Статті в журналах з теми "Polymers laser welding"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Polymers laser welding.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Polymers laser welding".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Nonhof, C. J. "Laser welding of polymers." Polymer Engineering and Science 34, no. 20 (October 1994): 1547–49. http://dx.doi.org/10.1002/pen.760342005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Olowinsky, Alexander, and Andreas Rösner. "Laser Welding of Polymers." Laser Technik Journal 9, no. 2 (April 2012): 52–56. http://dx.doi.org/10.1002/latj.201290023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Korab, M. G., M. V. Iurzhenko, A. V. Vashchuk, and I. K. Senchenkov. "Modeling of thermal processes in laser welding of polymers." Paton Welding Journal 2021, no. 11 (November 28, 2021): 3–8. http://dx.doi.org/10.37434/tpwj2021.11.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Duley, W. W., and R. E. Mueller. "CO2 laser welding of polymers." Polymer Engineering and Science 32, no. 9 (May 1992): 582–85. http://dx.doi.org/10.1002/pen.760320903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dave, Foram, Muhammad Mahmood Ali, Richard Sherlock, Asokan Kandasami, and David Tormey. "Laser Transmission Welding of Semi-Crystalline Polymers and Their Composites: A Critical Review." Polymers 13, no. 5 (February 24, 2021): 675. http://dx.doi.org/10.3390/polym13050675.

Повний текст джерела
Анотація:
The present review provides an overview of the current status and future perspectives of one of the smart manufacturing techniques of Industry 4.0, laser transmission welding (LTW) of semi-crystalline (SC) polymers and their composites. It is one of the most versatile techniques used to join polymeric components with varying thickness and configuration using a laser source. This article focuses on various parameters and phenomena such as inter-diffusion and microstructural changes that occur due to the laser interaction with SC polymers (specifically polypropylene). The effect of carbon black (size, shape, structure, thermal conductivity, dispersion, distribution, etc.) in the laser absorptive part and nucleating agent in the laser transmissive part and its processing conditions impacting the weld strength is discussed in detail. Among the laser parameters, laser power, scanning speed and clamping pressure are considered to be the most critical. This review also highlights innovative ideas such as incorporating metal as an absorber in the laser absorptive part, hybrid carbon black, dual clamping device, and an increasing number of scans and patterns. Finally, there is presented an overview of the essential characterisation techniques that help to determine the weld quality. This review demonstrates that LTW has excellent potential in polymer joining applications and the challenges including the cost-effectiveness, innovative ideas to provide state-of-the-art design and fabrication of complex products in a wide range of applications. This work will be of keen interest to other researchers and practitioners who are involved in the welding of polymers.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fayroz A. Sabah. "WELDING OF THERMOPLASTIC MATERIALS USING CO2 LASER." Diyala Journal of Engineering Sciences 5, no. 1 (June 1, 2012): 40–51. http://dx.doi.org/10.24237/djes.2012.05104.

Повний текст джерела
Анотація:
The welding of thermoplastics using CO2 laser achieved, two different types of thermoplastic materials used which are; Perspex (PMMA) which is the abbreviation of polymethyl methacrylate and (HDPE) which is the abbreviation of high density polyethylene. Similar or different materials can be welded together by laser beam but in this work similar polymers have been welded (i.e PMMA tube to PMMA tube and HDPE plate to HDPE plate). Mechanical properties for these materials measured after welding, two CW CO2 lasers were used in the welding process have the wavelength of 10.6µm. The maximum power of the 1st one is 16W, and for the 2nd one is 25W. The experimental result showed that the penetration depth increases with increasing laser output when the welding speed is constant. Also a relation between spot width and depth calculated using MATLAB software program version 6.5 taken into account the effect of the following parameters, power used in welding, melting temperature of the materials, welding speed and the spot diameter of the laser beam.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kumar, Nitesh, Nikhil Kumar, and Asish Bandyopadhyay. "A State-of-the-Art Review of Laser Welding of Polymers - Part I: Welding Parameters." Welding Journal 100, no. 7 (July 1, 2021): 221–28. http://dx.doi.org/10.29391/2021.100.019.

Повний текст джерела
Анотація:
Polymers are widely used in automotive parts and fields like mechatronics and biomedical engineering because of their excellent properties, such as high durability and light weight. Welding of polymers has grown to be an important field of research due to its relevance among products of everyday life. Through transmission laser welding (TTLW) has been frequently selected by the contemporary re-searchers in the field of welding as it is relatively modern and more efficient than other welding processes. This pa-per reviews the influence of different processing parameters, including laser power, scanning speed, standoff distance, and clamping pressure. The present article is expected to provide the reader with a comprehensive under-standing of TTLW and research on the aforementioned four welding parameters in TTLW. The significance of finite element modeling, a few simulation studies, different optimization approaches, morphological characteristics, and other behaviors of laser welded polymers will be included in the next part of the review.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Penilla, E. H., L. F. Devia-Cruz, A. T. Wieg, P. Martinez-Torres, N. Cuando-Espitia, P. Sellappan, Y. Kodera, G. Aguilar, and J. E. Garay. "Ultrafast laser welding of ceramics." Science 365, no. 6455 (August 22, 2019): 803–8. http://dx.doi.org/10.1126/science.aaw6699.

Повний текст джерела
Анотація:
Welding of ceramics is a key missing component in modern manufacturing. Current methods cannot join ceramics in proximity to temperature-sensitive materials like polymers and electronic components. We introduce an ultrafast pulsed laser welding approach that relies on focusing light on interfaces to ensure an optical interaction volume in ceramics to stimulate nonlinear absorption processes, causing localized melting rather than ablation. The key is the interplay between linear and nonlinear optical properties and laser energy–material coupling. The welded ceramic assemblies hold high vacuum and have shear strengths comparable to metal-to-ceramic diffusion bonds. Laser welding can make ceramics integral components in devices for harsh environments as well as in optoelectronic and/or electronic packages needing visible-radio frequency transparency.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scolaro, Cristina, Annamaria Visco, Lorenzo Torrisi, Nancy Restuccia, and Eugenio Pedullà. "Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles." EPJ Web of Conferences 167 (2018): 05008. http://dx.doi.org/10.1051/epjconf/201816705008.

Повний текст джерела
Анотація:
The Thermal Laser Welding (TLW) process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE), both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles), were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 μm of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bak, Helle Østergren, Bjarne Enrico Nielsen, Anne Jeppesen, Theis Brock‐Nannestad, Christian Benedikt Orea Nielsen, and Michael Pittelkow. "Laser welding of polymers using unsymmetrical squaraine dyes." Journal of Polymer Science Part A: Polymer Chemistry 56, no. 19 (September 28, 2018): 2245–54. http://dx.doi.org/10.1002/pola.29196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Jankus, S. M., and R. Bendikienė. "Laser beam positioning in quasi-simultaneous laser transmission welding of polymers." Proceedings of the Estonian Academy of Sciences 71, no. 4 (2022): 350. http://dx.doi.org/10.3176/proc.2022.4.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Giordano, Geoffrey, and Hope Inman. "Laser Welding Heats Up." Plastics Engineering 65, no. 8 (September 2009): 28–30. http://dx.doi.org/10.1002/j.1941-9635.2009.tb00489.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hopmann, Christian, and Suveni Kreimeier. "Modelling the Heating Process in Simultaneous Laser Transmission Welding of Semicrystalline Polymers." Journal of Polymers 2016 (October 27, 2016): 1–10. http://dx.doi.org/10.1155/2016/3824065.

Повний текст джерела
Анотація:
Laser transmission welding is an established joining process for thermoplastics. A close-to-reality simulation of the heating process would improve the understanding of the process, facilitate and shorten the process installation, and provide a significant contribution to the computer aided component design. For these reasons a thermal simulation model for simultaneous welding was developed which supports determining the size of the heat affected zone (HAZ). The determination of the intensity profile of the laser beam after the penetration of the laser transparent semicrystalline thermoplastic is decisive for the simulation. For the determination of the intensity profile two measurement systems are presented and compared. The calculated size of the HAZ shows a high concordance to the dimensions of the HAZ found using light microscopy. However, the calculated temperatures exceed the indicated decomposition temperatures of the particular thermoplastics. For the recording of the real temperatures during the welding process a measuring system is presented and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Korab, M. G., M. V. Iurzhenko, A. V. Vashchuk, and I. K. Senchenkov. "Modelling of thermal processes in laser welding of polymers." Avtomatičeskaâ svarka (Kiev) 2021, no. 11 (November 28, 2021): 8–14. http://dx.doi.org/10.37434/as2021.11.02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mingareev, Ilya, Fabian Weirauch, Alexander Olowinsky, Lawrence Shah, Pankaj Kadwani та Martin Richardson. "Welding of polymers using a 2μm thulium fiber laser". Optics & Laser Technology 44, № 7 (жовтень 2012): 2095–99. http://dx.doi.org/10.1016/j.optlastec.2012.03.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Casalino, Giuseppe, and Elhem Ghorbel. "Numerical model of CO2 laser welding of thermoplastic polymers." Journal of Materials Processing Technology 207, no. 1-3 (October 2008): 63–71. http://dx.doi.org/10.1016/j.jmatprotec.2007.12.092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Fernandes, Fábio A. O., António B. Pereira, Bernardo Guimarães, and Tiago Almeida. "Laser Welding of Transmitting High-Performance Engineering Thermoplastics." Polymers 12, no. 2 (February 10, 2020): 402. http://dx.doi.org/10.3390/polym12020402.

Повний текст джерела
Анотація:
Laser processing is a rapidly growing key technology driven by several advantages such as cost and performance. Laser welding presents numerous advantages in comparison with other welding technologies, providing high reliability and cost-effective solutions. Significant interest in this technology, combined with the increasing demand for high-strength lightweight structures has led to an increasing interest in joining high-performance engineering thermoplastics by employing laser technologies. Laser transmission welding is the base method usually employed to successfully join two polymers, a transmitting one through which the laser penetrates, and another one responsible for absorbing the laser radiation, resulting in heat and melting of the two components. In this work, the weldability of solely transmitting high-performance engineering thermoplastic is analyzed. ERTALON® 6 SA, in its white version, is welded by a pulsed Nd:YAG laser. Tensile tests were performed in order to evaluate the quality of each joint by assessing its strength. A numerical model of the joint is also developed to support the theoretical approaches employed to justify the experimental observations.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Maiwald, Frederik, Clemens Roider, Michael Schmidt, and Stefan Hierl. "Optical Coherence Tomography for 3D Weld Seam Localization in Absorber-Free Laser Transmission Welding." Applied Sciences 12, no. 5 (March 5, 2022): 2718. http://dx.doi.org/10.3390/app12052718.

Повний текст джерела
Анотація:
Quality and reliability are of the utmost importance for manufacturing in the optical and medical industries. Absorber-free laser transmission welding enables the precise joining of identical polymers without additives or adhesives and is well-suited to meet the demands of the aforementioned industries. To attain sufficient absorption of laser energy without absorbent additives, thulium fiber lasers, which emit in the polymers’ intrinsic absorption spectrum, are used. Focusing the laser beam with a high numerical aperture provides significant intensity gradients inside the workpiece and enables selective fusing of the internal joining zone without affecting the surface of the device. Because seam size and position are crucial, the high-quality requirements demand internal weld seam monitoring. In this work, we propose a novel method to determine weld seam location and size using optical coherence tomography. Changes in optical material properties because of melting and re-solidification during welding allow for weld seam differentiation from the injection-molded base material. Automatic processing of the optical coherence tomography data enables the identification and measurement of the weld seam geometry. The results from our technique are consistent with microscopic images of microtome sections and demonstrate that weld seam localization in polyamide 6 is possible with an accuracy better than a tenth of a millimeter.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Popa, George, Dana Cristina Bratu, Maria Cristina Bortun, Vlad Florin Vinatu, Ioan Both, catalin-Petru Simon, Silvia-Izabella Pop, and Angela CodruȚa Podariu. "Tensile and Shear Breaking Force of the Joints Between Stainless-Steel Orthodontic Bands and Buccal Tube Attachments Joined by Laser and TIG Welding Without Filler Material." Materiale Plastice 56, no. 4 (December 30, 2019): 693–99. http://dx.doi.org/10.37358/mp.19.4.5255.

Повний текст джерела
Анотація:
Orthodontic appliances usually require the joining of different stainless-steel parts in order to achieve adequate control over tooth movement during the active treatment. The aim of this study was to assess the tensile and shear breaking force of the joints between forty orthodontic bands and forty attachments (buccal tubes), joined by laser and TIG welding, without filler material. For the laser welding technique, we used an XXS Laser (OROTIG) welding unit and for the TIG welding technique, a PUK D2 (LAMPERT) welding unit. The tensile and shear breaking force of the welded joints was determined using the Z010 Zwick/Roell testing machine. The independent-samples t-test showed statistically significant differences between the laser and TIG groups for both the tensile and the shear breaking force tests, the laser welded samples having better mechanical strength than the TIG welded samples. For practical use, under normal loading forces, both techniques are suitable for this particular application in orthodontics. In patients with parafunctional habits, that could develop higher bite forces, the failure of the welded joints might occur if the welding surface is not increased, especially for the TIG welding technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

IGAUE, Tomohiro, Chiharu FUKUSHIMA, Koji UTSUNOMIYA, and Suketsugu NAKANISI. "603 Diode Laser Welding of Polymers Using a Heat Sink." Proceedings of Conference of Chugoku-Shikoku Branch 2008.46 (2008): 203–4. http://dx.doi.org/10.1299/jsmecs.2008.46.203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Taha, Z. A., G. G. Roy, K. I. Hajim, and I. Manna. "Mathematical modeling of laser-assisted transmission lap welding of polymers." Scripta Materialia 60, no. 8 (April 2009): 663–66. http://dx.doi.org/10.1016/j.scriptamat.2008.12.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Gantchenko, Vladimir, Jacques Renard, Alexander Olowinsky, and Gerhard Otto. "Strength characterization of assemblies of polymers, made by laser welding." Matériaux & Techniques 103, no. 5 (2015): 503. http://dx.doi.org/10.1051/mattech/2015032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chen, M., G. Zak, and P. J. Bates. "Description of transmitted energy during laser transmission welding of polymers." Welding in the World 57, no. 2 (December 12, 2012): 171–78. http://dx.doi.org/10.1007/s40194-012-0003-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Quadrini, F., L. Santo, and F. Trovalusci. "Diode Laser Welding of Polyethylene." Polymer-Plastics Technology and Engineering 47, no. 7 (June 30, 2008): 655–61. http://dx.doi.org/10.1080/03602550802129502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Flock, D., M. Sickert, and E. Haberstroh. "Temperature Measurement in Laser Transmission Welding of Plastics." International Polymer Science and Technology 40, no. 4 (April 2013): 1–6. http://dx.doi.org/10.1177/0307174x1304000401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Choi, Hae Woon, and Sung Chul Yoon. "Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers." Transactions of the Korean Society of Mechanical Engineers A 39, no. 7 (July 1, 2015): 701–6. http://dx.doi.org/10.3795/ksme-a.2015.39.7.701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, H. X., Z. Yan, P. Li, and X. Wang. "Prediction of molten area in laser transmission welding of thermoplastic polymers." Science and Technology of Welding and Joining 19, no. 6 (May 14, 2014): 487–92. http://dx.doi.org/10.1179/1362171814y.0000000214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ilie, M., V. Stoica, E. Cicala, and J. C. Kneip. "Experimental design investigation of through-transmission laser welding of dissimilar polymers." Journal of Physics: Conference Series 1426 (January 2020): 012045. http://dx.doi.org/10.1088/1742-6596/1426/1/012045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Frick, Thomas, and Andreas Schkutow. "Laser transmission welding of polymers – Irradiation strategies for strongly scattering materials." Procedia CIRP 74 (2018): 538–43. http://dx.doi.org/10.1016/j.procir.2018.08.118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Speka, Maryna, Simone Matteï, Michel Pilloz, and Mariana Ilie. "The infrared thermography control of the laser welding of amorphous polymers." NDT & E International 41, no. 3 (April 2008): 178–83. http://dx.doi.org/10.1016/j.ndteint.2007.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Acherjee, Bappa. "Laser transmission welding of polymers – A review on welding parameters, quality attributes, process monitoring, and applications." Journal of Manufacturing Processes 64 (April 2021): 421–43. http://dx.doi.org/10.1016/j.jmapro.2021.01.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Acherjee, Bappa. "Laser transmission welding of polymers – A review on process fundamentals, material attributes, weldability, and welding techniques." Journal of Manufacturing Processes 60 (December 2020): 227–46. http://dx.doi.org/10.1016/j.jmapro.2020.10.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Jaeschke, Peter, Dirk Herzog, and Michael Hustedt. "Thermography Aids Development of Laser Transmission Welding." Plastics Engineering 65, no. 7 (July 2009): 28–34. http://dx.doi.org/10.1002/j.1941-9635.2009.tb01992.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Angelova, Yordanka P. "Factors influencing the laser treatment of textile materials: An overview." Journal of Engineered Fibers and Fabrics 15 (January 2020): 155892502095280. http://dx.doi.org/10.1177/1558925020952803.

Повний текст джерела
Анотація:
A number of laser treatments in the textile industry such as: marking, engraving, cutting, welding, sintering, three-dimensional scanning, and others, have been successfully applied in recent years. Laser technologies are ones that may be used for decorative or identification marking of products, precise cutting, quality joining by welding both traditional materials and newly developed ones. The use of laser systems for processing of materials, in particular, textile polymers, increases due to the speed, accuracy, and flexibility of this innovative technology. The factors exerting impact over, the laser processing of natural and synthetic textile materials are a lot. They are encountered in certain connections and relationships to each other and affect, to a greater or lesser extent, the quality of the laser processing. The process may be optimized by selecting and managing the most significant factors. Most of them are presented and analyzed in this article aimed at understanding the physical nature of these processes. The factors, which exert the greatest impact on the technological process for laser treatments of textile materials, are indicated.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Prabhakaran, R., M. Kontopoulou, G. Zak, P. J. Bates, and V. Sidiropoulos. "Simulation of Heat Transfer in Laser Transmission Welding." International Polymer Processing 20, no. 4 (August 1, 2005): 410–16. http://dx.doi.org/10.1515/ipp-2005-0069.

Повний текст джерела
Анотація:
Abstract A numerical simulation of the heat transfer during laser transmission welding is presented. A finite difference approach was used to solve the one-dimensional unsteady-state heat conduction problem and to investigate the effect of welding conditions on the time-dependent temperature profiles for PA 6. For the needs of the simulation, the process was divided into heating and heat redistribution periods. The absorption coefficient of the laser-transparent part was measured experimentally and that of the laser-absorbing part was fitted using experimental data. The predicted temperature profiles were combined with experimental meltdown data to estimate the heat-affected zone thickness in the welded specimens. Good agreement was found between the estimated and measured heat-affected zone thickness values.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kumar, D., U. Pratap, N. Roy, and A. S. Kuar. "Sensitivity analysis for process parameters in laser transmission welding of transparent polymers." Materials Today: Proceedings 56 (2022): 2063–69. http://dx.doi.org/10.1016/j.matpr.2021.11.404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ilie, Mariana, Jean-Christophe Kneip, Simone Matteï, Alexandru Nichici, Claude Roze, and Thierry Girasole. "Through-transmission laser welding of polymers – temperature field modeling and infrared investigation." Infrared Physics & Technology 51, no. 1 (July 2007): 73–79. http://dx.doi.org/10.1016/j.infrared.2007.02.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Yan, Zhang, You Yu Lin, Hui Xia Liu, Pin Li, and Ye Cai. "Molten Depth Modeling of Laser Transmission Welding Based on Temperature Distribution of Moving Point Heat Source." Key Engineering Materials 620 (August 2014): 23–28. http://dx.doi.org/10.4028/www.scientific.net/kem.620.23.

Повний текст джерела
Анотація:
Laser transmission welding (LTW) is a new and efficient technology. During LTW of polymers, the size and morphology of the weld have great influence on the welding quality. In order to better evaluate the welding quality and optimize process parameters, many researches on the morphology and mathematical analytical model of the molten pool have been conducted. This study attempts to build an analytical model for calculating the depth of the molten pool (molten depth), based on the temperature field distribution theory of the moving point heat source acting on the semi-infinite body. The influence of the welding power and welding speed on the molten depth is studied emphatically. The mathematical analytical model is solved through MATLAB mathematical software. Subsequently, the test experiment about LTW of PA66 is conducted to validate the model. During the test experiment, the upper layer contains 30 wt. % glass fibers (GF) and the bottom layer contains 30 wt. % carbon fiber (CF). The result shows that the mathematical analytical model can well predict the trend of the molten depth. However, the error exists indeed. The detailed analysis about the error is also made in this article.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Maiwald, Frederik, Stephan Englmaier, and Stefan Hierl. "Absorber-free laser transmission welding of transparent polymers using fixed focus optics and 3D laser scanner." Procedia CIRP 94 (2020): 686–90. http://dx.doi.org/10.1016/j.procir.2020.09.117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Rossi, Francesca, Giada Magni, Roberto Colasanti, Martina Banchelli, Maurizio Iacoangeli, Erika Carrassi, Denis Aiudi, et al. "Characterization and Ex Vivo Application of Indocyanine Green Chitosan Patches in Dura Mater Laser Bonding." Polymers 13, no. 13 (June 29, 2021): 2130. http://dx.doi.org/10.3390/polym13132130.

Повний текст джерела
Анотація:
Dura mater repair represents a final and crucial step in neurosurgery: an inadequate dural reconstruction determines dreadful consequences that significantly increase morbidity and mortality rates. Different dural substitutes have been used with suboptimal results. To overcome this issue, in previous studies, we proposed a laser-based approach to the bonding of porcine dura mater, evidencing the feasibility of the laser-assisted procedure. In this work, we present the optimization of this approach in ex vivo experiments performed on porcine dura mater. An 810-nm continuous-wave AlGaAs (Aluminium Gallium Arsenide) diode laser was used for welding Indocyanine Green-loaded patches (ICG patches) to the dura. The ICG-loaded patches were fabricated using chitosan, a resistant, pliable and stable in the physiological environment biopolymer; moreover, their absorption peak was very close to the laser emission wavelength. Histology, thermal imaging and leak pressure tests were used to evaluate the bonding effect. We demonstrated that the application of 3 watts (W), pulsed mode (Ton 30 ms, Toff 3.5 ms) laser light induces optimal welding of the ICG patch to the dura mater, ensuring an average fluid leakage pressure of 216 ± 105 mmHg, falling within the range of physiological parameters. This study demonstrated that the thermal effect is limited and spatially confined and that the laser bonding procedure can be used to close the dura mater. Our results showed the effectiveness of this approach and encourage further experiments in in vivo models.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wang, C. Y., P. J. Bates, M. Aghamirian, G. Zak, R. Nicholls, and M. Chen. "Quantitative Morphological Analysis of Carbon Black in Polymers used in Laser Transmission Welding." Welding in the World 51, no. 3-4 (March 2007): 85–90. http://dx.doi.org/10.1007/bf03266564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Jaeschke, Peter, Dirk Herzog, Heinz Haferkamp, Christian Peters, and Axel S. Herrmann. "Laser transmission welding of high-performance polymers and reinforced composites - a fundamental study." Journal of Reinforced Plastics and Composites 29, no. 20 (July 2, 2010): 3083–94. http://dx.doi.org/10.1177/0731684410365365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Becker, F., and H. Potente. "A step towards understanding the heating phase of laser transmission welding in polymers." Polymer Engineering & Science 42, no. 2 (February 2002): 365–74. http://dx.doi.org/10.1002/pen.10954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hopmann, Ch, and M. Weber. "New Concepts for Laser Transmission Welding of Dissimilar Thermoplastics." Progress in Rubber, Plastics and Recycling Technology 28, no. 4 (November 2012): 157–72. http://dx.doi.org/10.1177/147776061202800402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ruotsalainen, Saara, Petri Laakso, and Veli Kujanpää. "Laser Welding of Transparent Polymers by Using Quasi-simultaneous Beam Off-setting Scanning Technique." Physics Procedia 78 (2015): 272–84. http://dx.doi.org/10.1016/j.phpro.2015.11.038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Vazquez-Martinez, J. M., D. Piñero, J. Salguero, and M. Batista. "Evaluation of the Joining Response of Biodegradable Polylactic Acid (PLA) from Fused Deposition Modeling by Infrared Laser Irradiation." Polymers 12, no. 11 (October 26, 2020): 2479. http://dx.doi.org/10.3390/polym12112479.

