Добірка наукової літератури з теми "Post-Hamiltonian systems"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Post-Hamiltonian systems".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Post-Hamiltonian systems"
Cheng, Xu-Hui, and Guo-Qing Huang. "A Comparison between Second-Order Post-Newtonian Hamiltonian and Coherent Post-Newtonian Lagrangian in Spinning Compact Binaries." Symmetry 13, no. 4 (April 1, 2021): 584. http://dx.doi.org/10.3390/sym13040584.
Повний текст джерелаJaranowski, Piotr, and Gerhard Schäfer. "Radiative 3.5 post-Newtonian ADM Hamiltonian for many-body point-mass systems." Physical Review D 55, no. 8 (April 15, 1997): 4712–22. http://dx.doi.org/10.1103/physrevd.55.4712.
Повний текст джерелаLuo, Junjie, Jie Feng, Hong-Hao Zhang, and Weipeng Lin. "Contrasting the Implicit Method in Incoherent Lagrangian and the Correction Map Method in Hamiltonian." Symmetry 15, no. 7 (July 11, 2023): 1401. http://dx.doi.org/10.3390/sym15071401.
Повний текст джерелаBlümlein, J., A. Maier, P. Marquard, and G. Schäfer. "Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach." Nuclear Physics B 955 (June 2020): 115041. http://dx.doi.org/10.1016/j.nuclphysb.2020.115041.
Повний текст джерелаWU, XIN, and JI ZHOU HE. "POST-STABILIZATION OF INVARIANTS AND APPLICATION TO NUMERICAL ANALYSIS OF CHAOS FOR SOME 3-DIMENSIONAL SYSTEMS." International Journal of Modern Physics C 17, no. 11 (November 2006): 1613–28. http://dx.doi.org/10.1142/s0129183106010066.
Повний текст джерелаAlba, Vincenzo, Bruno Bertini, Maurizio Fagotti, Lorenzo Piroli, and Paola Ruggiero. "Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects." Journal of Statistical Mechanics: Theory and Experiment 2021, no. 11 (November 1, 2021): 114004. http://dx.doi.org/10.1088/1742-5468/ac257d.
Повний текст джерелаLuo, Junjie, Jie Feng, Hong-Hao Zhang, and Weipeng Lin. "Performance of different correction maps in the extended phase-space method for spinning compact binaries." Monthly Notices of the Royal Astronomical Society 518, no. 4 (December 8, 2022): 6132–40. http://dx.doi.org/10.1093/mnras/stac3494.
Повний текст джерелаBlümlein, J., A. Maier, P. Marquard, and G. Schäfer. "The fifth-order post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach: Potential contributions." Nuclear Physics B 965 (April 2021): 115352. http://dx.doi.org/10.1016/j.nuclphysb.2021.115352.
Повний текст джерелаRañada, Manuel F. "Quasi-bi-Hamiltonian structures, complex functions and superintegrability: the Tremblay–Turbiner–Winternitz (TTW) and the Post–Winternitz (PW) systems." Journal of Physics A: Mathematical and Theoretical 50, no. 31 (July 7, 2017): 315206. http://dx.doi.org/10.1088/1751-8121/aa7951.
Повний текст джерелаLu, D., and X. Zhang. "Transient stability analysis and control of power systems with considering flux decay by energy function approach." Bulletin of the Polish Academy of Sciences: Technical Sciences 60, no. 1 (March 1, 2012): 3–8. http://dx.doi.org/10.2478/v10175-012-0001-1.
Повний текст джерелаДисертації з теми "Post-Hamiltonian systems"
Lebrun, Tristan. "Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS686.
Повний текст джерелаThis thesis concerns electrodynamic loudspeaker modeling, simulation and control. Regarding modeling, we adopt a component-based approach that relies on port-Hamiltonian systems. Several linear and nonlinear phenomena are thus modeled and then aggregated in a multi-physical framework. Particular attention is paid to the impact of thermal effects on electrical and mechanical components, for which we introduce new irreversible conservative models. The simulations regenerate known complex behaviors. A first open-loop control is developed to eliminate distortions by differential flatness. In order to provide the controller with the model's nonlinearity parameters, an ad hoc estimation method is proposed. This combines a separation of the measurement into sub-signals (organized in a homogeneous order of non-linearity) and the optimization of a cost function (improving the contrast between orders). After numerical validation, estimation and control methods are applied on a test bench. The estimated physical parameters are consistent but the re-simulated time signals indicate the need of improvement of the model at very low frequency and to use higher homogeneous orders. The real-time corrector leads to a measurable reduction of the distortions on the sound pressure. In addition, another open-loop control is developed to compensate for the Doppler effect due to the movement of the membrane. Finally, methods on closed-loop control are proposed. One targets acoustic absorption by combining "control law in finite time" (for efficiency) and "passivity" (for robustness). The other, more general, develops an "half-physical, half-digital" method of connection between a physical system and a digital controller that makes the passivity insensitive to the delay introduced by the digital signal processor
Частини книг з теми "Post-Hamiltonian systems"
Schäfer, Gerhard. "Higher Order Post-Newtonian Dynamics of Compact Binary Systems in Hamiltonian Form." In Fundamental Theories of Physics, 587–614. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18335-0_18.
Повний текст джерелаDyall, Kenneth G., and Knut Faegri. "Spin Separation and the Modified Dirac Equation." In Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.003.0022.
Повний текст джерелаТези доповідей конференцій з теми "Post-Hamiltonian systems"
LEDVINKA, TOMÁŠ, GERHARD GERHARD SCHÄFER, and JIŘÍ BIČÁK. "POST-MINKOWSKIAN CLOSED-FORM HAMILTONIAN FOR GRAVITATING N-BODY SYSTEMS." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0039.
Повний текст джерела