Дисертації з теми "Prediction of quality"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Prediction of quality".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
KUNTE, DEEPTI SHRIRAM. "Sound Quality Prediction Using Neural Networks." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283336.
Повний текст джерелаLjudkvalitet är ett viktigt mått som skildrar en maskins kvalitet såväl som bekvämlighet i dess användning. Det är emellertid ett subjektivt mått, inte bara är det svårt att fånga detta i förväg men också att det kräver både tid och dyra jurytestningar. Det är därför värdefullt att kunna effektivt förutsäga de resultaten av jurystudien från mätvärden som kan mätas objektivt. Syftet med arbetet är tvåfaldigt: det första är att etablera neuronnätsmodeller till att förutsäga subjektiva ljudkvalitetsmätvärden från objektiva mätvärden. Det andra är att tolka modellen till att kunna förstå den relativa betydelsen av varje objektivt mätvärde mot en specifik subjektiv bedömning. I sista hand syftar arbetet till att bana vägen för inkludering av mätvärden för ljudkvalitet i de tidiga designfaserna. Utifrån studien var det uppenbart att neuronnäts prestanda var åtminstone lika med eller bättre än de linjära eller kvadratiska modellerna. Anslutningsviktsmetoden, profilmetoden, störningsmetoden, den förbättrade stegvisa urvalsmetoden samt den linjära regressionsmetoden var tolkningsalgoritmerna som visade sig att fungera väl på alla simulerad datauppsättningar. De gav också jämförbara resultat på de verkliga datauppsättningarna. Neuronnät visade sig att ha potential att ge låga prediktionsfel samtidigt som de bibehåller tolkningsbarhet i applikationer för ljudkvalitet. Studien av dataknapphet gav det en uppfattning om storleken på prestandaförbättring som kan uppnås med mer data och kan fungera som en användbar input vid bestämning av antalet datapunkter.
Steel, Donald. "Software reliability prediction." Thesis, Abertay University, 1990. https://rke.abertay.ac.uk/en/studentTheses/4613ff72-9650-4fa1-95d1-1a9b7b772ee4.
Повний текст джерелаPeng, Huiping. "Air quality prediction by machine learning methods." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/55069.
Повний текст джерелаScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Hollier, M. P. "Audio quality prediction for telecomunications speech systems." Thesis, University of Essex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282496.
Повний текст джерелаMateus, Ana Teresa Moreirinha Vila Fernandes. "Quality management in laboratories- Effciency prediction models." Doctoral thesis, Universidade de Évora, 2021. http://hdl.handle.net/10174/29338.
Повний текст джерелаTaipale, T. (Taneli). "Improving software quality with software error prediction." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201512042251.
Повний текст джерелаNykyaikainen ketterä ohjelmistokehitys on monimutkainen prosessi. Tämä väittämä pätee varsinkin isoihin projekteihin. Ohjelmistokehityksessä käytettävät työkalut helpottavat jo itsessään kehitystyötä, mutta ne myös säilövät tärkeää tilastotietoa. Tätä tilastotietoa voidaan käyttää koneoppimisjärjestelmän opettamiseen. Tällä tavoin koneoppimisjärjestelmä oppii tunnistamaan ohjelmistokehitystyölle ominaisia käyttäytymismalleja. Tämän opinnäytetyön lähtökohta on ohjelmistoprojekti, jonka on määrä toimia osana laajaa telekommunikaatioverkkoa. Tällainen ohjelmistoprojekti vaatii kalliin testauslaitteiston, mikä johtaa suoraan kalliiseen testausaikaan. Toisaalta yksikkötestaus ja koodikatselmointi ovat työmenetelmiä, jotka parantavat ohjelmiston laatua, mutta vaativat paljon ohjelmistoammattilaisten resursseja. Koska ohjelmointivirheet ovat ohjelmistoprojektin edetessä väistämättömiä, on näiden työkalujen tehokkuus tunnistaa ohjelmointivirheitä erityisen tärkeää onnistuneen projektin kannalta. Tässä opinnäytetyössä testaamisen ja muiden laadunvarmennustyökalujen tehokkuutta pyritään parantamaan käyttämällä hyväksi koneoppimisjärjestelmää. Koneoppimisjärjestelmä opetetaan tunnistamaan ohjelmointivirheet käyttäen historiatietoa projektissa aiemmin tehdyistä ohjelmointivirheistä. Koneoppimisjärjestelmän ennusteilla kohdennetaan testausta painottamalla virheen todennäköisimmin löytäviä testitapauksia. Työn lopputuloksena on koneoppimisjärjestelmä, joka pystyy ennustamaan ohjelmointivirheen todennäköisimmin sisältäviä tiedostomuutoksia. Tämän tiedon pohjalta on luotu raportteja kuten listaus todennäköisimmin virheen sisältävistä tiedostomuutoksista, koko ohjelmistoprojektin kattava kartta virheen rivikohtaisista todennäköisyyksistä sekä graafi, joka yhdistää ohjelmointivirhetiedot organisaatiotietoon. Alkuperäisenä tavoitteena ollutta testaamisen painottamista ei kuitenkaan saatu aikaiseksi vajaan testikattavuustiedon takia. Tämä opinnäytetyö toi esiin tärkeitä parannuskohteita projektin työtavoissa ja uusia näkökulmia ohjelmistokehitysprosessiin
Krishnamurthy, Janaki. "Quality Market: Design and Field Study of Prediction Market for Software Quality Control." NSUWorks, 2010. http://nsuworks.nova.edu/gscis_etd/352.
Повний текст джерелаWallner, Björn. "Protein Structure Prediction : Model Building and Quality Assessment." Doctoral thesis, Stockholm University, Department of Biochemistry and Biophysics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-649.
Повний текст джерелаProteins play a crucial roll in all biological processes. The wide range of protein functions is made possible through the many different conformations that the protein chain can adopt. The structure of a protein is extremely important for its function, but to determine the structure of protein experimentally is both difficult and time consuming. In fact with the current methods it is not possible to study all the billions of proteins in the world by experiments. Hence, for the vast majority of proteins the only way to get structural information is through the use of a method that predicts the structure of a protein based on the amino acid sequence.
This thesis focuses on improving the current protein structure prediction methods by combining different prediction approaches together with machine-learning techniques. This work has resulted in some of the best automatic servers in world – Pcons and Pmodeller. As a part of the improvement of our automatic servers, I have also developed one of the best methods for predicting the quality of a protein model – ProQ. In addition, I have also developed methods to predict the local quality of a protein, based on the structure – ProQres and based on evolutionary information – ProQprof. Finally, I have also performed the first large-scale benchmark of publicly available homology modeling programs.
Wallner, Björn. "Protein structure prediction : model building and quality assessment /." Stockholm : Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm University, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-649.
Повний текст джерелаBrun, Daniel, and Colin Lawless. "Quality Prediction in Jet Printing Using Neural Networks." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278882.
Повний текст джерелаYtmonteringsteknologi är en väletablerad metod som används inom tillverkningen av kommersiell elektronik, och kravet på dessa maskiner ökar i takt med att elektronikens komplexitet ökar och storleken på komponenterna minskar. Mycronic är ett företag vars fokus ligger i att möta dessa krav med deras högteknologiska jet printing - och pick-and-place-maskiner. Detta examensarbete har utförts på Mycronic och har fokuserat på jet printing-maskinen MY700. På grund av okända faktorer kan kvaliteten på den deponerade lodpastan från maskinen variera över tid. Det var därför intressant att övervaka variabler hos maskinen för att få mer kunskap om orsaken till den varierande kvaliteten och också för att kunna upptäcka förändringar i kvaliteten. I det här projektet har temperaturen mätts på tre kritiska positioner på ejektorn samt även strömmen som går genom det piezoelektriska ställdonet. Dessa data gavs till ett neuralt nätverk för att göra kvalitetsprognoser med avseende på diametern på deponeringarna av lodpasta. Olika kombinationer av sensordata användes för att utvärdera hur de olika sensorerna påverkade det neurala nätverkets prestanda. Därigenom kunde en bättre förståelse av hur stor påverkan de olika variablerna hade på kvaliteten på deponeringarna uppnås. Resultaten indikerar att strömmen var mer betydelsefull än temperaturen för att göra kvalitetsprognoser. Om bara temperaturdata användes lyckades inte det neurala nätverket göra exakta förutsägelser för kvalitetsavvikelser, medan med bara strömdata eller båda kombinerade kunde bättre förutsägelser göras. Strömdatan förbättrade också prestandan hos det neurala nätverket när jobb med olika diametrar användes. Slutsatsen är att ingen av de tre temperatursensorerna förbättrade prestandan signifikant, och det fanns inga betydande skillnader mellan dem, medan strömmen förbättrade prestandan.
Kothawade, Rohan Dilip. "Wine quality prediction model using machine learning techniques." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-20009.
Повний текст джерелаNébouy, David. "Printing quality assessment by image processing and color prediction models." Thesis, Saint-Etienne, 2015. http://www.theses.fr/2015STET4018/document.
Повний текст джерелаPrinting, though an old technique for surface coloration, considerably progressed these last decades especially thanks to the digital revolution. Professionals who want to meet the demands in terms of quality regarding the visual rendering of their clients thus want to know to which extent human observers are sensitive to the degradation of an image. Such questions regarding the perceived quality of a reproduced image can be split into two different topics: the printing quality as capacity of a printing system of accurately reproduce an original digital image, and the printed image quality which results from both the reproduction quality and the quality of the original image itself. The first concept relies on physical analysis of the way the original image is deteriorated when transferred onto the support, and we propose to couple it with a sensorial analysis, which aims at assessing perceptual attributes by giving them a value on a certain scale, determined with respect to reference samples classified by a set of observers. The second concept includes the degradation due to the printing plus the perceived quality of the original image, not in the scope of this work. In this report, we focus on the printing quality concept. Our approach first consists in the definition of several printing quality indices, based on measurable criteria using assessment tools based on “objective” image processing algorithms and optical models on a printed-then-scanned image. PhD work made in Hubert Curien Laboratory
Wang, Rui. "Site-specific prediction and measurement of cotton fiber quality." Diss., Mississippi State : Mississippi State University, 2004. http://library.msstate.edu/etd/show.asp?etd=etd-10122004-220250.
Повний текст джерелаKunta, Karika. "Effects of geographic information : quality on soil erosion prediction /." [S.l.] : [s.n.], 2009. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18136.
Повний текст джерелаCheng, Shuiyuan. "Multi-dimensional multi-box models for air quality prediction." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0017/NQ54669.pdf.
Повний текст джерелаAfzal, Wasif. "Search-Based Prediction of Software Quality : Evaluations and Comparisons." Doctoral thesis, Karlskrona : Blekinge Institute of Technology, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00490.
Повний текст джерелаSun, Lingfen. "Speech quality prediction for voice over Internet protocol networks." Thesis, University of Plymouth, 2004. http://hdl.handle.net/10026.1/870.
Повний текст джерелаLepard, Robert F. (Robert Frederick). "Power quality prediction based on determination of supply impedance." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40171.
Повний текст джерелаHellberg, Johan, and Kasper Johansson. "Building Models for Prediction and Forecasting of Service Quality." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295617.
