Дисертації з теми "Private Data Analysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Private Data Analysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Puglisi, Silvia. "Analysis, modelling and protection of online private data." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/456205.
Повний текст джерелаLas comunicaciones en línea generan una cantidad constante de datos que fluyen entre usuarios, servicios y aplicaciones. Esta información es el resultado de las interacciones entre diferentes partes y, una vez recolectada, se utiliza para una gran variedad de propósitos, desde perfiles de marketing hasta recomendaciones de productos, pasando por filtros de noticias y sugerencias de relaciones. La motivación detrás de este trabajo es entender cómo los datos son compartidos y utilizados por los servicios en nombre de los usuarios. Cuando un usuario crea una nueva cuenta en una determinada plataforma, ello crea un contenedor lógico que se utilizará para almacenar la actividad del propio usuario. El servicio tiene como objetivo perfilar al usuario. Por lo tanto, cada vez que se crean, se comparten o se accede a los datos, se recopila y analiza información sobre el comportamiento y los intereses del usuario. Los usuarios producen estos datos, pero desconocen cómo serán manejados por el servicio, o con quién se compartirán. O lo que es más importante, una vez agregados, estos datos podrían revelar, con el tiempo, más información de la que los mismos usuarios habían previsto inicialmente. La información revelada por un perfil podría utilizarse para obtener acceso a otra cuenta o durante ataques de ingeniería social. El objetivo principal de esta tesis es modelar y analizar cómo fluyen los datos de los usuarios entre diferentes aplicaciones y cómo esto representa una amenaza importante para la privacidad. Con el propósito de definir las violaciones de privacidad, se utilizan patrones que permiten clasificar las amenazas e identificar los problemas en los que los datos de los usuarios son mal gestionados. Los datos de los usuarios se modelan como eventos categorizados y se agregan como histogramas de frecuencias relativas de actividad en línea en categorías predefinidas de intereses. Además, se introduce un paradigma basado en hipermedia para modelar las huellas en línea. Esto enfatiza la interacción entre los diferentes eventos generados por el usuario y sus efectos sobre el riesgo medido de privacidad del usuario. Finalmente, se discuten las lecciones aprendidas de la aplicación del paradigma a diferentes escenarios.
Les comunicacions en línia generen una quantitat constant de dades que flueixen entre usuaris, serveis i aplicacions. Aquesta informació és el resultat de les interaccions entre diferents parts i, un cop recol·lectada, s’utilitza per a una gran varietat de propòsits, des de perfils de màrqueting fins a recomanacions de productes, passant per filtres de notícies i suggeriments de relacions. La motivació darrere d’aquest treball és entendre com les dades són compartides i utilitzades pels serveis en nom dels usuaris. Quan un usuari crea un nou compte en una determinada plataforma, això crea un contenidor lògic que s’utilitzarà per emmagatzemar l’activitat del propi usuari. El servei té com a objectiu perfilar a l’usuari. Per tant, cada vegada que es creen, es comparteixen o s’accedeix a les dades, es recopila i analitza informació sobre el comportament i els interessos de l’usuari. Els usuaris produeixen aquestes dades però desconeixen com seran gestionades pel servei, o amb qui es compartiran. O el que és més important, un cop agregades, aquestes dades podrien revelar, amb el temps, més informació de la que els mateixos usuaris havien previst inicialment. La informació revelada per un perfil podria utilitzar-se per accedir a un altre compte o durant atacs d’enginyeria social. L’objectiu principal d’aquesta tesi és modelar i analitzar com flueixen les dades dels usuaris entre diferents aplicacions i com això representa una amenaça important per a la privacitat. Amb el propòsit de definir les violacions de privacitat, s’utilitzen patrons que permeten classificar les amenaces i identificar els problemes en què les dades dels usuaris són mal gestionades. Les dades dels usuaris es modelen com esdeveniments categoritzats i s’agreguen com histogrames de freqüències relatives d’activitat en línia en categories predefinides d’interessos. A més, s’introdueix un paradigma basat en hipermèdia per modelar les petjades en línia. Això emfatitza la interacció entre els diferents esdeveniments generats per l’usuari i els seus efectes sobre el risc mesurat de privacitat de l’usuari. Finalment, es discuteixen les lliçons apreses de l’aplicació del paradigma a diferents escenaris.
Alborch, escobar Ferran. "Private Data Analysis over Encrypted Databases : Mixing Functional Encryption with Computational Differential Privacy." Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAT003.
Повний текст джерелаIn our current digitalized society, data is ruling the world. But as it is most of the time related to individuals, its exploitation should respect the privacy of the latter. This issue has raised the differential privacy paradigm, which permits to protect individuals when querying databases containing data about them. But with the emergence of cloud computing, it is becoming increasingly necessary to also consider the confidentiality of "on-cloud'' storage confidentiality of such vast databases, using encryption techniques. This thesis studies how to provide both privacy and confidentiality of such outsourced databases by mixing two primitives: computational differential privacy and functional encryption. First, we study the relationship between computational differential privacy and functional encryption for randomized functions in a generic way. We analyze the privacy of the setting where a malicious analyst may access the encrypted data stored in a server, either by corrupting or breaching it, and prove that a secure randomized functional encryption scheme supporting the appropriate family of functions guarantees the computational differential privacy of the system. Second, we construct efficient randomized functional encryption schemes for certain useful families of functions, and we prove them secure in the standard model under well-known assumptions. The families of functions considered are linear functions, used for example in counting queries, histograms and linear regressions, and quadratic functions, used for example in quadratic regressions and hypothesis testing. The schemes built are then used together with the first result to construct encrypted databases for their corresponding family of queries. Finally, we implement both randomized functional encryption schemes to analyze their efficiency. This shows that our constructions are practical for databases with up to 1 000 000 entries in the case of linear queries and databases with up to 10 000 database entries in the case of quadratic queries
Amirbekyan, Artak. "Protocols and Data Structures for Knowledge Discovery on Distributed Private Databases." Thesis, Griffith University, 2007. http://hdl.handle.net/10072/367447.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Communication Technology
Science, Environment, Engineering and Technology
Full Text
Nguyen, Mai Phuong. "Contribution of private healthcare to universal health coverage: an investigation of private over public health service utilisation in Vietnam." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/225903/1/Mai%20Phuong_Nguyen_Thesis.pdf.
Повний текст джерелаKarim, Martia. "Determinants of Venture Capital Investments : A panel data analysis across regions in the United Kingdom." Thesis, Internationella Handelshögskolan, Högskolan i Jönköping, IHH, Nationalekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40179.
Повний текст джерелаHabibovic, Sanel. "VIRTUAL PRIVATE NETWORKS : An Analysis of the Performance in State-of-the-Art Virtual Private Network solutions in Unreliable Network Conditions." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-17844.
Повний текст джерелаCiccarelli, Armand. "An analysis of the impact of wireless technology on public vs. private traffic data collection, dissemination and use." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8817.
Повний текст джерелаIncludes bibliographical references (leaves 151-154).
The collection of data concerning traffic conditions (e.g., incidents, travel times, average speed, traffic volumes, etc.) on roadways has traditionally been carried out by those public entities charged with managing traffic flow, responding to incidents, and maintaining the surface of the roadway. Pursuant to this task, public agencies have employed inductive loop detectors, closed circuit television cameras, technology for tracking electronic toll tags, and other surveillance devices, in an effort to monitor conditions on roads within their jurisdictions. The high cost of deploying and maintaining this surveillance equipment has precluded most agencies from collecting data on roads other than freeways and important arterials. In addition, the "point" nature of most commonly utilized surveillance equipment limits both the variety of data available for analysis, as well as its overall accuracy. Consequently, these problems have limited the usefulness of this traffic data, both to the public agencies collecting it, as well as private entities who would like to use it as a resource from which they can generate fee-based traveler information services. Recent Federal Communications Commission (FCC) mandates concerning E-911 have led to the development of new technologies for tracking wireless devices (i.e., cellular phones). Although developed to assist mobile phone companies in meeting the FCC's E-911 mandate, a great deal of interest has arisen concerning their application to the collection of traffic data. That said, the goal of this thesis has been to compare traditional traffic surveillance technologies' capabilities and effectiveness with that of the wireless tracking systems currently under development. Our technical research indicates that these newly developed tracking technologies will eventually be able to provide wider geographic surveillance of roads at less expense than traditional surveillance equipment, as well as collect traffic information that is currently unavailable. Even so, our overall conclusions suggest that due to budgetary, institutional, and/or political constraints, some organizations may find themselves unable to procure this high quality data. Moreover, we believe that even those organizations (both public and private) that find themselves in a position to procure data collected via wireless tracking technology should first consider the needs of their "customers," the strength of the local market for traffic data, and their organization's overall mission, prior to making a final decision.
by Armand J. Ciccarelli, III.
M.C.P.and S.M.
Aronsson, Arvid, and Daniel Falkenström. "The Effects of Capital Income Taxation on Consumption : Panel data analysis of the OECD countries." Thesis, Jönköping University, IHH, Nationalekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-52920.
Повний текст джерелаShimada, Hideki. "Econometric Analysis of Social Interactions and Economic Incentives in Conservation Schemes." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263702.
Повний текст джерелаLanjouw, Jean Olson. "The private value of patent rights : a dynamic programming and game theoretic analysis of West German patent renewal data, 1953-1988." Thesis, London School of Economics and Political Science (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527825.
Повний текст джерелаKilcrease, Patrick N. "Employing a secure Virtual Private Network (VPN) infrastructure as a global command and control gateway to dynamically connect and disconnect diverse forces on a task-force-by-task-force basis." Thesis, Monterey, California : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Sep/09Sep%5FKilcrease.pdf.
Повний текст джерелаThesis Advisor(s): Barreto, Albert. "September 2009." Description based on title screen as viewed on 6 November 2009. Author(s) subject terms: Virtual Private Network, GHOSTNet, maritime interdiction operations, internet protocol security, encapsulating security protocol, data encryption standard. Includes bibliographical references (p. 83-84). Also available in print.
Reis, Alda Maria dos Santos. "Modelos de governação e parcerias público-privadas (PPP):o caso dos Clusters em Portugal." Master's thesis, Instituto Superior de Ciências Sociais e Políticas, 2012. http://hdl.handle.net/10400.5/4940.
Повний текст джерелаO modelo de governação do Estado regulador e a reforma da gestão pública baseada no New Public Management, sustentando o melhor posicionamento do sector privado relativamente ao sector público em termos de competência, flexibilidade e eficiência, conduziram ao crescimento da regulação estatutária por agências independentes, que tem vindo a ser adoptada nos países ocidentais como instrumento preferencial na implementação de políticas públicas, designadamente quando o Estado pretende melhorar a eficiência dos mercados através da alavancagem económica. Neste contexto, no âmbito da Agenda de Competitividade Económica do QREN 2007-2013, foi implementado um instrumento de política inovador em Portugal, denominado Estratégias de Eficiência Colectiva (EEC), destinado a financiar iniciativas geradoras de externalidades positivas, nomeadamente a clusterização industrial, através da contratualização com agências independentes constituídas em PPP Intersectoriais. Este trabalho tem por objectivo estudar a implementação da Política de Clusters em Portugal e avaliar os resultados dos dezanove clusters aprovados em termos de eficiência, a meio percurso do período contratual, através do recurso ao modelo de Análise da Envolvente de Dados (DEA). Tal constitui um contributo para a reflexão dos responsáveis governamentais sobre o futuro desta política e para as entidades gestoras dos clusters, em termos de melhoria da sua performance.
The rise of regulatory state and public management reforms based on New Public Management theories sustaining the better position of private sector compared to the public administration in terms of competencies, flexibility and efficiency, have contributed to the growth of statutory regulation by independent agencies, that are being adopted by western governments as a preferred instrument in the implementation of economic public policies to remove market failures, improve market efficiency and enforcing economic competition. The Agenda of Economic Competitiveness of the QREN 2007-2013 has created an innovative public policy program in Portugal, named Collective Efficiency Strategies (EEC), aimed at financing initiatives generating positive externalities, like industrial clusters, through the contract with independent agencies established by statute as cross-sector public private partnerships. The central aim of this research is to study the regulation of Clusters Public Policy in Portugal and to evaluate the efficiency of the nineteen clusters approved within the program of EEC, in the mid-term of the contract, using the Data Envelopment Analysis (DEA) quantitative method. This analysis is a contribution for a more accurate reflexion of the future of this policy by the government authorities and for enhancing the performance of some inefficient clusters and contractual agencies.
Silva, Diogo Miguel Santos Graça Nunes da. "A eficiência das PPP no sector hospitalar em Portugal." Master's thesis, Instituto Superior de Economia e Gestão, 2019. http://hdl.handle.net/10400.5/19941.
Повний текст джерелаNas últimas décadas, temos assistido à proliferação de novos instrumentos de gestão pública, nomeadamente das parcerias público-privadas (PPP). A saúde tem sido uma das principais áreas-alvo deste modelo de gestão, mais concretamente a nível hospitalar. Em Portugal, cabe ao parceiro privado, para além da gestão da infraestrutura, a gestão dos serviços clínicos e a prestação dos cuidados de saúde, tornando estas parcerias ainda mais complexas e multifacetadas. Apesar da utilização das PPP no sector da saúde, existe alguma controvérsia sobre se este modelo é realmente mais eficiente que o público. Neste sentido, o presente estudo tem como objectivo a comparação da eficiência entre a gestão dos hospitais em regime de PPP em Portugal - Braga, Vila Franca de Xira, Loures e Cascais e a dos hospitais públicos, no período entre 2013 e 2017. Para este efeito, foi selecionado um grupo homogéneo de hospitais comparáveis que incluiu 30 hospitais públicos e os 4 hospitais PPP. Para a avaliação da eficiência, foram utilizadas duas abordagens - Econométrica e Análise Envoltória de Dados (DEA). Em ambas as metodologias, testou-se o efeito do tipo de gestão na eficiência dos hospitais analisados. A eficiência hospitalar foi traduzida por rácios e scores no âmbito da metodologia econométrica e da análise DEA, respectivamente. Os resultados obtidos demonstraram que os hospitais PPP foram, em média, mais eficientes que os públicos no período analisado.
Over the last decades, we have witnessed the proliferation of new public management models, such as public-private partnerships (PPP). Health has been one of the main target areas of this management model, specifically at the hospital level. In Portugal, the private partner is also responsible for the clinical service management and health care delivery, in addition to infrastructure management, making these partnerships even more complex and multifaceted. Albeit the popularity of PPP in healthcare, there is still some controversy whether this model is more efficient than the public one. In this context, the present study aims to compare the efficiency between the management of the 4 PPP hospitals in Portugal - Braga, Vila Franca de Xira, Loures and Cascais and the public hospitals, between 2013 and 2017. For this purpose, a homogeneous group of comparable hospitals was selected, including 30 public hospitals and the 4 PPP hospitals. For efficiency evaluation, two approaches were used - Econometric and Data Envelopment Analysis (DEA). In both methodologies, the effect of management type on hospital efficiency was tested. Hospital efficiency was explained by ratios and scores within the econometric methodology and DEA analysis, respectively. The results showed that PPP hospitals were, on average, more efficient than public hospitals over the analyzed period.
info:eu-repo/semantics/publishedVersion
CECCATO, RICCARDO. "Switching intentions towards car sharing - Analysis of the relationship with traditional transport modes." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2840371.
Повний текст джерелаWang, Ting. "Data analytics for networked and possibly private sources." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39598.
Повний текст джерелаSimmons, Sean Kenneth. "Preserving patient privacy in biomedical data analysis." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101821.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 147-154).
The growing number of large biomedical databases and electronic health records promise to be an invaluable resource for biomedical researchers. Recent work, however, has shown that sharing this data- even when aggregated to produce p-values, regression coefficients, count queries, and minor allele frequencies (MAFs)- may compromise patient privacy. This raises a fundamental question: how do we protect patient privacy while still making the most out of their data? In this thesis, we develop various methods to perform privacy preserving analysis on biomedical data, with an eye towards genomic data. We begin by introducing a model based measure, PrivMAF, that allows us to decide when it is safe to release MAFs. We modify this measure to deal with perturbed data, and show that we are able to achieve privacy guarantees while adding less noise (and thus preserving more useful information) than previous methods. We also consider using differentially private methods to preserve patient privacy. Motivated by cohort selection in medical studies, we develop an improved method for releasing differentially private medical count queries. We then turn our eyes towards differentially private genome wide association studies (GWAS). We improve the runtime and utility of various privacy preserving methods for genome analysis, bringing these methods much closer to real world applicability. Building off this result, we develop differentially private versions of more powerful statistics based off linear mixed models.
by Sean Kenneth Simmons.
Ph. D.
Smith, Tanshanika Turner. "Examining Data Privacy Breaches in Healthcare." ScholarWorks, 2016. https://scholarworks.waldenu.edu/dissertations/2623.
Повний текст джерелаDeYoung, Mark E. "Privacy Preserving Network Security Data Analytics." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82909.
Повний текст джерелаPh. D.
Cui, Yingjie, and 崔英杰. "A study on privacy-preserving clustering." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B4357225X.
Повний текст джерелаHuang, Zhengli. "Privacy and utility analysis of the randomization approach in Privacy-Preserving Data Publishing." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2008. http://wwwlib.umi.com/cr/syr/main.
Повний текст джерелаSobati, Moghadam Somayeh. "Contributions to Data Privacy in Cloud Data Warehouses." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE2020.
Повний текст джерелаNowadays, data outsourcing scenarios are ever more common with the advent of cloud computing. Cloud computing appeals businesses and organizations because of a wide variety of benefits such as cost savings and service benefits. Moreover, cloud computing provides higher availability, scalability, and more effective disaster recovery rather than in-house operations. One of the most notable cloud outsourcing services is database outsourcing (Database-as-a-Service), where individuals and organizations outsource data storage and management to a Cloud Service Provider (CSP). Naturally, such services allow storing a data warehouse (DW) on a remote, untrusted CSP and running on-line analytical processing (OLAP).Although cloud data outsourcing induces many benefits, it also brings out security and in particular privacy concerns. A typical solution to preserve data privacy is encrypting data locally before sending them to an external server. Secure database management systems use various encryption schemes, but they either induce computational and storage overhead or reveal some information about data, which jeopardizes privacy.In this thesis, we propose a new secure secret splitting scheme (S4) inspired by Shamir’s secret sharing. S4 implements an additive homomorphic scheme, i.e., additions can be directly computed over encrypted data. S4 addresses the shortcomings of existing approaches by reducing storage and computational overhead while still enforcing a reasonable level of privacy. S4 is efficient both in terms of storage and computing, which is ideal for data outsourcing scenarios that consider the user has limited computation and storage resources. Experimental results confirm the efficiency of S4 in terms of computation and storage overhead with respect to existing solutions.Moreover, we also present new order-preserving schemes, order-preserving indexing (OPI) and wrap-around order-preserving indexing (waOPI), which are practical on cloud outsourced DWs. We focus on the problem of performing range and exact match queries over encrypted data. In contrast to existing solutions, our schemes prevent performing statistical and frequency analysis by an adversary. While providing data privacy, the proposed schemes bear good performance and lead to minimal change for existing software
Sallaku, Redlon <1994>. "Privacy and Protecting Privacy: Using Static Analysis for legal compliance. General Data Protection Regulation." Master's Degree Thesis, Università Ca' Foscari Venezia, 2019. http://hdl.handle.net/10579/14682.
Повний текст джерелаAndersson-Sunna, Josefin. "Large Scale Privacy-Centric Data Collection, Processing, and Presentation." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84930.
Повний текст джерелаDet har blivit en viktig del av affärsutvecklingen hos företag att samla in statistiska data från deras online-källor. Information om användare och hur de interagerar med en online-källa kan hjälpa till att förbättra användarupplevelsen och öka försäljningen av produkter. Att samla in data om användare har många fördelar för företagsägaren, men det väcker också integritetsfrågor eftersom mer och mer information om användare sprids över internet. Det finns redan verktyg som kan samla in statistiska data från online-källor, men när sådana verktyg används förloras kontrollen över den insamlade informationen. Om ett företag implementerar sitt eget analyssystem är det lättare att göra det mer integritetscentrerat och kontrollen över den insamlade informationen behålls. Detta arbete undersöker vilka tekniker som är mest lämpliga för ett system vars syfte är att samla in, lagra, bearbeta och presentera storskalig integritetscentrerad information. Teorier har undersökts om vilken teknik som ska användas för att samla in data och hur man kan hålla koll på unika användare på ett integritetscentrerat sätt, samt om vilken databas som ska användas som kan hantera många skrivförfrågningar och lagra storskaligdata. En prototyp implementerades baserat på teorierna, där JavaScript-taggning används som metod för att samla in data från flera online källor och cookies används för att hålla reda på unika användare. Cassandra valdes som databas för prototypen på grund av dess höga skalbarhet och snabbhet vid skrivförfrågningar. Två versioner av bearbetning av rådata till statistiska rapporter implementerades för att kunna utvärdera om data skulle bearbetas i förhand eller om rapporterna kunde skapas när användaren ber om den. För att utvärdera teknikerna som användes i prototypen gjordes belastningstester av prototypen där resultaten visade att en flaskhals nåddes efter 45 sekunder på en arbetsbelastning på 600 skrivförfrågningar per sekund. Testerna visade också att prototypen lyckades hålla prestandan med en arbetsbelastning på 500 skrivförfrågningar per sekund i en timme, där den slutförde 1 799 953 förfrågningar. Latenstest vid bearbetning av rådata till statistiska rapporter gjordes också för att utvärdera om data ska förbehandlas eller bearbetas när användaren ber om rapporten. Resultatet visade att det tog cirka 30 sekunder att bearbeta 1 200 000 rader med data från databasen vilket är för lång tid för en användare att vänta på rapporten. Vid undersökningar om vilken del av bearbetningen som ökade latensen mest visade det att det var hämtningen av data från databasen som ökade latensen. Det tog cirka 25 sekunder att hämta data och endast cirka 5 sekunder att bearbeta dem till statistiska rapporter. Testerna visade att Cassandra är långsam när man hämtar ut många rader med data, men är snabb på att skriva data vilket är viktigare i denna prototyp.
Katsikouli, Panagiota. "Distributed and privacy preserving algorithms for mobility information processing." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31110.
Повний текст джерелаCho, Hyunghoon. "Biomedical data sharing and analysis at scale : privacy, compaction, and integration." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122727.
Повний текст джерелаCataloged from PDF version of thesis. Page 307 blank.
Includes bibliographical references (pages 279-306).
Recent advances in high-throughput experimental technologies have led to the exponential growth of biomedical datasets, including personal genomes, single-cell sequencing experiments, and molecular interaction networks. The unprecedented scale, variety, and distributed ownership of emerging biomedical datasets present key computational challenges for sharing and analyzing these data to uncover new scientific insights. This thesis introduces a range of computational methods that overcome these challenges to enable scalable sharing and analysis of massive datasets in a range of biomedical domains. First, we introduce scalable privacy-preserving analysis pipelines built upon modern cryptographic tools to enable large amounts of sensitive biomedical data to be securely pooled from multiple entities for collaborative science. Second, we introduce efficient computational techniques for analyzing emerging large-scale sequencing datasets of millions of cells that leverage a compact summary of the data to speedup various analysis tasks while maintaining the accuracy of results. Third, we introduce integrative approaches to analyzing a growing variety of molecular interaction networks from heterogeneous data sources to facilitate functional characterization of poorly-understood genes. The computational techniques we introduce for scaling essential biomedical analysis tasks to the large volume of data being generated are broadly applicable to other data science domains.
by Hyunghoon Cho.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Miracle, Jacob M. "De-Anonymization Attack Anatomy and Analysis of Ohio Nursing Workforce Data Anonymization." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1482825210051101.
Повний текст джерелаFERRO, VALERIA. "HR Analytics: evoluzione e composizione del conflitto tra datore di lavoro e lavoratore. Un caso aziendale." Doctoral thesis, Università degli studi di Bergamo, 2021. http://hdl.handle.net/10446/181278.
Повний текст джерелаParameswaran, Rupa. "A Robust Data Obfuscation Technique for Privacy Preserving Collaborative Filtering." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11459.
Повний текст джерелаSahlstedt, Andreas. "A competition policy for the digital age : An analysis of the challenges posed by data-driven business models to EU competition law." Thesis, Uppsala universitet, Juridiska institutionen, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-389650.
Повний текст джерелаFloderus, Sebastian, and Vincent Tewolde. "Analysing privacy concerns in smartcameras : in correlation with GDPR and Privacy by Design." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21980.
Повний текст джерелаMöller, Carolin. "The evolution of data protection and privacy in the public security context : an institutional analysis of three EU data retention and access regimes." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/25911.
Повний текст джерелаBerthold, Stefan. "Linkability of communication contents : Keeping track of disclosed data using Formal Concept Analysis." Thesis, Karlstad University, Faculty of Economic Sciences, Communication and IT, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-369.
Повний текст джерелаA person who is communication about (the data subject) has to keep track of all of his revealed data in order to protect his right of informational self-determination. This is important when data is going to be processed in an automatic manner and, in particular, in case of automatic inquiries. A data subject should, therefore, be enabled to recognize useful decisions with respect to data disclosure, only by using data which is available to him.
For the scope of this thesis, we assume that a data subject is able to protect his communication contents and the corresponding communication context against a third party by using end-to-end encryption and Mix cascades. The objective is to develop a model for analyzing the linkability of communication contents by using Formal Concept Analysis. In contrast to previous work, only the knowledge of a data subject is used for this analysis instead of a global view on the entire communication contents and context.
As a first step, the relation between disclosed data is explored. It is shown how data can be grouped by types and data implications can be represented. As a second step, behavior, i. e. actions and reactions, of the data subject and his communication partners is included in this analysis in order to find critical data sets which can be used to identify the data subject.
Typical examples are used to verify this analysis, followed by a conclusion about pros and cons of this method for anonymity and linkability measurement. Results can be used, later on, in order to develop a similarity measure for human-computer interfaces.
Magnusson, Ulf. "A tool for visual analysis of permission-based data access on Android phones." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72631.
Повний текст джерелаFrågan om personlig integritet får allt större betydelse den moderna, uppkopplade världen. Med smartmobilernas intåg har gränsen mellan internet och den privata sfären blivit allt mindre distinkt. Det stora flertalet användare av smartmobiler har mycket vaga begrepp om hur olika appar inkräktar på den personliga integriteten. Vid Karlstads Universitet och Avdelningen för Datavetenskap fokuserar forskningsgruppen PriSec – Privacy and Security – bl.a. på att förbättra den personliga integriteten. Ett av forskningsprojekten syftar till att öka medvetenheten om hur appar i smartmobiler och liknande, samlar in information om dess användare. Denna masteruppsats beskriver utvecklingen av ett verktyg för visualisering av data som insamlats från smartmobiler, läsplattor, etc., med operativsystemet Android. Detta har skett medelst en övervakningsapp som utvecklats inom det ovan nämnda forskningsprojektet. Appen i fråga håller reda på användningen av det som i Android kallas ”Dangerous Permissions” (eller på svenska: farliga privilegier). Den information som samlas in är vilka privilegier det gäller, vilka appar som använder dessa farliga privilegier, när detta sker och var mobilen befinner sig vid det aktuella tillfället. Mer än 2 miljoner sådana händelser har registrerats och samlats in. Tidigare har två studentprojekt utvecklat olika web-baserade verktyg för att visualisera det data som insamlats på detta sätt. I detta uppsatsarbete har en desktopapplikation utvecklats – ett verktyg för visualisering som importerar den nyss nämnda datan till en databas ansluten till verktyget. Via verktygets grafiska användargränssnitt kan analytiker och forskare göra precisionssökningar i databasen och presentera resultatet i olika diagram, på så sätt visualiserande hur apparna använder information som kan användas för att identifiera och kartlägga den person som använder smartmobilen i fråga, vilket inkräktar på deras personliga integritet. Visualiseringsverktyget är noggrant designat med målet att det skall vara skalbart och utbyggbart, genom en arkitektur som tillåter fortgående utveckling – såväl av ytterligare visualiseringar som annan funktionalitet för analys av innehållet i databasen.
Canillas, Rémi. "Privacy and Security in a B2B environment : Focus on Supplier Impersonation Fraud Detection using Data Analysis." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI118.
Повний текст джерелаSupplier Impersonation Fraud (SIF) is a kind of fraud occuring in a Business-To-Business context (B2B), where a fraudster impersonates a supplier in order to trigger an illegitimate payment from a company. Most of the exisiting systems focus solely on a single, "intra-company" approach in order to detect such kind of fraud. However, the companies are part of an ecosystem where multiple agents interacts, and such interaction hav yet to be integrated as a part of the existing detection techniques. In this thesis we propose to use state-of-the-art techniques in Machine Learning in order to build a detection system for such frauds, based on the elaboration of a model using historical transactions from both the targeted companies and the relevant other companies in the ecosystem (contextual data). We perform detection of anomalous transactions when significant change in the payment behavior of a company is detected. Two ML-based systems are proposed in this work: ProbaSIF and GraphSIF. ProbaSIF uses a probabilistic approach (urn model) in order to asert the probability of occurrence of the account used in the transaction in order to assert its legitimacy. We use this approach to assert the differences yielded by the integration of contextual data to the analysis. GraphSIF uses a graph-based approach to model the interaction between client and supplier companies as graphs, and then uses these graph as training data in a Self-Organizing Map-Clustering model. The distance between a new transaction and the center of the cluster is used to detect changes in the behavior of a client company. These two systems are compared with a real-life fraud detection system in order to assert their performance
Hammoud, Khodor. "Trust in online data : privacy in text, and semantic-based author verification in micro-messages." Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5203.
Повний текст джерелаMany Problems surround the spread and use of data on social media. There is a need to promote trust on social platforms, regarding the sharing and consumption of data. Data online is mostly in textual form which poses challenges for automation solutions because of the richness of natural language. In addition, the use of micro-messages as the main means of communication on social media makes the problem much more challenging because of the scarceness of features to analyze per body of text. Our experiments show that data anonymity solutions cannot preserve user anonymity without sacrificing data quality. In addition, in the field of author verification, which is the problem of determining if a body of text was written by a specific person or not, given a set of documents known to be authored by them, we found a lack of research working with micro-messages. We also noticed that the state-of-the-art does not take text semantics into consideration, making them vulnerable to impersonation attacks. Motivated by these findings, we devote this thesis to tackle the tasks of (1) identifying the current problems with user data anonymity in text, and provide an initial novel semantic-based approach to tackle this problem, (2) study author verification in micro-messages and identify the challenges in this field, and develop a novel semantics-based approach to solve these challenges, and (3) study the effect of including semantics in handling manipulation attacks, and the temporal effect of data, where the authors might have changing opinions over time. The first part of the thesis focuses on user anonymity in textual data, with the aim to anonymize personal information from online user data for safe data analysis without compromising users’ privacy. We present an initial novel semantic-based approach, which can be customized to balance between preserving data quality and maximizing user anonymity depending on the application at hand. In the second part, we study author verification in micro-messages on social media. We confirm the lack of research in author verification on micro-messages, and we show that the state-of-the-art, which primarily handles long and medium-sized texts, does not perform well when applied on micro-messages. Then we present a semantics-based novel approach which uses word embeddings and sentiment analysis to collect the author’s opinion history to determine the correctness of the claim of authorship, and show its competitive performance on micro-messages. We use these results in the third part of the thesis to further improve upon our approach. We construct a dataset consisting of the tweets of the 88 most followed twitter influencers. We use it to show that the state-of-the-art is not able to handle impersonation attacks, where the content of a tweet is altered, changing the message behind the tweet, while the writing pattern is preserved. On the other hand, since our approach is aware of the text’s semantics, it is able to detect text manipulations with an accuracy above 90%. And in the fourth part of the thesis, we analyze the temporal effect of data on our approach for author verification. We study the change of authors’ opinions over time, and how to accommodate for that in our approach. We study trends of sentiments of an author per a specific topic over a period of time, and predict false authorship claims depending on what timeframe does the claim of authorship fall in
Ganzaroli, Ludovica <1994>. "Un modello Risk Based per la Data Privacy Impact Analysis ai sensi del Regolamento UE 679/2016." Master's Degree Thesis, Università Ca' Foscari Venezia, 2018. http://hdl.handle.net/10579/13649.
Повний текст джерелаTeltzrow, Maximilian. "A quantitative analysis of e-commerce." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2005. http://dx.doi.org/10.18452/15297.
Повний текст джерелаThe aim of this thesis is to explore the border between the competing interests of online consumers and companies. Privacy on the Internet is investigated from a consumer perspective and recommendations for better privacy management for companies are suggested. The proposed solutions allow the resolution of conflicting goals between companies’ data usage practices and consumers’ privacy concerns. The research is carried out with special emphasis on retailers operating multiple distribution channels. These retailers have become the dominant player in e-commerce. The thesis presents a set of business analyses for measuring online success of Web sites. New conversion metrics and customer segmentation approaches have been introduced. The analysis framework has been tested on Web data from a large multi-channel retailer and an information site. The analysis of Web data requires that privacy restrictions must be adhered to. Thus the impact of legislative and self-imposed privacy requirements on our analysis framework is also discussed. We propose a privacy-preserving Web analysis service that calculates our set of business analyses and indicates when an analysis is not compliant with privacy requirements. A syntactical extension of a privacy standard is proposed. Moreover, an overview of consumer privacy concerns and their particular impact on personalization systems is provided, that is summarized in a meta-study of 30 privacy surveys. A company must not only respect privacy requirements in its Web analysis and usage purposes but it must also effectively communicate these privacy practices to its site visitors. A privacy communication design is presented, which allows more efficient communication of a Web site’s privacy practices directed towards the users. Subjects who interacted with our new interface design were significantly more willing to share personal data with the Web site. They rated its privacy practices and the perceived benefit higher and made considerably more purchases.
Gorra, Andrea. "An analysis of the relationship between individuals' perceptions of privacy and mobile phone location data : a grounded theory study." Thesis, Leeds Beckett University, 2007. http://eprints.leedsbeckett.ac.uk/1554/.
Повний текст джерелаKim, Dae Wook. "Data-Driven Network-Centric Threat Assessment." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495191891086814.
Повний текст джерелаEnríquez, Luis. "Personal data breaches : towards a deep integration between information security risks and GDPR compliance risks." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILD016.
Повний текст джерелаInformation security is deeply linked to data protection law, because an ineffective security implementation can lead to personal data breaches. The GDPR is based on a risk-based approach for the protection of the rights and freedoms of the data subjects, meaning that risk management is the mechanism for protecting fundamental rights. However, the state of the art of information security risk management and legal risk management are still immature. Unfortunately, the current state of the art does not assess the multi-dimensionality of data protection risks, and it has skipped the main purpose of a risk-based approach, measuring risk for taking informed decisions. The legal world shall understand that risk management does not work by default, and it often requires applied-scientific methods for assessing risks. This thesis proposes a mindset change with the aim of fixing data protection risk management, with a holistic data protection approach that merges operational, financial, and legal risks. The concept of a Personal Data Value at Risk is introduced as the outcome of several quantitative strategies based on risk modeling, jurimetrics, and data protection analytics. The ideas presented here shall also contribute to comply with upcoming risk-based regulations that rely on data protection, such as artificial intelligence. The risk transformation may appear difficult, but it is compulsory for the evolution of data protection
Stocco, Francesca A. "The internet of toys: Working towards best practice in digital governance and the recognition of children’s rights in mediated contexts." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2023. https://ro.ecu.edu.au/theses/2752.
Повний текст джерелаDa, Silva Sébastien. "Fouille de données spatiales et modélisation de linéaires de paysages agricoles." Electronic Thesis or Diss., Université de Lorraine, 2014. http://docnum.univ-lorraine.fr/prive/DDOC_T_2014_0156_DA_SILVA.pdf.
Повний текст джерелаThis thesis is part of a partnership between INRA and INRIA in the field of knowledge extraction from spatial databases. The study focuses on the characterization and simulation of agricultural landscapes. More specifically, we focus on linears that structure the agricultural landscape, such as roads, irrigation ditches and hedgerows. Our goal is to model the spatial distribution of hedgerows because of their role in many ecological and environmental processes. We more specifically study how to characterize the spatial structure of hedgerows in two contrasting agricultural landscapes, one located in south-Eastern France (mainly composed of orchards) and the second in Brittany (western France, \emph{bocage}-Type). We determine if the spatial distribution of hedgerows is structured by the position of the more perennial linear landscape features, such as roads and ditches, or not. In such a case, we also detect the circumstances under which this spatial distribution is structured and the scale of these structures. The implementation of the process of Knowledge Discovery in Databases (KDD) is comprised of different preprocessing steps and data mining algorithms which combine mathematical and computational methods. The first part of the thesis focuses on the creation of a statistical spatial index, based on a geometric neighborhood concept and allowing the characterization of structures of hedgerows. Spatial index allows to describe the structures of hedgerows in the landscape. The results show that hedgerows depend on more permanent linear elements at short distances, and that their neighborhood is uniform beyond 150 meters. In addition different neighborhood structures have been identified depending on the orientation of hedgerows in the South-East of France but not in Brittany. The second part of the thesis explores the potential of coupling linearization methods with Markov methods. The linearization methods are based on the use of alternative Hilbert curves: Hilbert adaptive paths. The linearized spatial data thus constructed were then treated with Markov methods. These methods have the advantage of being able to serve both for the machine learning and for the generation of new data, for example in the context of the simulation of a landscape. The results show that the combination of these methods for learning and automatic generation of hedgerows captures some characteristics of the different study landscapes. The first simulations are encouraging despite the need for post-Processing. Finally, this work has enabled the creation of a spatial data mining method based on different tools that support all stages of a classic KDD, from the selection of data to the visualization of results. Furthermore, this method was constructed in such a way that it can also be used for data generation, a component necessary for the simulation of landscapes
Greenstein, Stanley. "Our Humanity Exposed : Predictive Modelling in a Legal Context." Doctoral thesis, Stockholms universitet, Juridiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-141657.
Повний текст джерелаAttasena, Varunya. "Secret sharing approaches for secure data warehousing and on-line analysis in the cloud." Thesis, Lyon 2, 2015. http://www.theses.fr/2015LYO22014/document.
Повний текст джерелаCloud business intelligence is an increasingly popular solution to deliver decision support capabilities via elastic, pay-per-use resources. However, data security issues are one of the top concerns when dealing with sensitive data. Many security issues are raised by data storage in a public cloud, including data privacy, data availability, data integrity, data backup and recovery, and data transfer safety. Moreover, security risks may come from both cloud service providers and intruders, while cloud data warehouses should be both highly protected and effectively refreshed and analyzed through on-line analysis processing. Hence, users seek secure data warehouses at the lowest possible storage and access costs within the pay-as-you-go paradigm.In this thesis, we propose two novel approaches for securing cloud data warehouses by base-p verifiable secret sharing (bpVSS) and flexible verifiable secret sharing (fVSS), respectively. Secret sharing encrypts and distributes data over several cloud service providers, thus enforcing data privacy and availability. bpVSS and fVSS address five shortcomings in existing secret sharing-based approaches. First, they allow on-line analysis processing. Second, they enforce data integrity with the help of both inner and outer signatures. Third, they help users minimize the cost of cloud warehousing by limiting global share volume. Moreover, fVSS balances the load among service providers with respect to their pricing policies. Fourth, fVSS improves secret sharing security by imposing a new constraint: no cloud service provide group can hold enough shares to reconstruct or break the secret. Five, fVSS allows refreshing the data warehouse even when some service providers fail. To evaluate bpVSS' and fVSS' efficiency, we theoretically study the factors that impact our approaches with respect to security, complexity and monetary cost in the pay-as-you-go paradigm. Moreover, we also validate the relevance of our approaches experimentally with the Star Schema Benchmark and demonstrate its superiority to related, existing methods
Aldà, Francesco [Verfasser], Hans Ulrich [Gutachter] Simon, and Alexander [Gutachter] May. "On the trade-off between privacy and utility in statistical data analysis / Francesco Aldà ; Gutachter: Hans Ulrich Simon, Alexander May ; Fakultät für Mathematik." Bochum : Ruhr-Universität Bochum, 2018. http://d-nb.info/1161942416/34.
Повний текст джерелаMohamad, Hashim Haswira Nor. "Enabling open access to and re-use of publicly funded research data in Malaysian public universities : a legal and policy analysis." Thesis, Queensland University of Technology, 2012. https://eprints.qut.edu.au/63944/1/Haswira_Mohamad_Hashim_Thesis.pdf.
Повний текст джерелаSharman, Killaine K. "The theory and practice of risk in private infrastructure projects, an analysis of the cida industrial cooperation program's experience to date and policy recommendations for tomorrow." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ32353.pdf.
Повний текст джерелаLi, Yidong. "Preserving privacy in data publishing and analysis." Thesis, 2011. http://hdl.handle.net/2440/68556.
Повний текст джерелаThesis (Ph.D.) -- University of Adelaide, School of Computer Science, 2011
Hay, Michael G. "Enabling accurate analysis of private network data." 2010. https://scholarworks.umass.edu/dissertations/AAI3427533.
Повний текст джерелаHay, Michael. "Enabling Accurate Analysis of Private Network Data." 2010. https://scholarworks.umass.edu/open_access_dissertations/319.
Повний текст джерела