Добірка наукової літератури з теми "Prédiction du mouvement respiratoire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Prédiction du mouvement respiratoire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Prédiction du mouvement respiratoire"
Visvikis, D., F. Lamare, P. Bruyant, A. Turzo, Y. Bizais, and C. Cheze Le Rest. "Correction de mouvement respiratoire en TEP/TDM." Médecine Nucléaire 31, no. 4 (April 2007): 153–59. http://dx.doi.org/10.1016/j.mednuc.2007.02.002.
Повний текст джерелаGerlz, H. "Quelques remarques sur la mécanique générale du mouvement respiratoire." Acta Medica Scandinavica 56, no. 1 (April 24, 2009): 71–93. http://dx.doi.org/10.1111/j.0954-6820.1922.tb18477.x.
Повний текст джерелаDjelbani Ahmed, S., B. Fernandez, C. Comtat, I. Buvat, and M. Soussan. "Impact des méthodes de correction du mouvement respiratoire en TEP/IRM." Médecine Nucléaire 41, no. 3 (May 2017): 203–4. http://dx.doi.org/10.1016/j.mednuc.2017.02.181.
Повний текст джерелаGauthier, R., J. Vassail, J. P. Croutaz, and C. Raspaud. "Thérapies actives du mouvement corps-esprit et réadaptation respiratoire dans la BPCO." Revue des Maladies Respiratoires 39, no. 3 (March 2022): 258–69. http://dx.doi.org/10.1016/j.rmr.2021.12.001.
Повний текст джерелаBeyer, B., V. Feipel, V. Sholukha, P. Salvia, M. Rooze, and S. Van Sint Jan. "Modélisation 3D du thorax durant le mouvement respiratoire : analyse cinématique et géométrique." Morphologie 99, no. 326 (September 2015): 83. http://dx.doi.org/10.1016/j.morpho.2015.07.030.
Повний текст джерелаFournier, Romain, Jean-Jacques Aknin, Sophie Bourgier, and Sarah Gebeile-Chauty. "Orthopédie dento-faciale et ostéopathie." L'Orthodontie Française 82, no. 4 (November 23, 2011): 331–40. http://dx.doi.org/10.1051/orthodfr/2011138.
Повний текст джерелаRenault, G., F. Frouin, F. Tranquart, A. Bleuzen, and A. Herment. "Compensation du mouvement respiratoire par selection de trames en echographie de contraste du foie." Journal de Radiologie 85, no. 9 (September 2004): 1415. http://dx.doi.org/10.1016/s0221-0363(04)77350-3.
Повний текст джерелаPaule, M., N. Grillot, F. Servin, L. Guezouli, B. Wachowska, I. Balcan, O. Goncalves, P. Montravers, D. Longrois, and J. Guglielminotti. "Prédiction du mouvement lors de la stimulation chirurgicale par la réponse pupillaire à un prétest nociceptif." Annales Françaises d'Anesthésie et de Réanimation 33 (September 2014): A36. http://dx.doi.org/10.1016/j.annfar.2014.07.064.
Повний текст джерелаRenault, G., F. Frouin, F. Tranquart, A. Bleuzen, and A. Herment. "TDI4 Compensation du mouvement respiratoire par selection de trames en echographie de contraste du foie." Journal de Radiologie 85, no. 9 (September 2004): 1579. http://dx.doi.org/10.1016/s0221-0363(04)77948-2.
Повний текст джерелаSchiazza, A., C. Filisetti, D. Bourquard, and C. Revel. "Prédiction de la fonction respiratoire postopératoire par la tomoscintigraphie de perfusion pulmonaire couplée à la tomodensitométrie avant lobectomie." Médecine Nucléaire 40, no. 3 (May 2016): 199–200. http://dx.doi.org/10.1016/j.mednuc.2016.03.083.
Повний текст джерелаДисертації з теми "Prédiction du mouvement respiratoire"
Li, Yang. "Patient-specific gating scheme for thoracoabdominal tumor radiotherapy guided by magnetic resonance imaging." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS015.
Повний текст джерелаThe ultimate aim of this paper is to develop an end-to-end gating system for real-time motion compensation during lung cancer and liver cancer treatment on the Elekta Unity. This system will monitor and automatically locate the three-dimensional spatial position of the tumor in real-time, and predict the tumor’s motion trajectory in the Superior-Inferior (SI), Left-Right (LR), and Anterior-Posterior (AP) directions in advance. Based on the set gating rules, a unique gating signal will be generated to control the beam on and off during radiotherapy, thereby compensating for the inaccuracy of dose delivery due to respiratory motion. To achieve this goal, the following steps have been carried out : 1. We proposed a tumor tracking workflow based on KCF, addressing the issues of time consumption and accuracy in tumor tracking using 2D Cine-MRI. Firstly, we verified the efficiency and accuracy of KCF in 2D Cine-MRI tumor tracking. By calculating the centroid, we improved the situation where the fixed-size template generated errors when the tumor shape changed, thus enhancing the tracking accuracy. In particular, we focused on the tracking in the SI direction by optimizing the selection of coronal slices or sagittal slices to determine the optimal position of the tumor in the SI direction. 2. We proposed a patient-specific transfer C-NLSTM model for real-time prediction of tumor motion, addressing the issue of insufficient training data. We constructed a C-NLSTM model, and introduced transfer learning to fully leverage the rich knowledge and feature representation capabilities embedded in the pretrained model, while fine-tuning is conducted based on specific patient data to achieve high-precision prediction of tumor motion. Through this approach, the model can be trained with only two minutes of patient-specific data, effectively overcoming the challenge of data acquisition. 3. We proposed an efficient gating signal prediction method, overcoming the challenge of precise predictions in 2D Cine-MRI with limited sampling frequencies. We validated the effectiveness of linear regression for predicting internal organ or tumor motion in 2D MR cine. And we proposed an online gating signal prediction scheme based on ALR to enhance the accuracy of gating radiotherapy for liver and lung cancers. 4. We proposed an end-to-end gating system based on 2D Cine-MRI for the Elekta Unity MRgRT. It enables real-time monitoring and automatic localization of the tumor’s 3D spatial position, prediction of tumor motion in three directions, and fitting an optimal cuboid (gating threshold) for each patient based on the tumor’s motion range. Additionally, we explored various approaches to derive 3D gating signals based on tumor motion in one, two, or three directions, aiming to cater to different patient treatment needs. Finally, the results of dosimetric validation demonstrate that the proposed system can effectively enhance the protection of OAR
Reyes, Aguirre Mauricio. "Compensation du mouvement respiratoire en tomographie d'émission." Phd thesis, Université de Nice Sophia-Antipolis, 2005. http://tel.archives-ouvertes.fr/tel-00327549.
Повний текст джерелаDermy, Oriane. "Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0227/document.
Повний текст джерелаThis thesis lies at the intersection between machine learning and humanoid robotics, under the theme of human-robot interaction and within the cobotics (collaborative robotics) field. It focuses on prediction for non-verbal human-robot interactions, with an emphasis on gestural interaction. The prediction of the intention, understanding, and reproduction of gestures are therefore central topics of this thesis. First, the robots learn gestures by demonstration: a user grabs its arm and makes it perform the gestures to be learned several times. The robot must then be able to reproduce these different movements while generalizing them to adapt them to the situation. To do so, using its proprioceptive sensors, it interprets the perceived signals to understand the user's movement in order to generate similar ones later on. Second, the robot learns to recognize the intention of the human partner based on the gestures that the human initiates. The robot can then perform gestures adapted to the situation and corresponding to the user’s expectations. This requires the robot to understand the user’s gestures. To this end, different perceptual modalities have been explored. Using proprioceptive sensors, the robot feels the user’s gestures through its own body: it is then a question of physical human-robot interaction. Using visual sensors, the robot interprets the movement of the user’s head. Finally, using external sensors, the robot recognizes and predicts the user’s whole body movement. In that case, the user wears sensors (in our case, a wearable motion tracking suit by XSens) that transmit his posture to the robot. In addition, the coupling of these modalities was studied. From a methodological point of view, the learning and the recognition of time series (gestures) have been central to this thesis. In that aspect, two approaches have been developed. The first is based on the statistical modeling of movement primitives (corresponding to gestures) : ProMPs. The second adds Deep Learning to the first one, by using auto-encoders in order to model whole-body gestures containing a lot of information while allowing a prediction in soft real time. Various issues were taken into account during this thesis regarding the creation and development of our methods. These issues revolve around: the prediction of trajectory durations, the reduction of the cognitive and motor load imposed on the user, the need for speed (soft real-time) and accuracy in predictions
Dermy, Oriane. "Prédiction du mouvement humain pour la robotique collaborative : du geste accompagné au mouvement corps entier." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0227.
Повний текст джерелаThis thesis lies at the intersection between machine learning and humanoid robotics, under the theme of human-robot interaction and within the cobotics (collaborative robotics) field. It focuses on prediction for non-verbal human-robot interactions, with an emphasis on gestural interaction. The prediction of the intention, understanding, and reproduction of gestures are therefore central topics of this thesis. First, the robots learn gestures by demonstration: a user grabs its arm and makes it perform the gestures to be learned several times. The robot must then be able to reproduce these different movements while generalizing them to adapt them to the situation. To do so, using its proprioceptive sensors, it interprets the perceived signals to understand the user's movement in order to generate similar ones later on. Second, the robot learns to recognize the intention of the human partner based on the gestures that the human initiates. The robot can then perform gestures adapted to the situation and corresponding to the user’s expectations. This requires the robot to understand the user’s gestures. To this end, different perceptual modalities have been explored. Using proprioceptive sensors, the robot feels the user’s gestures through its own body: it is then a question of physical human-robot interaction. Using visual sensors, the robot interprets the movement of the user’s head. Finally, using external sensors, the robot recognizes and predicts the user’s whole body movement. In that case, the user wears sensors (in our case, a wearable motion tracking suit by XSens) that transmit his posture to the robot. In addition, the coupling of these modalities was studied. From a methodological point of view, the learning and the recognition of time series (gestures) have been central to this thesis. In that aspect, two approaches have been developed. The first is based on the statistical modeling of movement primitives (corresponding to gestures) : ProMPs. The second adds Deep Learning to the first one, by using auto-encoders in order to model whole-body gestures containing a lot of information while allowing a prediction in soft real time. Various issues were taken into account during this thesis regarding the creation and development of our methods. These issues revolve around: the prediction of trajectory durations, the reduction of the cognitive and motor load imposed on the user, the need for speed (soft real-time) and accuracy in predictions
Ouksili, Zehor. "Compensation du mouvement respiratoire dans les images TEP/TDM thoraciques." Thesis, Toulouse, INPT, 2010. http://www.theses.fr/2010INPT0025/document.
Повний текст джерелаThis thesis deals with respiratory motion in PET/CT images. It is well known that PET is a modality that requires a long exposure time. During this time, patients moves and breath. These motions produce undesirable artefacts that alter seriously the images and their precision. This has important consequences when diagnosing thoracic, and particularly pulmonary, cancer. Tumours appear larger than they really are and their activity is weaker. This thesis proposes to contribute to solving these problems.We propose the architecture of an integrated PET/CT acquisition system synchronized to respiration. We also develop signal and image processing methods that can be applied to eliminating respiratory artefacts in CT and PET images. The thesis brings three main contributions : An original respiratory signal segmentation and characterization to detect "normal" respiratory patterns, a 4D-CT reconstruction method that creates 3D images of the whole body for any respiratory level and an enhanced iterative algorithm for reconstructing 4D-PET images without respiratory artefacts. The developed methods have validated and tested on simulated, phantom and real patients' data
Rit, Simon Miguet Serge Sarrut David. "Prise en compte du mouvement respiratoire pour la reconstruction d'images tomodensitométriques." Lyon : Université Lumière Lyon 2, 2007. http://theses.univ-lyon2.fr/sdx/theses/lyon2/2007/rit_s.
Повний текст джерелаGrezes-Besset, Louise. "Détection et analyse du mouvement respiratoire à partir d'images fluoroscopiques en radiothérapie." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00735816.
Повний текст джерелаWallach, Daphné. "Compensation du mouvement respiratoire en TEP/TDM à l'aide de la super-résolution." Phd thesis, Université de Bretagne occidentale - Brest, 2011. http://tel.archives-ouvertes.fr/tel-00714263.
Повний текст джерелаTawileh, Mark Georges. "Développement d’une méthode optimale pour la synchronisation au mouvement respiratoire en médecine nucléaire." Electronic Thesis or Diss., Paris Est, 2009. http://www.theses.fr/2009PEST0078.
Повний текст джерелаTraditionally, nuclear medicine exams are carried out without taking respiratory motion into account. However, respiratory motion introduces blur into the images. We demonstrate that the amount of blur is positively related to the amplitude of respiratory motion and the spatial resolution of the imaging system. This becomes critical when the amplitude of respiratory movement becomes greater than the effective FWHM (full width half maximum) of the imaging system. In this situation, the global resolution of the system (integrating the effective resolution and the respiratory motion) is determined more by the amplitude of respiratory motion than by the effective FWHM of the imaging system. Recent technological advances in nuclear medicine have greatly improved the spatial resolution of SPECT and PET, allowing an FWHM up to 5 mm and 4 mm respectively. This is much lower than the amplitude of motion of the thoraco-abdominal organs which can be over 10 mm according to our meta-analysis. It is therefore necessary to account for respiratory motion in order to take full advantage of these improvements in spatial resolution. We have developed a video based motion tracking system of respiratory motion and a method based on processing of acquired dynamic images. We evaluated the performance of each and compared them with the performance of a pneumatic belt. We present the preliminary results of a comparison of these three methods during myocardial perfusion SPECT
Lamare, Frédéric. "Correction des effets du mouvement respiratoire en 4D TEP/TDM pour des applications oncologiques." Brest, 2007. http://www.theses.fr/2007BRES3209.
Повний текст джерелаThe objective of this thesis s to develop a 3D+t reconstruction algorithm taking advantage of ail the spatiotemporal known about the respiratory movement in order to produce a reconstructed image compensated from the respiratory motion using ail the statistics. In ail this study, List-mode raw emission data were reconstructed using the iterative OPL-EM algorithm (“One Pass List Mode-EM). For both proposed methodologies based on affine or elastic correction methodologies, the transformation parameters were calculated from dynamic CT or PET images reconstructed with and without attenuation correction and were subsequently applied directly to the list-mode emission data or integrated during the reconstruction process. Three different ways to incorporate the elastic transformations matrices during the QPL-EM reconstruction algorithm have been developed and evaluated. To evaluate the developed methodologies Monte-Carlo simulations based on the dynamic NCAT phantom, including a breathing movement, have in the first instance been performed. The final phase of the evaluation was based on an analysis of actual multi-modality clinical cases. The results of this work show that the two types of proposed corrections, affine or elastic, lead to significant improvements as a result of the breathing movement compensation in the lung field of view. However, this study demonstrates that the correction method based on an elastic transformation yields a more uniform improvement in the whole field of view, whatever part of the lungs is considered
Частини книг з теми "Prédiction du mouvement respiratoire"
"Le mouvement respiratoire chez Galien." In Le Corps Respirant, 62–93. BRILL, 1996. http://dx.doi.org/10.1163/9789004377387_005.
Повний текст джерела