Повний текст джерелаInom nätverk och systemteknik samlas operativ data från sensorer eller loggar som sedan kan användas för att bygga datadrivna funktioner för förutsägelser om prestanda och andra operationella uppgifter [1]. Framtidens teletjänster kommer att dela en gemensam kommunikation och bearbetnings infrastruktur i syfte att uppnå kostnadseffektiva och robusta nätverk. Ett kritiskt problem med detta är att kunna garantera en hög servicekvalitet. Detta problem uppstår till stor del som ett resultat av att olika tjänster har olika krav. Tack vare nyliga avanceringar inom beräkning och nätverksteknologi har vi kunnat samla in användningsmätningar från nätverk och olika datorenheter för att kunna förutspå servicekvalitet för exempelvis videostreaming och lagring av data. I detta arbete undersöker vi data med hjälp av statistiska inlärningsmetoder och bygger prediktiva modeller. En mer detaljerat beskrivning av vår testbed, som är lokaliserad på KTH, finns i [2].
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
FOTIO, TIOTSOP LOHIC. "Optimizing Perceptual Quality Prediction Models for Multimedia Processing Systems." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2970982.
Повний текст джерелаCairns, Stefan H. 1949. "Eutrophication Monitoring and Prediction." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc277850/.
Повний текст джерелаWu, Guoli. "Accruals Quality and the Prediction of Earnings and Cash Flows." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511863.
Повний текст джерелаAckerman, Mattheus Johannes. "Steel slab surface quality prediction using neural networks / M.J. Ackerman." Thesis, North-West University, 2003. http://hdl.handle.net/10394/382.
Повний текст джерелаThesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
Yusof, Norzan Mohd. "Environmental load versus concrete quality : prediction of structure's design life." Thesis, University of Birmingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323997.
Повний текст джерелаZhang, Yangyue. "Water quality prediction for recreational use of Kranji Reservoir, Singapore." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66848.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 52-57).
Singapore has been making efforts in relieving its water shortage problems and has been making great progress through its holistic water management. Via the Active, Beautiful, Clean Waters (ABC Waters) Programme, Singapore's Public Utilities Board (PUB) is now aiming to opening Kranji Reservoir for recreation. Considering the potential contamination of freshwater, particularly by fecal coliform, which threatens public health by causing water-borne diseases, a practical microbial water quality prediction program has been built up to evaluate the safety of the recreational use of Kranji Reservoir. E. coli bacteria concentrations within the reservoir were adopted as an indicator of recreational water quality. Dynamic fate-and-transport modeling of E. coli concentrations along the reservoir was carried out using the Water Quality Analysis Simulation Program (WASP). The model was constructed by specifying basic hydraulic parameters. E. coli loadings were indexed to the various land uses within the Kranji Catchment and the effective E. coli bacterial decay rates were derived from theoretical equations and verified by on-site attenuation studies carried out in Singapore. Simulation results from the WASP model are consistent with samples collected and analyzed for E. coli concentration in Kranji Reservoir in January 2011. The simulation results indicate potentially high risk in using the reservoir's three tributaries for water-contact recreation. The model also shows advective flow through the reservoir to be a big contributor to the concentration changes along the reservoir. A prototype of a practical early warning system for recreational use of Kranji Reservoir has been designed based on the implementation of the model.
by Yangyue Zhang.
M.Eng.
Ekholmer, Henrik. "Prediction and Optimization of Paper Quality Properties in Paper Manufacturing." Thesis, KTH, Optimeringslära och systemteori, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200383.
Повний текст джерелаEtt stort problem inom pappersindustrin i dag är att de flesta papperskvaliteter bara kan mätas i ett labb efter en hel tambur är producerad. En tamburs längd är ca 20-40 km och tar ungefär en timme att producera. Detta kan leda till att en hel timmes produktion och flera kilometer av papper går till spillo på grund av dålig papperskvalitet. För att lösa detta kan en prediktionsmodell användas för att uppskatta papperskvaliteterna on-line. Med denna modell kan även en kostnadsoptimering utföras för att producera samma kvalitet men till ett lägre pris. I detta examensarbete ligger största fokus p å att välja en modell för att prediktera papperskvaliteterna. Detta inkluderar synkronisera data i olika delar av pappersmaskinen, variabelselektion och filtrering. Nästa fokus är att optimera produktionskostnaderna baserat p å prediktionsmodellen. En känslighetsanalys utförs p å kostnaden för ett antal variabler för att öka förståelsen för modellen.
Soltani, Behdad. "Model Based Quality Prediction in Fluidised-Bed Dryers for Yeast." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21373.
Повний текст джерелаAndersson, Martin. "Parametric Prediction Model for Perceived Voice Quality in Secure VoIP." Thesis, Linköpings universitet, Informationskodning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127402.
Повний текст джерелаMagwaza, Lembe Samukelo. "Non-destructive prediction and monitoring of postharvest quality of citrus fruit." Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85578.
Повний текст джерелаENGLISH ABSTRACT: The aim of this study was to develop non-destructive methods to predict external and internal quality of citrus fruit. A critical review of the literature identified presymptomatic biochemical markers associated with non-chilling rind physiological disorders. The prospects for the use of visible to near infrared spectroscopy (Vis/NIRS) as non-destructive technology to sort affected fruit were also reviewed. Initial studies were conducted to determine the optimum condition for NIRS measurements and to evaluate the accuracy of this technique and associated chemometric analysis. It was found that the emission head spectroscopy in diffuse reflectance mode could predict fruit mass, colour index, total soluble solids, and vitamin C with high accuracy. Vis/NIRS was used to predict postharvest rind physico-chemical properties related to rind quality and susceptibility of ‘Nules Clementine’ to RBD. Partial least squares (PLS) statistics demonstrated that rind colour index, dry matter (DM) content, total carbohydrates, and water loss were predicted accurately. Chemometric analysis showed that optimal PLS model performances for DM, sucrose, glucose, and fructose were obtained using models based on multiple scatter correction (MSC) spectral pre-processing. The critical step in evaluating the feasibility of Vis/NIRS was to test the robustness of the calibration models across orchards from four growing regions in South Africa over two seasons. Studies on the effects of microclimatic conditions predisposing fruit to RBD showed that fruit inside the canopy, especially artificially bagged fruit, had lower DM, higher mass loss, and were more susceptible to RBD. The study suggested that variations in microclimatic conditions between seasons, as well as within the tree canopy, affect the biochemical profile of the rind, which in turn influences fruit response to postharvest stresses associated with senescence and susceptibility to RBD. Principal component analysis (PCA) and PLS discriminant analysis (PLS-DA) models were applied to distinguish between fruit from respectively, inside and outside tree canopy, using Vis/NIRS signal, suggesting the possibility of using this technology to discriminate between fruit based on their susceptibility to RBD. Results from the application of optical coherence tomography (OCT), a novel non-destructive technology for imaging histological changes in biological tissues, showed promise as a potential technique for immediate, real-time acquisition of images of rind anatomical features of citrus fruit. The study also demonstrated the potential of Vis/NIRS as a non-destructive tool for sorting citrus fruit based on external and internal quality.
AFRIKAANSE OPSOMMING: Die studie het ten doel gestaan om nie-destruktiewe meeting metodes te toets en ontwikkel wat die interne en eksterne-kwaliteit van sitrusvrugte kan voorspel. In ʼn litratuuroorsig is biochemies verandering in die skil en wat geassosieer word met die ontwikkeling van fisiologies skildefekte geïdentifiseer, asook is die moontlikheid ondersoek om Naby Infrarooi spektroskopie (NIRS) as ‘n nie-destruktiewe tegnologie te gebruik om vrugte te sorteer. Eerstens was die optimale toestande waarby NIRS meetings van sitrusvrugte geneem moet word asook die akkuraatheid van die toerusting en chemometrika data-ontleding beproef. Daar is gevind dat die uitstralings-kop spektrofotometer in diffusie-weerkaatsings modus vrugmassa, skilkleur, totale opgeloste stowwe asook vitamien C akkuraat kan voorspel. Daarna van NIRS gebruik om na-oes fisies-chemiese eienskappe wat verband hou met skilkwaliteit en vatbaarheid vir skilafbraak van ‘Nules Clementine’ mandaryn. Deur gebruik te maak van “Partial least squares” (PLS) statistieke was gedemonstreer dat die skilkleur, droë massa (DM), totale koolhidrate en waterverlies akkuraat voorspel kon word. Chemometriese analises het ook getoon dat optimale PLS modelle vir DM, sukrose, glukose en fruktose verkry kan word deur modelle te skep wat gebaseer is op “Multiple scatter correction” (MSC) spektrale voor-verwerking. ʼn Belangrike stap in die ontwikkeling van NIRS gebaseerde indeling is om die robuustheid van die kalibrasiemodelle te toets en was gedoen deur vrugte te meet en sorteer van vier boorde en oor twee seisoene. ʼn Verder eksperiment om die impak van mikroklimaat op die skil se vatbaarheid vir fisiologiese defekte te ontwikkel het getoon dat vrugte wat binne in die blaardak ontwikkel (lae vlakke van sonlig) ʼn laer DM, hoër gewigsverlies het en was ook meer vatbaar vir skilafbraak. Die resultate dui daarop dat verskille in mikroklimaat oor die seisoen asook in die blaardak die skil se biochemiese profiel beïnvloed, wat lei tot ʼn negatiewe reaksie op na-oes stres en verhoogde voorkoms van fisiologiese skilafbraak. Die ontwikkelde “Principal component analysis” (PCA) en PLS-diskriminant analise modelle was daarna suksesvol toegepas om vrugte te skei na NIRS meetings, op die basis van vrugpossies in die blaardak. Nuwe, nie-destruktiewe tegniek, nl. “Optical coherence tomography” (OCT) was suksesvol getoets as manier om ʼn fotografiese beeld te skep van histologiese veranderinge in die skil. Die resultate dui op die potensiaal van die onontginde tegnologie om intak biologiese-materiaal te analiseer. Hierdie studie het getoon dat daar wesenlike potensiaal is om NIRS verder te ontwikkel tot ʼn tegnologie wat gebruik kan word om vrugte te sorteer gebaseer op eksterne (skil) asook interne (pulp) eienskappe
Pham, Van Tan. "Prediction of Change in Quality of 'Cripps Pink' Apples during Storage." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/5133.
Повний текст джерелаPham, Van Tan. "Prediction of Change in Quality of 'Cripps Pink' Apples during Storage." University of Sydney, 2008. http://hdl.handle.net/2123/5133.
Повний текст джерелаThe goal of this research was to investigate changes in the physiological properties including firmness, stiffness, weight, background colour, ethylene production and respiration of ‘Cripps Pink’ apple stored under different temperature and atmosphere conditions,. This research also seeks to establish mathematical models for the prediction of changes in firmness and stiffness of the apple during normal atmosphere (NA) storage. Experiments were conducted to determine the quality changes in ‘Cripps Pink’ apple under three sets of storage conditions. The first set of storage conditions consisted of NA storage at 0oC, 2.5oC, 5oC, 10oC, 20oC and 30oC. In the second set of conditions the apples were placed in NA cold storage at 0oC for 61 days, followed by NA storage at the aforementioned six temperatures. The third set of conditions consisted of controlled atmosphere (CA) (2 kPa O2 : 1 kPa CO2) at 0oC storage for 102 days followed by NA storage at the six temperatures mentioned previously. The firmness, stiffness, weight loss, skin colour, ethylene and carbon dioxide production of the apples were monitored at specific time intervals during storage. Firmness was measured using a HortPlus Quick Measure Penetrometer (HortPlus Ltd, Hawke Bat, New Zealand); stiffness was measured using a commercial acoustic firmness sensor-AFS (AWETA, Nootdorp, The Netherlands). Experimental data analysis was performed using the GraphPad Prism 4.03, 2005 software package. The Least-Squares method and iterative non-linear regression were used to model and simulate changes in firmness and stiffness in GraphPad Prism 4.03, 2005 and DataFit 8.1, 2005 softwares. The experimental results indicated that the firmness and stiffness of ‘Cripps Pink’ apple stored in NA decreased with increases in temperature and time. Under NA, the softening pattern was tri-phasic for apples stored at 0oC, 2.5oC and 5oC for firmness, and at 0oC and 2.5oC for stiffness. However, there were only two softening phases for apples stored at higher temperatures. NA at 0oC, 2.5oC and 5oC improved skin background colour and extended the storage ability of apples compared to higher temperatures. CA during the first stage of storage better maintained the firmness and stiffness of the apples. However, it reduced subsequent ethylene and carbon dioxide (CO2) production after removal from storage. Steep increases in ethylene and CO2 production coincided with rapid softening in the fruit flesh and yellowing of the skin background colour, under NA conditions. The exponential decay model was the best model for predicting changes in the firmness, stiffness and keeping quality of the apples. The exponential decay model satisfied the biochemical theory of softening in the apple, and had the highest fitness to the experimental data collected over the wide range of temperatures. The softening rate increased exponentially with storage temperature complying with the Arrhenius equation. Therefore a combination of the exponential decay model with the Arrhenius equation was found to best characterise the softening process and to predict changes in the firmness and stiffness of apples stored at different temperatures in NA conditions.
TANNEEDI, NAREN NAGA PAVAN PRITHVI. "Customer Churn Prediction Using Big Data Analytics." Thesis, Blekinge Tekniska Högskola, Institutionen för kommunikationssystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13518.
Повний текст джерелаYu, Libo. "Consensus Fold Recognition by Predicted Model Quality." Thesis, University of Waterloo, 2005. http://hdl.handle.net/10012/1124.
Повний текст джерелаHebert, Courtney L. "Leveraging the electronic problem list for public health research and quality improvement." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385129530.
Повний текст джерелаKhan, Asiya. "Video quality prediction for video over wireless access networks (UMTS and WLAN)." Thesis, University of Plymouth, 2011. http://hdl.handle.net/10026.1/893.
Повний текст джерелаStineburg, Jeffrey. "Software reliability prediction based on design metrics." Virtual Press, 1999. http://liblink.bsu.edu/uhtbin/catkey/1154775.
Повний текст джерелаDepartment of Computer Science
Campean, Ioan Felician. "Product reliability analysis and prediction : applications to mechanical systems." Thesis, Bucks New University, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.714448.
Повний текст джерелаSteele, Clint. "The prediction and management of the variability of manufacturing operations." Australasian Digital Theses Program, 2005. http://adt.lib.swin.edu.au/public/adt-VSWT20060815.151147.
Повний текст джерелаSubmitted in fulfillment of the requirements for the degree of Doctor of Philosophy, Swinburne University of Technology - 2005. Typescript. Includes bibliographical references.
Cencerrado, Barraqué Andrés. "Methodology for time response and quality assessment in natural hazards evolution prediction." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/284023.
Повний текст джерелаEn esta tesis doctoral se describe una metodología para la evaluación del tiempo de respuesta y la calidad en la predicción de la evolución de emergencias medioambientales. El trabajo se ha centrado en el caso específico de los incendios forestales, como uno de los desastres naturales más importantes y devastadores, pero es fácilmente extrapolable a otro tipo de emergencias medioambientales. Existen muchos entornos de predicción que se basan en el uso de simuladores de la evolución del fenómeno catastrófico. Dado el creciente poder en cuanto a capacidad de cómputo que nos ofrecen los nuevos avances computacionales, como las arquitecturas multicore y manycore, e incluso los paradigmas de cómputo distribuido, como Grid o Cloud Computing, surge la necesidad de ser capaces de explotar acertadamente el poder computacional que éstos nos ofrecen. Tal objetivo se alcanza proporcionando la capacidad de evaluar, de antemano, cómo las restricciones existentes a la hora de atender un incendio forestal activo afectarán a los resultados que se obtendrán, tanto en términos de calidad (precisión) obtenida, y tiempo necesario para tomar una decisión, y por consiguiente, tener la capacidad de escoger la configuración más adecuada tanto de la estrategia de predicción, como de los recursos computacionales. Como consecuencia, el sistema que deriva de la aplicación de esta metodología no está diseñado para ser un Sistema de Soporte a las Decisiones (DSS), pero sí una herramienta de la que la mayoría de DSSs para incendios forestales se pueden beneficiar notablemente. El problema se ha tratado por medio de la caracterización del comportamiento de estos dos factores durante el proceso de predicción. Para ello, un método de predicción de dos etapas es presentado y utilizado como base de trabajo, dado el notable aumento de calidad que proporciona en las predicciones. Esta metodología implica lidiar con técnicas propias del campo de la Inteligencia Artificial, como son los Algoritmos Genéticos y los Árboles de Decisión, y a su vez se apoya en un intenso estudio estadístico de bases de datos de entrenamiento, compuestas por los resultados de miles de distintas simulaciones. Los resultados obtenidos en este trabajo de investigación a largo plazo son completamente satisfactorios, y abren camino a nuevos retos. Además, la flexibilidad que ofrece la metodología permite aplicarla en cualquier otro contexto de emergencia, lo que la convierte en una destacable y muy útil herramienta para luchar contra estas catástrofes
This thesis describes a methodology for time response and quality assessment in natural hazards evolution prediction. This work has been focused on the specific case of forest fires as an important and worrisome catastrophe, but it can easily be extrapolated to all other kinds of natural hazards. There exist many prediction frameworks based on the use of simulators of the evolution of the hazard. Given the increasing computing capabilities allowed by new computing advances such as multicore and manycore architectures, and even distributed-computing paradigms, such as Grid and Cloud Computing, the need arises to be able to properly exploit the computational power they offer. This goal is fulfilled by introducing the capability to assess in advance how the present constraints at the time of attending to an ongoing forest fire will affect the results obtained from them, both in terms of quality (accuracy) obtained and time needed to make a decision, and therefore being able to select the most suitable configuration of both the prediction strategy and computational resources to be used. As a consequence, the framework derived from the application of this methodology is not supposed to be a new Decision Support System (DSS) for fire departments and Civil Protection agencies, but a tool from which most of forest fire (and other kinds of natural hazards) DSSs could benefit notably. The problem has been tackled by means of characterizing the behavior of these two factors during the prediction process. For this purpose, a two-stage prediction framework is presented and considered as a suitable and powerful strategy to enhance the quality of the predictions. This methodology involves dealing with Artificial Intelligence techniques, such as Genetic Algorithms and Decision Trees and also relies on a strong statistical study from training databases, composed of the results of thousands of different simulations. The results obtained in this long-term research work are fully satisfactory, and give rise to several new challenges. Moreover, the flexibility offered by the methodology allows it to be applied to other kinds of emergency contexts, which turns it into an outstanding and very useful tool in fighting against these catastrophes.
Hansen, Martin. "Assessment and prediction of speech transmission quality with an auditory processing model." [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=958448523.
Повний текст джерелаHong, Jeong Jin. "Multivariate statistical modelling for fault analysis and quality prediction in batch processes." Thesis, University of Newcastle Upon Tyne, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576960.
Повний текст джерелаSimfukwe, Paul. "Role of conventional soil classification in the prediction of soil quality indicators." Thesis, Bangor University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529749.
Повний текст джерелаJolley, Bianca. "Development of quality control tools and a taste prediction model for rooibos." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95991.
Повний текст джерелаENGLISH ABSTRACT: In this study quality control tools were developed for the rooibos industry, primarily to determine the quality of rooibos infusions. A considerable variation between samples of the same quality grade has been noted. As there are no guidelines or procedures in place to help minimise this inconsistency it was important to develop quality control tools, which could confront this problem. Both the sensory characteristics and phenolic composition of rooibos infusions were analysed in order to create and validate these quality control tools. Descriptive sensory analysis was used for the development of a targeted sensory wheel and sensory lexicon, to be used as quality control tools by the rooibos industry, and to validate the major rooibos sensory profiles. In order to ensure all possible variation was taken into account, 230 fermented rooibos samples were sourced from the Northern Cape and Western Cape areas within South Africa over a 3-year period (2011-2013). The aroma, flavour, taste and mouthfeel attributes found to associate with rooibos sensory quality were validated and assembled into a rooibos sensory wheel, which included the average intensity, as well as the percentage occurrence of each attribute. Two major characteristic sensory profiles prevalent within rooibos, namely the primary and secondary profiles, were identified. Both profiles had a sweet taste and an astringent mouthfeel, however, the primary sensory profile is predominantly made up of “rooibos-woody”, “fynbos-floral” and “honey” aroma notes, while “fruity-sweet”, “caramel” and “apricot” aroma notes are the predominant sensory attributes of the secondary profile. The predictive value of the phenolic compounds of the infusions towards the taste and mouthfeel attributes (“sweet”, “sour”, “bitter” and “astringent”) was examined using different regression analyses, namely, Pearson’s correlation, partial least squares regression (PLS) and step-wise regression. Correlations between individual phenolic compounds and the taste and mouthfeel attributes were found to be significant, but low. Although a large sample set (N = 260) spanning 5 years (2009-2013) and two production areas (Western Cape and Northern Cape, South Africa) was used, no individual phenolic compounds could be singled out as being responsible for a specific taste or mouthfeel attribute. Furthermore, no difference was found between the phenolic compositions of the infusions based on production area, a trend that was also seen for the sensory characterisation of rooibos infusions. Sorting, a rapid sensory profiling method was evaluated for its potential use as a quality control tool for the rooibos industry. Instructed sorting was shown to successfully determine rooibos sensory quality, especially based on the aroma quality of the infusions. However, determining the quality of the infusion based on flavour quality was more difficult, possibly due to the low sensory attribute intensities. Categorisation of rooibos samples based on the two major aroma profiles i.e. the primary and secondary characteristic profiles, was achieved with uninstructed sorting. The potential of using sorting as a rapid technique to determine both quality and characteristic aroma profiles, was therefore demonstrated, indicating its relevance as another quality control tool to the rooibos industry.
AFRIKAANSE OPSOMMING: Gehaltebeheer hulpmiddels is as deel van hierdie studie vir die rooibosbedryf ontwikkel, hoofsaaklik om die sensoriese kwaliteit van rooibostee te bepaal. Aansienlike verskille is tussen monsters van dieselfde gehaltegraad opgemerk, primêr omdat daar in die wyer rooibosbedryf beperkte riglyne of prosedures in plek is om kwaliteitsverskille effektief te bepaal. Dit is as belangrik geag om gehaltebeheer hulpmiddels te ontwikkel om laasgenoemde probleem aan te spreek. Spesifieke gehaltebeheer hulpmiddels is dus vir hierdie studie ontwikkel en gevalideer deur die sensoriese eienskappe en fenoliese samestelling van rooibostee te analiseer. Beskrywende sensoriese analise (BSA) is gebruik om ‘n sensoriese wiel en leksikon vir die rooibosbedryf te ontwikkel en te valideer. Om alle moontlike produkvariasie te ondervang, is 230 gefermenteerde rooibos monsters afkomstig van die Noord-Kaap en Wes-Kaap areas in Suid-Afrika oor ‘n tydperk van drie jaar (2011-2013) verkry. Die aroma, geur, smaak en mondgevoel eienskappe wat met rooibos se sensoriese kwaliteit assosieer, is bevestig en uiteindelik gebruik om die sensoriese wiel te ontwikkel. Die gemiddelde intensiteit en persentasie voorkoms van elke eienskap is in die wiel ingesluit. Twee belangrike “karakteristieke” sensoriese profiele wat met rooibos geassosieer word, is geïdentifiseer, nl. die primêre en sekondêre sensoriese profiele. Tipies van beide sensoriese profiele is ‘n kenmerkende soet smaak en vrank mondgevoel, daarenteen bestaan die primêre sensoriese profiel hoofsaaklik uit "rooibos-houtagtige", "fynbos-blomagtige" en "heuning" aromas, terwyl "vrugtige-soet", "karamel" en "appelkoos" aromas die oorheersende sensoriese eienskappe van die sekondêre profiel is. Die korrelasie tussen die fenoliese verbindings en die smaak en mondgevoel eienskappe van rooibos ("soet", "suur", "bitter" en "vrankheid") is ondersoek met behulp van verskillende tipe regressieontledings, nl. Pearson se korrelasie, gedeeltelike kleinstekwadrate regressie (PLS) en stapsgewyse regressie. Korrelasies tussen individuele fenoliese verbindings en die smaak en mondgevoel eienskappe was laag, maar steeds betekenisvol. Alhoewel die uitgebreide stel monsters (N = 260) verteenwoordigend was van vyf oesjare (2009-2013) en twee produksiegebiede (Wes-Kaap en Noord-Kaap, Suid-Afrika), kon geen individuele fenoliese verbindings uitgesonder word as betekenisvolle voorspellers van spesifieke smaak of mondgevoel eienskappe nie. Verder is daar ook geen verskil tussen die verskillende produksie-areas wat betref fenoliese samestelling gevind nie. Soortgelyke resultate is bevind vir die sensoriese karakterisering van rooibostee. Sortering, 'n vinnige sensoriese profileringsmetode, is geëvalueer vir sy potensiële gebruik as 'n gehaltebeheer hulpmiddel vir die rooibosbedryf. Gestrukteerde sortering was suksesvol om rooibos se sensoriese kwaliteit, veral die algemene aroma kwaliteit van rooibos, te bepaal. Hierdie profileringsmetode was egter nie so suksesvol om rooibos se algemene geur, smaak en mondgevoeleienskappe te bepaal nie. Hierdie tendens kan moontlik toegeskryf word aan die betekenisvolle laer intensiteite van laasgenoemde sensoriese eienskappe. Die kategorisering van die rooibos monsters op grond van hul karakteristieke primêre en sekondêre sensoriese profiele is suksesvol deur middel van ongestrukteerde sortering bepaal. In die geheel gesien is die potensiaal van die sorteringstegniek as ‘n vinnige metode om die algemene sensoriese kwaliteit, asook die karakteristieke aroma profiele van rooibos te bepaal, dus bewys. Hierdie vinnige sensoriese profileringstegniek hou dus besliste voordele in vir die rooibosbedryf as dit kom by sensoriese gehaltebeheer.
Qiu, D. (Daoying). "Evaluation and prediction of content quality in stack overflow with logistic regression." Master's thesis, University of Oulu, 2015. http://urn.fi/URN:NBN:fi:oulu-201510282094.
Повний текст джерелаAlreshoodi, Mohammed A. M. "Prediction of quality of experience for video streaming using raw QoS parameters." Thesis, University of Essex, 2016. http://repository.essex.ac.uk/16566/.
Повний текст джерелаShukla, Sunil Ravindra. "Improving High Quality Concatenative Text-to-Speech Using the Circular Linear Prediction Model." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14481.
Повний текст джерелаMay, Laura Anne. "Measurement and prediction of quality of life of persons with spinal cord injury." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0031/NQ46884.pdf.
Повний текст джерелаWalker, Alan. "The carbon texture of metallurgical coke and its bearing on coke quality prediction." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/10950.
Повний текст джерелаMaritz, Gert Stephanus Herman. "A network traffic analysis tool for the prediction of perceived VoIP call quality." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/17897.
Повний текст джерелаENGLISH ABSTRACT: The perceived quality of Voice over Internet Protocol (IP) (VoIP) communication relies on the network which is used to transport voice packets between the end points. Variable network characteristics such as bandwidth, delay and loss are critical for real-time voice traffic and are not always guaranteed by networks. It is important for network service providers to determine the Quality of Service (QoS) it provides to its customers. The solution proposed here is to predict the perceived quality of a VoIP call, in real-time by using network statistics. The main objective of this thesis is to develop a network analysis tool, which gathers meaningful statistics from network traffic. These statistics will then be used for predicting the perceived quality of a VoIP call. This study includes the investigation and deployment of two main components. Firstly, to determine call quality, it is necessary to extract the voice streams from captured network traffic. The extracted sound files can then be analysed by various VoIP quality models to determine the perceived quality of a VoIP call. The second component is the analysis of network characteristics. Loss, delay and jitter are all known to influence perceived call quality. These characteristics are, therefore, determined from the captured network traffic and compared with the call quality. Using the statistics obtained by the repeated comparison of the call quality and network characteristics, a network specific algorithm is generated. This Non-Intrusive Quality Prediction Algorithm (NIQPA) uses basic characteristics such as time of day, delay, loss and jitter to predict the quality of a real-time VoIP call quickly in a non-intrusive way. The realised algorithm for each network will differ, because every network is different. Prediction results can then be used to adapt either the network (more bandwidth, packet prioritising) or the voice stream (error correction, change VoIP codecs) to assure QoS.
AFRIKAANSE OPSOMMING: Die kwaliteit van spraak oor die internet (VoIP) kommunikasie is afhanklik van die netwerk wat gebruik word om spraakpakkies te vervoer tussen die eindpunte. Netwerk eienskappe soos bandwydte, vertraging en verlies is krities vir intydse spraakverkeer en kan nie altyd gewaarborg word deur netwerkverskaffers nie. Dit is belangrik vir die netwerk diensverskaffers om die vereiste gehalte van diens (QoS) te verskaf aan hul kliënte. Die oplossing wat hier voorgestel word is om die kwaliteit van ’n VoIP oproep intyds te voorspel, deur middel van die netwerkstatistieke. Die belangrikste doel van hierdie projek is om ’n netwerk analise-instrument te ontwikkel. Die instrument versamel betekenisvolle statistiek deur van netwerkverkeer gebruik te maak. Hierdie statistiek sal dan gebruik word om te voorspel wat die gehalte van ’n VoIP oproep sal wees vir sekere netwerk toestande. Hierdie studie berus op die ondersoek en implementering van twee belangrike komponente. In die eerste plek, moet oproep kwaliteit bepaal word. Spraakstrome word uit die netwerkverkeer onttrek. Die onttrekte klanklêers kan dan geanaliseer word deur verskeie spraak kwaliteitmodelle om die kwaliteitdegradasie van ’n spesifieke VoIP oproep vas te stel. Die tweede komponent is die analise van netwerkeienskappe. Pakkieverlies, pakkievertraging en bibbereffek is bekend vir hul invloed op VoIP kwaliteit en is waargeneem. Hierdie netwerk eienskappe word dus bepaal uit die netwerkverkeer en daarna vergelyk met die gemete gesprekskwaliteit. Statistiek word verkry deur die herhaalde vergelyking van gesprekkwaliteit en netwerk eienskappe. Uit die statistiek kan ’n algoritme (vir die spesifieke network) gegenereer word om spraakkwaliteit te voorspel. Hierdie Nie-Indringende Kwaliteit Voorspellings-algoritme (NIKVA), gebruik basiese kenmerke, soos die tyd van die dag, pakkie vertraging, pakkie verlies en bibbereffek om die kwaliteit van ’n huidige VoIP oproep te voorspel. Hierdie metode is vinnig, in ’n nie-indringende manier. Die gerealiseerde algoritme vir die verskillende netwerke sal verskil, want elke netwerk is anders. Die voorspelling van spraakgehalte kan dan gebruik word om òf die netwerk aan te pas (meer bandwydte, pakkie prioriteit) òf die spraakstroom aan te pas (foutkorreksie, verander VoIP kodering) om die goeie kwaliteit van ’n VoIP oproep te verseker.
López, del Río Ángela. "Data preprocessing and quality diagnosis in deep learning-based in silico bioactivity prediction." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672385.
Повний текст джерелаEl descubrimiento de fármacos es un proceso costoso en tiempo y recursos. Consiste en la identificación de una diana y la exploración de fármacos candidatos apropiados para ella. Las técnicas computacionales optimizan este proceso, ayudando a identificar las mejores moléculas candidatas mediante el modelado de sus interacciones con la diana. Estas técnicas están en constante mejora gracias al desarrollo de algoritmos, al incremento del poder computacional y al aumento de bases de datos moleculares públicas. Particularmente, el aprendizaje automático proporciona modelos predictivos de distintas propiedades bioquímicas. El deep learning (aprendizaje profundo) es una aproximación del aprendizaje automático basada en las redes neuronales multicapa. Durante los últimos diez años el deep learning ha superado a los modelos predictivos clásicos en la mayoría de dominios, incluído el descubrimiento de fármacos. Algunas de sus aplicaciones son la predicción de propiedades moleculares, la generación de nuevos compuestos, la predicción de la estructura secundaria de proteínas y la predicción de unión entre compuestos y dianas. Sin embargo, algunos estudios apuntan a que el rendimiento reportado por los modelos de deep learning de predicción de unión entre dianas y compuestos podría deberse más al sesgo de los datos que a su capacidad de generalización, dando más peso a la novedad que a la valoración crítica. Además, la flexibilidad del deep learning da pie a una falta de consenso en la representación de sus entradas, dificultando su comparación en un marco común. Los datos de bioactividad tienen una disponibilidad limitada debido a su coste y suelen estar desbalanceados, lo cual puede dificultar el proceso de aprendizaje del modelo. El diagnóstico de estos problemas no es sencillo porque los modelos de deep learning son considerados cajas negras. El objetivo de esta tesis es mejorar los modelos de deep learning para el descubrimiento computacional de fármacos, centrándose en la representación de la entrada, el control del sesgo de los datos, la corrección de su desbalance y el diagnóstico de los modelos. Primero, esta tesis evalúa el efecto de diferentes estrategias de validación en los modelos de clasificación de la unión diana-compuesto para encontrar las estimaciones de rendimiento más realistas. La estrategia basada en el agrupamiento de las moléculas demostró ser la más parecida a una validación prospectiva y por tanto, más consistente que la validación cruzada aleatoria (demasiado optimista) o que un conjunto de test externo proveniente de otra base de datos (demasiado pesimista). Segundo, esta tesis se centra en el relleno de las secuencias de entrada, utilizado para establecer una longitud común de las mismas. Este relleno consiste normalmente en añadir ceros al final de cada secuencia, sin una justificación formal detrás esta decisión. Aquí, se compararon estrategias de relleno novedosas y clásicas en una tarea de clasificación de enzimas. Los resultados mostraron que la posición del relleno tiene un efecto sobre el rendimiento de los modelos de aprendizaje profundo, por lo que se le debería dar más atención. Tercero, esta tesis estudia el efecto del desbalance de los datos en los modelos de clasificación de actividad diana-compuesto y su atenuación mediante técnicas de remuestreo. Se evaluó el rendimiento de un modelo para diferentes combinaciones de sobremuestreo de la clase minoritaria y agrupamiento de las moléculas. Los resultados demostraron que el agrupamiento de los datos, seguido por su remuestreo en los conjuntos de entrenamiento y validación, es la estrategia con mejor rendimiento. Por último, esta tesis proporciona una forma sistemática de diagnosticar modelos de deep learning, identificando los factores que rigen sus predicciones. Estos modelos lineales explicativos permitieron la toma de decisiones informadas y cuantitativas en cada uno
Enginyeria biomèdica