Добірка наукової літератури з теми "Pression de rayonnement acoustique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pression de rayonnement acoustique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pression de rayonnement acoustique"
NICOLAS, J., F. SGARD, N. ATALLA, and P. LABRECQUE. "Rayonnement acoustique de structures non bafflées." Le Journal de Physique IV 04, no. C5 (May 1994): C5–77—C5–80. http://dx.doi.org/10.1051/jp4:1994509.
Повний текст джерелаBESLIN, O., P. MILLOT, and J. L. GUYADER. "PRÉDICTION DU RAYONNEMENT ACOUSTIQUE D'UNE PLAQUE TROUÉE." Le Journal de Physique IV 02, no. C1 (April 1992): C1–503—C1–506. http://dx.doi.org/10.1051/jp4:19921108.
Повний текст джерелаLesueur, Claude, and Jean Nicolas. "Rayonnement acoustique des structures (Acoustic Radiation of Structures)." Journal of the Acoustical Society of America 85, no. 6 (June 1989): 2687–88. http://dx.doi.org/10.1121/1.397324.
Повний текст джерелаFahy, F. J. "Rayonnement acoustique des structures: Vibroacoustique, interactions fluide-structure." Journal of Sound and Vibration 135, no. 3 (December 1989): 532–33. http://dx.doi.org/10.1016/0022-460x(89)90708-6.
Повний текст джерелаHéron, Nicolas, Christophe Bailly, and Sébastien Candel. "Modélisation du rayonnement acoustique de jets coaxiaux supersoniques." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, no. 7 (July 2001): 497–502. http://dx.doi.org/10.1016/s1620-7742(01)01356-3.
Повний текст джерелаHabault, D. "Rayonnement acoustique de structures vibrantes : applications au domaine audible." La Houille Blanche, no. 5 (August 2000): 13–16. http://dx.doi.org/10.1051/lhb/2000042.
Повний текст джерелаTRAD, A. "Rayonnement acoustique de coques élastiques étudié par des méthodes intégrales." Le Journal de Physique IV 04, no. C5 (May 1994): C5–877—C5–880. http://dx.doi.org/10.1051/jp4:19945191.
Повний текст джерелаCHUSSEAU, M., A. CARRÈRE, P. MATHARAN, and S. PAUZIN. "Bruit des avions légers : réduction du rayonnement acoustique d'une hélice." Le Journal de Physique IV 04, no. C5 (May 1994): C5–993—C5–996. http://dx.doi.org/10.1051/jp4:19945218.
Повний текст джерелаLAULAGNET, B., and J. L. GUYADER. "RAYONNEMENT ACOUSTIQUE DES COQUES CYLINDRIQUES, MUNIES D'UN MATÉRIAU DE MASQUAGE." Le Journal de Physique Colloques 51, no. C3 (September 1990): C3–135—C3–145. http://dx.doi.org/10.1051/jphyscol:1990315.
Повний текст джерелаGloerfelt, Xavier, Christophe Bailly, and Daniel Juvé. "Calcul direct du rayonnement acoustique d'un écoulement affleurant une cavité." Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 328, no. 8 (August 2000): 625–31. http://dx.doi.org/10.1016/s1620-7742(00)00012-x.
Повний текст джерелаДисертації з теми "Pression de rayonnement acoustique"
Margnat, Florent. "Méthode numérique hybride pour l'étude du rayonnement acoustique d'écoulements turbulents pariétaux." Poitiers, 2005. http://www.theses.fr/2005POIT2316.
Повний текст джерелаA hybrid approach is proposed for the prediction of wall-bounded flow noise. Aerodynamic data are computed through an incompressible direct numerical simulation. The no-slip condition is modelled by the virtual boudary method, especially tailored for complex geometries, and original in the field of aeroacoustics. 3D turbulent plane channel flow was simulated for validation, in particular for the pressure fluctuations. The process of vortex shedding by the shear layer generated at the leading edge of a blunt flat plate is analysed. For this configuration, the acoustic radiation is computed through the Curle's analogy, implemented via an advanced time algorithm. For a compact source, maximum emission is observed near 60° downstream, due to the volumic source terms, that are stronger than surfacic terms. This is also the case for a non-compact source, but the influence of retarded times enhances the longitudinal term
MONTETAGAUD, FABIENNE. "Modelisation de la propagation et du rayonnement acoustiques des entrees d'air de turboreacteurs." Le Mans, 1998. http://www.theses.fr/1998LEMA1004.
Повний текст джерелаLargeau, Jean-François. "Analyse expérimentale de la dynamique et du rayonnement acoustique d’un écoulement de marche montante." Poitiers, 2004. http://www.theses.fr/2004POIT2306.
Повний текст джерелаThe subject of this experimental study is the flow generated over a forward-facing step. The impact of several parameters (height of step and rate of flow) on the spatio-temporal flow organisation is investigated. The aim is also to clarify relationships between wall fluctuation pressure and the velocity field. Also, a model is designed and microphones probes are developed to investigated wall fluctuations pressures. Moreover, spatial flow organisation is examined with a Particle Image Velocimetry system for different configurations (height and flow rate). First the 2D hypothesis is improved (with wall flow visualisations experiments, hot-wire anemometry, wall pressure fluctuations probes). Moreover, spatial flow organisation is examined with a Particle Image Velocimetry system for different configurations (height and flow rate). The velocity field is mesurated simultaneously with the wall pressure fluctuations and acoustic pressure. Accordingly, the structure convection velocity, integrals flow scales and correlations between these different data are obtained overall the model. Finally, a Curle model computation is realised with experimental wall pressure fluctuations data and the estimated sound field is compared with acoustic measurements
Liu, Zubin. "Etude numérique et expérimentale des modes de rayonnement champ proche de structures vibrantes." Ecole centrale de Marseille, 2013. http://www.theses.fr/2013ECDM0012.
Повний текст джерелаHebri, Salem. "Études de la pression de radiation dans les interféromètres utilisés pour la détection des ondes gravitationnelles." Nice, 2007. http://www.theses.fr/2007NICE4103.
Повний текст джерелаThe Virgo detector is a Michelson interferometer with 3 km Fabry Perot cavities in the arms and using the power recycling technique. The main aim is the direct detection of gravitational waves emitted by astrophysical sources. The injection system is constituted essentially by a triangular 144 m long cavity with the middle mirror suspended called the Mode Cleaner, capable of selecting the TEM00 mode only. The suspended mirror is very light (360g), which can make it sensitive to the photon pressure. I developed some simulation codes for a triangular cavity with all controls identical to a real Virgo mode cleaner. These codes can be used for other studies. The first part of this thesis is dedicated to studying the effects of the radiation pressure on the mode cleaner for the lock acquisition, the optical angular spring etc. In the second part, I made the same simulation for studying the effect of the radiation pressure in 3 km long Virgo cavities, essentially on the optical angular spring, which can make problems for the automatic alignment on Virgo. Finally, I describe my participation to the Virgo commissioning, which primarily consists in working on control systems for the system of laser beam injection and their optimization
Almohamad, Samir. "Micro-manipulation de fluides miscibles et de fibres de collagène à l'aide de pinces acoustiques à faisceau unique." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILN038.
Повний текст джерелаUltrasound techniques have proven to be powerful tools for controlling dispersed immiscible droplets. By carefully shaping the acoustic field, these droplets can be sorted, divided, merged, selectively targeted, and repositioned with precision. Common methods include using standing waves to capture droplets at specific pressure nodes or antinodes, as well as employing traveling waves to move droplets along the path of wave propagation. Recent breakthroughs have led to the development of selective acoustic tweezers, which utilize focused beams or acoustic vortices for the precise manipulation of individual droplets. However, ultrasound-based manipulation has traditionally focused on immiscible fluids. Karlsen, Augustsson, and Bruus [Phys. Rev. Lett. 117, 114504 2016] suggested the possibility of manipulating miscible fluids with selective tweezers. However, their work was purely theoretical and no experimental demonstrations have been achieved so far. Such a demonstration is very challenging because of the weak acoustic contrast between miscible fluids and the diffusion process, progressively blurring the interface.This Ph.D. research experimentally demonstrates the possibility of patterning, trapping, and dislocating high-concentration miscible-fluid blobs (Ficoll) within a lower-concentration medium (water) using selective acoustic tweezers. It delves into the complex interactions between ultrasound waves and miscible fluids, with a particular focus on nonlinear acoustic effects such as acoustic radiation force and acoustic streaming and their influence on fluid behavior at microscales. The experimental setup integrates single-beam acoustical tweezers with microfluidic devices, allowing precise control and manipulation of fluids. The experimental results are compared with numerical simulations, resulting in good agreement between the two.We further explored the manipulation of other objects with low acoustic contrast: collagen fibers. Our preliminary results suggest the possibility of manipulating these fibers within a fluid medium. This noninvasive method has potential implications in tissue engineering and biomedical research
Skalli, Housseini Aniss. "Développement d'un outil de simulation basé sur le lancer de faisceaux pour la prédiction du bruit intérieur et du rayonnement extérieur des nacelles." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6611.
Повний текст джерелаLindberg, Anders Sven Axel. "Airborne noise characterisation of a complex machine using a dummy source approach." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0082/document.
Повний текст джерелаThe characterisation of vibrating sound sources is a challenge in noise and vibration engineering. In this thesis, an experimental approach to the characterisation of air-borne sound from a complex machine is investigated. A proper characterisation has to account for both radiation and diffraction phenomena in order to describe the sound source when inserted into an arbitrary space which enables prediction of sound pressure. A particular technique — a dummy source — has been conceived to deal with this problem. The dummy is a closed cabinet of similar size but much simpler shape than the complex machine, and it serves as a model of sound diffraction. The dummy is equipped with a flush-mounted array of loudspeaker drivers. The superposition of sound fields created by the individual drivers models sound radiation of the complex machine. This thesis introduces the concept of a dummy source and discusses three problems that need to be addressed for its practical application: (1) estimation of the transfer impedance of the space (the Green’s function), (2) the specification of the cabinet and the driver array, and (3) the estimation of the equivalent source strengths in terms of volume velocity. The approach is investigated via experimental and numerical case studies
Di, Pace Sibilla. "Vers l’observation du bruit quantique de la pression de radiation dans un interféromètre suspendu : l’expérience QuRaG." Thesis, Nice, 2014. http://www.theses.fr/2014NICE4108/document.
Повний текст джерелаThe existence of gravitational waves (GW) is one of the most interesting predictions of the theory of general relativity of Einstein. The experimental discovery of GW would be an important test of the theory itself. In addition, the detection of GW will open a new window of observation especially in those regions of the Universe inaccessible to electromagnetic observations. Interferometers, as Virgo are the most promising devices for the detection of GW. Currently, the sensitivity of these detectors is not yet sufficient to have a detection rate of few events/year. Therefore, an intense experimental program to improve the sensitivity is underway. Specifically, the sensitivity of the next generations of GW detectors, at low frequencies, will be limited by the effect of the radiation pressure (RP) on the suspended mirrors. This phenomenon not yet observed experimentally in the ground based GW detectors band, is currently the subject of a very active research field. My work presented here aims at building a detector for studying quantum effects of RP in GW detectors: the QuRaG experiment. It will consist of a suspended Michelson interferometer where each arm will be a high finesse Fabry-Pérot cavity, in which only the end mirror will be further suspended and then sensitive to the RP noise. During my PhD I have actively participated to the R&D of all QuRaG subsystems. Therefore, the work that I have done deals with various aspects of the project whose related problems belong to different domains of physics. My work described in this manuscript demonstrates that QuRaG is realizable and that it will be able to observe the RP noise in the expected frequency range
Degeorges, Jean-François. "Rayonnement acoustique des plaques en champ proche." Le Mans, 1988. http://www.theses.fr/1988LEMA1016.
Повний текст джерелаКниги з теми "Pression de rayonnement acoustique"
Lesueur, Claude, and Manfred Heckl. Rayonnement acoustique des structures. Eyrolles, 1988.
Знайти повний текст джерелаLyamshev, Leonid M. Radiation Acoustics. Taylor & Francis Group, 2014.
Знайти повний текст джерелаLyamshev, Leonid M. Radiation Acoustics. Taylor & Francis Group, 2003.
Знайти повний текст джерелаLyamshev, Leonid M. Radiation Acoustics. Taylor & Francis Group, 2004.
Знайти повний текст джерелаТези доповідей конференцій з теми "Pression de rayonnement acoustique"
LAULAGNET, B. "RAYONNEMENT ACOUSTIQUE EXTERIEUR DE COQUES INFINIES PRESENTANT DES PETITS DEFAUTS DE CIRCULARITE." In Acoustics '93. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/20473.
Повний текст джерела