Дисертації з теми "Primary Visual Cortex (PVC)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Primary Visual Cortex (PVC)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Remy, Irving. "Les fonctions visuelles rétiniennes et corticales dans les troubles du spectre de la schizophrénie et les situations à risque de psychose." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAJ030.
Повний текст джерелаPsychotic disorders are characterized by severe functional consequences, with emerging evidence of impairment in low-level visual functions. Most notably, the anatomical and functional link between the retina and the visual cortex led to hypotheses concerning the association between alterations in both visual stages. We investigated retinal and cortical visual electrophysiological measurements in schizophrenia spectrum disorders and situations at risk of psychosis, of which regular cannabis use and early phases of psychosis are an integral part. The results highlighted alterations in most retinal cells and deficits in the primary visual cortex, with a potential link between both measures in schizophrenia. The relevance of electrophysiological biomarkers also lies in the link described with psychotic symptoms, motivating them to be used more widely in clinical practice to improve diagnosis
Fotheringhame, David K. "Temporal coding in primary visual cortex." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339357.
Повний текст джерелаNauhaus, Ian Michael. "Functional connectivity in primary visual cortex." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1692099811&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаThulin, Nilsson Linnea. "The Role of Primary Visual Cortex in Visual Awareness." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11623.
Повний текст джерелаKrug, Kristine. "Ordering geniculate input into primary visual cortex." Thesis, University of Oxford, 1997. https://ora.ox.ac.uk/objects/uuid:b342ffae-4a31-4171-94a6-83cb516e83fe.
Повний текст джерелаHesam, Shariati Nastaran. "A functional model for primary visual cortex." Thesis, The University of Sydney, 2012. http://hdl.handle.net/2123/8753.
Повний текст джерелаRudiger, Philipp John Frederic. "Development and encoding of visual statistics in the primary visual cortex." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25469.
Повний текст джерелаDe, Pasquale Roberto. "Visual discrimination learning and LTP-like changes in primary visual cortex." Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85939.
Повний текст джерелаSpacek, Martin A. "Characterizing patches of primary visual cortex with minimal bias." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53975.
Повний текст джерелаMedicine, Faculty of
Graduate
Ranson, Adam. "Development and plasticity of the mouse primary visual cortex." Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/54216/.
Повний текст джерелаEdwards, Grace. "Predictive feedback to the primary visual cortex during saccades." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5861/.
Повний текст джерелаLiu, Xiaochen. "Modelling Functional Maps and Associated Visual Gamma Activities in the Primary Visual Cortex." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28536.
Повний текст джерелаAjina, Sara. "Changes in connectivity, structure and function following damage to the primary visual cortex." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:2e274261-c71a-4ad1-82cf-2fe6bbdbf673.
Повний текст джерелаSengpiel, Frank. "Mechanisms of binocular integration in the mammalian primary visual cortex." Thesis, University of Oxford, 1994. https://ora.ox.ac.uk/objects/uuid:e2337b16-966b-4e65-b727-db7cfa956ef6.
Повний текст джерелаSchulz, D. P. A. "The structure of functional connectivity in cat primary visual cortex." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1394406/.
Повний текст джерелаBerga, Garreta David. "Understanding eye movements: psychophysics and a model of primary visual cortex." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667901.
Повний текст джерелаIn this thesis we try to explain (1) how we move our eyes, (2) how to build machines that understand visual information and deploy eye movements, and (3) how to make these machines understand tasks in order to decide for eye movements. (1) We provided the analysis of eye movement behavior elicited by low-level feature distinctiveness with a dataset of 230 synthetically-generated image patterns. A total of 15 types of stimuli has been generated (e.g. orientation, brightness, color, size, etc.), with 7 feature contrasts for each feature category. Eye-tracking data was collected from 34 participants during the viewing of the dataset, using Free-Viewing and Visual Search task instructions. Results showed that saliency is predominantly and distinctively in uenced by: 1. feature type, 2. feature contrast, 3. temporality of xations, 4. task di culty and 5. center bias. From such dataset (SID4VAM), we have computed a benchmark of saliency models by testing performance using psychophysical patterns. Our study reveals that state-of-the-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. (2) Computations in the primary visual cortex (area V1 or striate cortex) have long been hypothesized to be responsible, among several visual processing mechanisms, of bottom-up visual attention (also named saliency). In order to validate this hypothesis, images from eye tracking datasets have been processed with a biologically-plausible model of V1 (named Neurodynamic Saliency Wavelet Model or NSWAM). Following Li's neurodynamic model, we de ne V1's lateral connections with a network of ring-rate neurons, sensitive to visual features such as brightness, color, orientation and scale. Early subcortical processes (i.e. retinal and thalamic) are functionally simulated. The resulting saliency maps are generated from the model output, representing the neuronal activity of V1 projections towards brain areas involved in eye movement control. We want to pinpoint that our uni ed computational architecture is able to reproduce several visual processes (i.e. brightness, chromatic induction and visual discomfort) without applying any type of training or optimization and keeping the same parametrization. The model has been extended (NSWAM-CM) with an implementation of the cortical magni cation function to de ne the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel inhibition of return and selection mechanisms are also proposed to predict attention in Free-Viewing and Visual Search conditions. Results show that our model outpeforms other biologically-inpired models of saliency prediction as well as to predict visual saccade sequences, speci cally for nature and synthetic images. (3) Task priming has been shown to be crucial to the deployment of eye movements, involving interactions between brain areas related to goal-directed behavior, working and long-term memory in combination with stimulus-driven eye movement neuronal correlates. In our latest study we proposed an extension of the Selective Tuning Attentive Reference Fixation Controller Model based on task demands (STAR-FCT), describing novel computational de nitions of Long-Term Memory, Visual Task Executive and Task Working Memory. With these modules we are able to use textual instructions in order to guide the model to attend to speci c categories of objects and/or places in the scene. We have designed our memory model by processing a visual hierarchy of low- and high-level features. The relationship between the executive task instructions and the memory representations has been speci ed using a tree of semantic similarities between the learned features and the object category labels. Results reveal that by using this model, the resulting object localization maps and predicted saccades have a higher probability to fall inside the salient regions depending on the distinct task instructions compared to saliency.
Howarth, Christopher. "Pattern adaptation and its interocular transfer in the primary visual cortex." Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/54710/.
Повний текст джерелаCottam, J. C. H. "The role of interneurons in sensory processing in primary visual cortex." Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1402363/.
Повний текст джерелаKo, H. "Functional specificity of local synaptic connections in the primary visual cortex." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344050/.
Повний текст джерелаStevens, Jean-Luc Richard. "Spatiotemporal properties of evoked neural response in the primary visual cortex." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31330.
Повний текст джерелаDylda, Evelyn. "Neuronal circuits of experience-dependent plasticity in the primary visual cortex." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31234.
Повний текст джерелаSawatari, Atomu. "Specificity and diversity of local connections in Macaque primary visual cortex /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9945775.
Повний текст джерелаZhu, Mengchen. "Sparse coding models of neural response in the primary visual cortex." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53868.
Повний текст джерелаBauer, Ute. "Computational models of neural circuitry in the macaque monkey primary visual cortex." [S.l.] : [s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=956186947.
Повний текст джерелаÇürüklü, Baran. "Layout and function of the intracortical connections within the primary visual cortex /." Västerås : Mälardalen University, 2003. http://www.mrtc.mdh.se/publications/0604.pdf.
Повний текст джерелаMao, Yuting. "The Reorganization of Primary Auditory Cortex by Invasion of Ectopic Visual Inputs." Digital Archive @ GSU, 2012. http://digitalarchive.gsu.edu/biology_diss/112.
Повний текст джерелаWilson, Edward. "Investigating signal cascades promoting activity-dependent neuroplasticity in monkey primary visual cortex." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106492.
Повний текст джерелаLe système visuel du primate constitue un modèle idéal pour l'étude du développement neuronal et de la neuroplasticité dépendante de l'activité. L'organisation finale du cortex visuel est basée sur une organisation cellulaire génétiquement déterminée, programmée pour être influencée par l'environnement de l'animal pendant une période critique du développement post-natal.Ainsi, les connections neuronales sont formées par l'expérience sensorielle de l'animal. La plasticité du système visuel décline après la fin de cette période critique et, bien qu'existante chez les animaux matures, elle est grandement diminuée. Par contre, la plasticité corticale peut être rétablie après la fin de la période critique en altérant l'activité neuronale entrante à laquelle le système s'est adapté. Par exemple, empêcher que l'information reliée à la lumière se rende au système visuel provoque la réorganisation corticale chez les primates en bas âge et adultes, de façon à ce que les neurones privées deviennent réceptives aux entrées provenant de l'œil ouvert.Le facteur de transcription CREB (cAMP Response Element-Binding) contribue aux fonctions cellulaires requises pour le remodelage des circuits corticaux. En fait, en répondant aux variations de l'activité neuronale, CREB utilise des mécanismes autodirigés pour créer des circuits fonctionnels. Pour cette raison, il n'est pas surprenant que CREB soit impliqué dans la plasticité reliée à la dominance oculaire (DO) qui se produit dans le cortex visuel primaire à la suite de l'inactivation monoculaire (IM). Précisément, les niveaux de la forme activée de CREB (phosphorylée au site serine-133) sont élevés en réponse aux changements d'activité neuronale à la fois dans les zones visuelles privées et non privées des entrées provenant de l'oeil. Le problème relié à cette observation est le fait qu'elle n'explique pas pourquoi CREB peut induire un changement de la dominance oculaire chez les neurones privées alors que celles non privées ne sont pas remodelées.Les nouveaux résultats expérimentaux présentés ici démontrent des changements au niveau de la quantité de CREB inhibé suite à l'IM qui sont spécifiques aux zones. De plus, il a été démontré que le signal du cofacteur transcriptionnel critique de CREB, TORC1, est rétabli à un niveau comparable à celui de la période critique chez les adultes après l'IM. Le CREB inhibé était augmenté dans les zones privées, alors que TORC1 était augmenté dans les zones non privées. Ensembles, ces résultats suggèrent que a) la modulation différentielle des résidus de CREB et l'activation de ses cofacteurs pourraient contribuer à son habileté à produire des effets dépendants du contexte et b) la plasticité reliée à la DO nécessite le déséquilibre de l'activation de CREB de façon à ce que CREB est potentialisé dans les zones non-privées comparées aux zones privées.
Law, Judith S. "Modeling the development of organization for orientation preference in primary visual cortex." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3935.
Повний текст джерелаChirimuuta, Mazviita. "A psychophysical and computational study of contrast coding in primary visual cortex." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615802.
Повний текст джерелаGajowa, Marta. "Synaptic and cellular mechanisms underlying functional responses in mouse primary visual cortex." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB125.
Повний текст джерелаFeature selectivity of cortical neurons, one example of functional properties in the brain, is the ability of neurons to respond to particular stimulus attributes - e.g. the receptive field of a neuron in the primary visual cortex (V1) with respect to object movement direction. This thesis contributes to understanding how feature selectivity arises in mouse V1. It is divided into two parts, each based on distinct approaches to elucidate visual processing mechanisms, the first at a population level and the second at the single neuron level. First, on a population level, I have developed tools towards an eventual project that combines 2-photon optogenetics, 2-photon imaging and traditional whole-cell electrophysiology to map functional connectivity in V1. This map will provide a link between cell tuning (i.e. cell function) and network architecture, enabling quantitative and qualitative distinction between two extreme scenarios in which cells in mouse V1 are either randomly connected, or are associated in specialized subnetworks. Here I describe the technical validation of the method, with the main focus on finding the appropriate biological preparation and reagents. Second, based on whole-cell patch recordings of single mouse V1 neurons in vivo, I characterize the neuronal input-output (I/O) transfer function using current and conductance inputs, the latter intended to mimic the biophysical properties of synapses in a functional context. I employ a novel closed-loop in vivo protocol based on a combination of current, voltage and dynamic clamp recording modes. I first measure the basic I/O transfer function of a given neuron with current and conductance steps, under current and dynamic clamp, respectively. I then measure the visually evoked spiking output, under current clamp, and the synaptic conductance input, under voltage clamp, to that neuron. Finally, I reintroduce variations of the visually-evoked conductance input to the same cell under dynamic clamp. In that manner, I describe an I/O transfer function which allows a characterization of the mathematical operations performed by the neuron during functional processing. Furthermore, modifications of the relative scaling and the temporal characteristics of the excitatory and inhibitory components of the reintroduced synaptic input, enables dissection of each component's role in shaping the spiking output, as well as to infer overall differences between various physiological cell types (e.g. regular-adapting, presumably excitatory, versus fast-spiking, presumably inhibitory, neurons). Finally, examination of the transfer functions, in particular their dependence on temporal modifications, provides insights on the relationship between the neuronal code and the biophysical properties of neurons and their network
Ball, Christopher Edward. "Modeling the emergence of perceptual color space in the primary visual cortex." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/11694.
Повний текст джерелаHattori, Ryoma. "Neural Mechanisms Underlying the Establishment of Unimodality in Mouse Primary Visual Cortex." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718754.
Повний текст джерелаBiology, Molecular and Cellular
Golledge, Huw D. R. "Does inter-columnar neuronal synchrony play a role in visual feature binding?" Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323355.
Повний текст джерелаBowlsby, Stephen. "Glutathione as a neurotransmitter in primary visual cortex : binding sites and neuronal uptake." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29776.
Повний текст джерелаMedicine, Faculty of
Cellular and Physiological Sciences, Department of
Graduate
Berger, Denise [Verfasser]. "Intrinsic and functional aspects of neuronal synchrony in primary visual cortex / Denise Berger." Berlin : Freie Universität Berlin, 2009. http://d-nb.info/1023709279/34.
Повний текст джерелаFreeman, Tobe. "Mechanisms of binocular integration and their development in the cat primary visual cortex." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267925.
Повний текст джерелаRevina, Yulia. "Influence of scene surround on cortical feedback to non-stimulated primary visual cortex." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8016/.
Повний текст джерелаBriggs, Farran. "Local circuitry and function of deep layer neurons in monkey primary visual cortex /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3077804.
Повний текст джерелаBaker, Pamela Mary. "The contribution of cortical microcircuitry to stimulus masking effects in cat primary visual cortex /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17615.
Повний текст джерелаBartsch, Armin P. "Orientation maps in primary visual cortex a Hebbian model of intracortical and geniculocortical plasticity /." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962125733.
Повний текст джерелаCossell, L. "Functional organization and development of connectivity in L2/3 of mouse primary visual cortex." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1435416/.
Повний текст джерелаHoulton, R. E. "Influence of adaptation on single neuron and population coding in mouse primary visual cortex." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1417573/.
Повний текст джерелаZeitler, Leo Laurenz. "Functional and Dynamical Consequences of Long-Range Patchy Connections in the Primary Visual Cortex." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279584.
Повний текст джерелаDet är känt att högre däggdjur utvecklar ett annorlunda strukturerat syncentrum än gnagare, men anledningarna till detta fenomen är fortfarande okänt. Högre däggdjur som huvudsakligen förlitar sig på syn etablerar långväga kopplingar med lokalt samlad fördelning mellan lokalt koncentrerade neuroner. V1 hos råttor och möss som använder lukt som sitt huvudsakliga sinnesintryck har däremot inte en sådan struktur. Trots befintliga studier som undersöker de funktionella egenskaperna av nätverk med lokalt samlade kopplingar på ytteränden är de dynamiska konsekvenserna fortfarande oklara. Vi skapade en hypotes att upprättandet av long-range patchy connections tillåter en bättre härledning av saknad stimulus statistik från få prov. Våra resultat lyckades inte fullständigt bekräfta dessa antaganden, men de indikerade att lokalt koncentrerade nätverk som uppvisar riktningsanpassade långväga kopplingar förbättrar uppskattningar baserade på komplexa saccadiska ögonrörelser och informationsaggregation över tid och rum.
Keemink, Sander Wessel. "Coding of multivariate stimuli and contextual interactions in the visual cortex." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28969.
Повний текст джерелаAntolik, Jan. "Unified developmental model of maps, complex cells and surround modulation in the primary visual cortex." Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/4875.
Повний текст джерелаKim, Taekeun Ph D. Massachusetts Institute of Technology. "Understanding experience-dependent plasticity of cellular and network activity in the mouse primary visual cortex." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/132747.
Повний текст джерелаCataloged from the PDF version of thesis. Vita.
Includes bibliographical references (pages 143-153).
Sensory experiences in daily life modulates corresponding primary sensory cortices and eventually alter our behavior in a befitting manner. One of the most impactful sensory modules is vision. Primary visual cortex (V1) in mammals is particularly malleable during a juvenile critical period, but this plasticity lasts even in adulthood. A representative form of visual cortical plasticity is ocular dominance (OD) plasticity following temporary monocular deprivation (MD). Here, we used a mouse model of amblyopia and revealed that juvenile OD plasticity, which manifests as depression of response to the deprived eye, requires expression of an immediate early gene, Arc. Also, the juvenile OD shift requires the activity of N-methyl-D-aspartate (NMDA) receptors in layer 4 excitatory principal neurons in V1. Another simple but powerful phenomenon of an adult form of visual cortical plasticity is stimulus-selective response potentiation (SRP). SRP is induced simply through experience to the same gratings visual stimulus over days, resulting in potentiation of visually-evoked potentials (VEPs) in layer 4 of V1. Due to the lack of studies regarding the cellular and network activity changes coincident with the induction of SRP, we have used calcium indicator expressing mice to visualize cellular activity across days of SRP training. Using two-photon calcium imaging, we found that there is indeed no significant net change in the population of active neurons during presentation of the familiar (trained) visual stimulus. Follow-up endoscopic calcium imaging revealed that rather, there is a significant reduction of somatic calcium responses selectively for the familiar visual stimulus on the test day following 5 days of SRP induction. Interestingly, the cellular calcium response to the first presentation of the familiar visual stimulus in each block was substantially similar to the response to those of a novel, yet unseen visual stimulus. However, calcium responses to the familiar visual stimulus dramatically decreased as stimulation was repeated in each presentation block within, and across days of SRP training, whereas the response to the novel visual stimulus on the test day was maintained. The findings that short-latency VEP responses are potentiated, while the slower responses revealed by calcium imaging are depressed suggest that feedback inhibition in V1 is strongly recruited by visual recognition of familiar stimulus. A number of previous studies have suggested that deficits in experience-dependent sensory cortical plasticity and perceptual learning are associated with neuropsychiatric disorders such as autism spectrum disorder (ASD), Rett syndrome and schizophrenia. Our results, therefore, may contribute to our understanding of the underlying mechanisms of these disorders and may help inform ways of intervention and treatments.
by Taekeun Kim.
Ph. D. in Neuroscience
Ph.D.inNeuroscience Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences
Le, Bec Benoît. "Lateral connectivity : propagation of network belief and hallucinatory-like states in the primary visual cortex." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS509.
Повний текст джерелаIn the primary visual cortex (V1), we examined the functional impact of centripetal apparent motion sequences originating from the far periphery and converging towards the receptive field of cortical cells along their preferred orientation axis. At high saccadic speed, the anisotropic congruency of elementary stimuli composing a coherent motion is crucial in the diffusion and lateral integration of contextual information. At the electrophysiological level, those results correspond to a latency advance and an amplitude gain of sub and suprathreshold responses, indicating the existence of a dynamic association field where form and motion are already bound in V1. Restricting the apparent motion to the silent periphery result in an invasion of the receptive field by predictive activity. This latter suggests the existence of a mechanism of lateral diffusion intrinsic to V1 that allows to solve the motion extrapolation problem. Second, we posit that geometric hallucinations reflect a long-distance spatial opponency of horizontal connectivity that structure the self organization of V1 ongoing activity, expressing itself through a model of interacting hypercolumns resulting in the formation of neural stripes on V1 surface. We designed visual stimuli in which perturbation by a 1/fα noise of a network highly adapted to geometric inducers result in perception of opponent planforms. Our results suggest that those dynamic percepts correspond to propagating waves of synaptic activity that are detectable at the level of V1 cells under the form of oscillations compatible with the local geometry and the dynamic of the induced percepts
Stimberg, Marcel [Verfasser], and Klaus [Akademischer Betreuer] Obermayer. "Computational models of contrast and orientation processing in primary visual cortex / Marcel Stimberg. Betreuer: Klaus Obermayer." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2011. http://d-nb.info/1016533322/34.
Повний текст джерелаGoodyear, Bradley Gordon. "fMRI of human primary visual cortex at submillimeter resolution, ocular dominance and contrast perception in amblyopia." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0001/NQ42523.pdf.
Повний текст джерелаHunt, Brendan Joel. "Synapse loss from the rhesus monkey primary visual cortex does not correlate with cognitive decline during aging." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12122.
Повний текст джерелаThe effect of age on synapses in the neuropil of layers 2/3 in primary visual cortex was determined in 12 rhesus monkeys of various ages (6-33 years old). All of the monkeys had been behaviorally tested. As determined using the size–frequency method, there is a decrease in the numerical density of symmetric, but not asymmetric, synapses with age. There is no significant correlation between the loss of symmetric synapse frequency and the cognitive impairment indices (CII) of the 12 behaviorally tested monkeys. This lack of correlation between synapse frequency reduction and cognitive decline presumably relates to the fact that the primary visual cortex does not have a direct role in subserving cognition.