Повний текст джерела
Анотація:
The development of high-complexity geometry parts is one of the main goals of additive manufacturing technology. However, the failure of printed structures and the joining of different parts to create complex assemblies represents a real challenge in the research of efficient and sustainability techniques for the permanent assembly of polymers. Laser welding processes have been used as a single-step method to join metals for years. Nowadays, the growing trend in the use of thermoplastics for additive manufacturing has led to the need to adapt this technique to materials with a very specific nature and which are more sensitive to thermal effects. In addition, the possibility of transmitting the laser beam through transparent polymer layers allows to us focus the energy supply on internal sections of the assembled components. In this research, an infrared laser marking system was used to join two different samples of polylactic acid manufactured by fused deposited modeling technology. In order to increase the effectiveness of the bonding process, a transparent and a dark sample have been used as assembly material, focusing the laser beam on the interface area of the two parts. By means of tensile tests, dimensional measurement and the use of optical microscopy techniques, a basis was established that links the supplied energy by laser to the joining performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wang, Hongyang, Bin Huang, Jinzhu Li, Nan Li, and Liming Liu. "Welding and Riveting Hybrid Bonding of 6061 Al and Carbon Fiber Reinforced Composites." Polymers 14, no. 1 (December 28, 2021): 99. http://dx.doi.org/10.3390/polym14010099.

Повний текст джерела
Анотація:
Welding and riveting hybrid bonding technology was applied to join 6061 aluminum alloy and carbon fiber reinforced plastics (CFRP). The laser-arc hybrid welding process and stepped rivets were used in the experiments to reduce the impact of the poor heat resistance of composites. The effect of hybrid welding arc current on the formation and mechanical properties of 6061 Al/CFRP joints was studied. Tensile shear load up to 4.65 kN was achieved by adjusting process parameters. The welding process and mode of the fracture were analyzed. The hybrid bonded joint obtained consisted of two parts: a welded joint of Al plate and Al rivet, and a bonded interface between Al plate and CFRP plate. The mechanical properties of the hybrid joint were mainly determined by the Al plate/Al rivet welded joint. The results of the study show that there are three interfacial bonding mechanisms between aluminum and CFRP. In addition to mechanical bonding between the Al plate and CFRP plate, there were also metallurgical bonding of Al-Mg intermetallic compounds with resin matrix and chemical reactions of aluminum with resin and carbon fibers at the interface, which could improve the mechanical properties of the joints.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Moustafa, Essam B., and Ammar Elsheikh. "Predicting Characteristics of Dissimilar Laser Welded Polymeric Joints Using a Multi-Layer Perceptrons Model Coupled with Archimedes Optimizer." Polymers 15, no. 1 (January 2, 2023): 233. http://dx.doi.org/10.3390/polym15010233.

Повний текст джерела
Анотація:
This study investigates the application of a coupled multi-layer perceptrons (MLP) model with Archimedes optimizer (AO) to predict characteristics of dissimilar lap joints made of polymethyl methacrylate (PMMA) and polycarbonate (PC). The joints were welded using the laser transmission welding (LTW) technique equipped with a beam wobbling feature. The inputs of the models were laser power, welding speed, pulse frequency, wobble frequency, and wobble width; whereas, the outputs were seam width and shear strength of the joint. The Archimedes optimizer was employed to obtain the optimal internal parameters of the multi-layer perceptrons. In addition to the Archimedes optimizer, the conventional gradient descent technique, as well as the particle swarm optimizer (PSO), was employed as internal optimizers of the multi-layer perceptrons model. The prediction accuracy of the three models was compared using different error measures. The AO-MLP outperformed the other two models. The computed root mean square errors of the MLP, PSO-MLP, and AO-MLP models are (39.798, 19.909, and 2.283) and (0.153, 0.084, and 0.0321) for shear strength and seam width, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Köse, Ceyhun, and Ceyhun Topal. "Laser welding of AISI 410S ferritic stainless steel." Materials Research Express 6, no. 8 (June 12, 2019): 0865g4. http://dx.doi.org/10.1088/2053-1591/ab26c0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Aden, M., G. Otto, and C. Duwe. "Irradiation Strategy for Laser Transmission Welding of Thermoplastics Using High Brilliance Laser Source." International Polymer Processing 28, no. 3 (July 2013): 300–305. http://dx.doi.org/10.3139/217.2732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії