeume und van der Waerden-Raeume ein (beide sind eine Teilmenge der folgenkompakten Raeume), die jeweils zum Satz von Hindman beziehungsweise zum Satz von van der Waerden korrespondieren. In der Dissertation wird zum einen eine Verstaerkung der Umkehrung des Satzes von van der Waerden bewiesen. Weiterhin wird der Begriff der Differentialkompaktheit eingefuehrt, der sich in diesem Zusammenhang ergibt und der eng mit Hindman-Raeumen verknuepft ist. Dabei wird auch die Beziehung zwischen Differentialkompaktheit und anderen topologischen Raeumen untersucht. Im letzten Abschnitt des zweiten Teils werden kompakte dynamische Systeme verwendet, um ein klassisches Ramsey-Ergebnis von Brown und Hindman et al. ueber stueckweise syndetische Mengen ueber natuerlichen Zahlen und diskreten Halbgruppen auf lokal zusammenhaengende Halbgruppen zu verallgemeinern.
In graph Ramsey theory, Burr and Erdos in 1970s posed two conjectures which may be considered as initial steps toward the problem of characterizing the set of graphs for which Ramsey numbers grow linearly in their orders. One conjecture is that Ramsey numbers grow linearly for all degenerate graphs and the other is that Ramsey numbers grow linearly for cubes. Though unable to settle these two conjectures, we have contributed many weaker versions that support the likely truth of the first conjecture and obtained a polynomial upper bound for the Ramsey numbers of cubes that considerably improves all previous bounds and comes close to the linear bound in the second conjecture. In topological Ramsey theory, Kojman recently observed a topological converse of Hindman's theorem and then introduced the so-called Hindman space and van der Waerden space (both of which are stronger than sequentially compact spaces) corresponding respectively to Hindman's theorem and van der Waerden's theorem. In this thesis, we will strengthen the topological converse of Hindman's theorem by using canonical Ramsey theorem, and introduce differential compactness that arises naturally in this context and study its relations to other spaces as well. Also by using compact dynamical systems, we will extend a classical Ramsey type theorem of Brown and Hindman et al on piecewise syndetic sets from natural numbers and discrete semigroups to locally connected semigroups.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Moravej, Hans. "Vibration-based probabilistic model updating of civil structures using structural health monitoring techniques." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/203653/1/Hans%20Moravej%20Thesis.pdf.

Повний текст джерела
Анотація:
Information extracted from monitored data is susceptible to uncertainties and not reliable to be used for structural investigations. Finite element model updating (FEMU) is an accredited framework which aims to improve the accuracy of FEMs of real structures. However, FEMU faces barriers to achieving efficiency and addressing uncertainties. This study aims to develop a probabilistic approach based on Modular Bayesian approach (MBA) to address challenges in the application of FEMU. Moreover, this research proposes an integration between MBA and structural reliability analysis to assess the performance of structures during their lifespan. The feasibility of approach is demonstrated on two structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bureaux, Julien. "Méthodes probabilistes pour l'étude asymptotique des partitions entières et de la géométrie convexe discrète." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100160/document.

Повний текст джерела
Анотація:
Cette thèse se compose de plusieurs travaux portant sur l'énumération et le comportement asymptotique de structures combinatoires apparentées aux partitions d'entiers. Un premier travail s'intéresse aux partitions d'entiers bipartites, qui constituent une généralisation bidimensionnelle des partitions d'entiers. Des équivalents du nombre de partitions sont obtenus dans le régime critique où l'un des entiers est de l'ordre du carré de l'autre entier et au delà de ce régime critique. Ceci complète les résultats établis dans les années cinquante par Auluck, Nanda et Wright. Le deuxième travail traite des chaînes polygonales à sommets entiers dans le plan. Pour un modèle statistique introduit par Sinaï, une représentation intégrale exacte de la fonction de partition est donnée. Ceci conduit à un équivalent du nombre de chaînes joignant deux points distants qui fait intervenir les zéros non triviaux de la fonction zêta de Riemann. Une analyse combinatoire détaillée des chaînes convexes est présentée. Elle permet de montrer l'existence d'une forme limite pour les chaînes convexes aléatoires ayant peu de sommets, répondant ainsi à une question ouverte de Vershik. Un troisième travail porte sur les zonotopes à sommets entiers en dimension supérieure. Un équivalent simple est donné pour le logarithme du nombre de zonotopes contenus dans un cône convexe et dont les extrémités sont fixées. Une loi des grands nombres est établie et la forme limite est caractérisée par la transformée de Laplace du cône
This thesis consists of several works dealing with the enumeration and the asymptotic behaviour of combinatorial structures related to integer partitions. A first work concerns partitions of large bipartite integers, which are a bidimensional generalization of integer partitions. Asymptotic formulæ are obtained in the critical regime where one of the numbers is of the order of magnitude of the square of the other number, and beyond this critical regime. This completes the results established in the fifties by Auluck, Nanda, and Wright. The second work deals with lattice convex chains in the plane. In a statistical model introduced by Sinaï, an exact integral representation of the partition function is given. This leads to an asymptotic formula for the number of chains joining two distant points, which involves the non trivial zeros of the Riemann zeta function. A detailed combinatorial analysis of convex chains is presented. It makes it possible to prove the existence of a limit shape for random convex chains with few vertices, answering an open question of Vershik. A third work focuses on lattice zonotopes in higher dimensions. An asymptotic equality is given for the logarithm of the number of zonotopes contained in a convex cone and such that the endings of the zonotope are fixed. A law of large numbers is established and the limit shape is characterized by the Laplace transform of the cone
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lewko, Mark J. 1983. "Combinatorial and probabilistic techniques in harmonic analysis." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5531.

Повний текст джерела
Анотація:
We prove several theorems in the intersection of harmonic analysis, combinatorics, probability and number theory. In the second section we use combinatorial methods to construct various sets with pathological combinatorial properties. In particular, we answer a question of P. Erdos and V. Sos regarding unions of Sidon sets. In the third section we use incidence bounds and bilinear methods to prove several new endpoint restriction estimates for the Paraboloid over finite fields. In the fourth and fifth sections we study a variational maximal operators associated to orthonormal systems. Here we use probabilistic techniques to construct well-behaved rearrangements and base changes. In the sixth section we apply our variational estimates to a problem in sieve theory. In the seventh section, motivated by applications to sieve theory, we disprove a maximal inequality related to multiplicative characters.
text
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Xiao, Stanley Yao. "On the Erdös-Turán conjecture and related results." Thesis, 2011. http://hdl.handle.net/10012/6150.

Повний текст джерела
Анотація:
The Erdös-Turán Conjecture, posed in 1941 in, states that if a subset B of natural numbers is such that every positive integer n can be written as the sum of a bounded number of terms from B, then the number of such representations must be unbounded as n tends to infinity. The case for h = 2 was given a positive answer by Erdös in 1956. The case for arbitrary h was given by Erdös and Tetali in 1990. Both of these proofs use the probabilistic method, and so the result only shows the existence of such bases but such bases are not given explicitly. Kolountzakis gave an effective algorithm that is polynomial with respect to the digits of n to compute such bases. Borwein, Choi, and Chu showed that the number of representations cannot be bounded by 7. Van Vu showed that the Waring bases contain thin sub-bases. We will discuss these results in the following work.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mehdizadeh, Marzieh. "Anatomy of smooth integers." Thèse, 2017. http://hdl.handle.net/1866/19299.

Повний текст джерела
Анотація:
Dans le premier chapitre de cette thèse, nous passons en revue les outils de la théorie analytique des nombres qui seront utiles pour la suite. Nous faisons aussi un survol des entiers y−friables, c’est-à-dire des entiers dont chaque facteur premier est plus petit ou égal à y. Au deuxième chapitre, nous présenterons des problèmes classiques de la théorie des nombres probabiliste et donnerons un bref historique d’une classe de fonctions arithmétiques sur un espace probabilisé. Le problème de Erdos sur la table de multiplication demande quel est le nombre d’entiers distincts apparaissant dans la table de multiplication N × N. L’ordre de grandeur de cette quantité a été déterminé par Kevin Ford (2008). Dans le chapitre 3 de cette thèse, nous étudions le nombre d’ensembles y−friables de la table de multiplication N × N. Plus concrètement, nous nous concentrons sur le changement du comportement de la fonction A(x, y) par rapport au domaine de y, où A(x, y) est une fonction qui compte le nombre d’entiers y− friables distincts et inférieurs à x qui peuvent être représentés comme le produit de deux entiers y− friables inférieurs à p x. Dans le quatrième chapitre, nous prouvons un théorème de Erdos-Kac modifié pour l’ensemble des entiers y− friables. Si !(n) est le nombre de facteurs premiers distincts de n, nous prouvons que la distribution de !(n) est gaussienne pour un certain domaine de y en utilisant la méthode des moments.
The object of the first chapter of this thesis is to review the materials and tools in analytic number theory which are used in following chapters. We also give a survey on the development concerning the number of y−smooth integers, which are integers free of prime factors greater than y. In the second chapter, we shall give a brief history about a class of arithmetical functions on a probability space and we discuss on some well-known problems in probabilistic number theory. We present two results in analytic and probabilistic number theory. The Erdos multiplication table problem asks what is the number of distinct integers appearing in the N × N multiplication table. The order of magnitude of this quantity was determined by Kevin Ford (2008). In chapter 3 of this thesis, we study the number of y−smooth entries of the N × N multiplication. More concretely, we focus on the change of behaviour of the function A(x,y) in different ranges of y, where A(x,y) is a function that counts the number of distinct y−smooth integers less than x which can be represented as the product of two y−smooth integers less than p x. In Chapter 4, we prove an Erdos-Kac type of theorem for the set of y−smooth integers. If !(n) is the number of distinct prime factors of n, we prove that the distribution of !(n) is Gaussian for a certain range of y using method of moments.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії