Дисертації з теми "Polyhedral approaches"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-26 дисертацій для дослідження на тему "Polyhedral approaches".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Vandenbussche, Dieter. "Polyhedral approaches to solving nonconvex quadratic programs." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/23385.
Повний текст джерелаMiller, Andrew J. "Polyhedral approaches to capacitated lot-sizing problems." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/24284.
Повний текст джерелаPereira, Vargas Liguori Pedro. "Polyhedral approaches for some network design problems." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED074.
Повний текст джерелаThis theses study the polyhedral aspects of some network design problems, focusing most on the aspects related to connectivity of the substructures necessary to build reliable network applications. At theheart of many different network design applications lies the fact that one must provide a connected subnetwork (which can be viewed as a collection of vertices or edges inducing a connected subgraph) exhibiting other desirable properties, like achieving some level of survivability or robustness, capacity constraints,or other types of budgetary constraints, depending on the context.A majority of the studies conductedand of the algorithms developed tryto take advantage of those particular aspects that differentiate one application from another, and not much attention has been given to the aspectsthat bring together these questions. Most of the studies conducted and the algorithms developed try to take advantage of those particular aspects that differentiate one application from another, and not much attention has been given to the aspects that bring together these questions. Hence, this work tries to develop an unified approach capable of exploring the most pertinent aspects of network design problems hoping that this can lead to thoughtful insights to more specific problems, being a valuable contribution to the research community and it
Waterer, Hamish. "Polyhedral approaches to scheduling shutdowns in production planning." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/23362.
Повний текст джерелаZhang, Minjiao. "Polyhedral Approaches to Dynamic Decision Making under Uncertainty." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373925091.
Повний текст джерелаHeilporn, Géraldine. "Network pricing problems : complexity, polyhedral study and solution approaches." Thèse, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/1866/6451.
Повний текст джерелаMesyagutov, Marat. "Exact Approaches for Higher-Dimensional Orthogonal Packing and Related Problems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-137905.
Повний текст джерелаEs werden NP-schwere höherdimensionale orthogonale Packungsprobleme betrachtet. Wir untersuchen ihre logische Struktur genauer und zeigen, dass sie sich in Probleme kleinerer Dimension mit einer speziellen Nachbarschaftsstruktur zerlegen lassen. Dies beeinflusst die Modellierung des Packungsprozesses, die ihreseits zu drei neuen Lösungsansätzen führt. Unter Beachtung dieser Zerlegung modellieren wir die Probleme kleinerer Dimension in einer einzigen positionsindizierten Formulierung mit Nichtüberlappungsungleichungen, die als Bindungsbedingungen dienen. Damit entwickeln wir ein neues Modell der ganzzahligen linearen Optimierung und unterziehen dies einer Polyederanalyse. Weiterhin geben wir allgemeine Nichtüberlappungs- und Dichtheitsungleichungen an und beweisen unter geeigneten Annahmen ihre facettendefinierende Eigenschaft für die konvexe Hülle der ganzzahligen Lösungen. Basierend auf dem vorgeschlagenen Modell und den starken Ungleichungen entwickeln wir einen neuen Branch-and-Cut-Algorithmus. Jedes Problem kleinerer Dimension ist eine Relaxation des höherdimensionalen Problems. Darüber hinaus besitzt es Anwendungen in verschiedenen Bereichen, wie zum Beispiel im Scheduling. Für die Behandlung der Probleme kleinerer Dimension setzen wir das Gilmore-Gomory-Modell ein, das eine Dantzig-Wolfe-Dekomposition der positionsindizierten Formulierung ist. Um eine Nachbarschaftsstruktur zu erhalten, muss die Basismatrix der optimalen Lösung die consecutive-1’s-Eigenschaft erfüllen. Für die Konstruktion solcher Matrizen entwickeln wir neue Branch-and-Price-Algorithmen, die sich durch Strategien zur Enumeration von partiellen Lösungen unterscheiden. Wir beweisen auch einige Charakteristiken von partiellen Lösungen, die das Hilfsproblem der Spaltengenerierung verschärfen. Für die nichtlineare Modellierung der höherdimensionalen Packungsprobleme untersuchen wir moderne Ansätze des Constraint Programming, modifizieren diese und schlagen neue Dichotomie- und Überschneidungsstrategien für die Verzweigung vor. Für die Verstärkung der Constraint Propagation stellen wir neue Ablehnungskriterien vor. Wir nutzen dabei 1D Relaxationen mit Intervallen und verbotenen Paaren, erweiterte Streifen-Relaxation, 2D Scheiben-Relaxation und 1D Scheiben-Streifen-Relaxation mit verbotenen Paaren. Alle vorgestellten Kriterien basieren auf Relaxationen durch Probleme kleinerer Dimension, die wir weiter durch die LP-Relaxation des Gilmore-Gomory-Modells abschwächen. Wir schließen mit Umsetzungsfragen und numerischen Experimenten aller vorgeschlagenen Ansätze
Oosten, Maarten. "A polyhedral approach to grouping problems." [Maastricht : Maastricht : Universiteit Maastricht] ; University Library, Maastricht University [Host], 1996. http://arno.unimaas.nl/show.cgi?fid=6706.
Повний текст джерелаArambula, Mercado Ivette. "A new polyhedral approach to combinatorial designs." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/358.
Повний текст джерелаWu, Xiaolin. "A polyhedral approach to designing communication networks." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/9917.
Повний текст джерелаde, Farias Ismael Jr. "A polyhedral approach to combinatorial complementarity programming problems." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/25574.
Повний текст джерелаLee, Heesang. "Maximizing a submodular function by integer programming : a polyhedral approach." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/24359.
Повний текст джерелаStrout, Michelle Mills, Alan LaMielle, Larry Carter, Jeanne Ferrante, Barbara Kreaseck, and Catherine Olschanowsky. "An approach for code generation in the Sparse Polyhedral Framework." ELSEVIER SCIENCE BV, 2016. http://hdl.handle.net/10150/615800.
Повний текст джерелаRatanje, Nikhil. "The classical simulation of noisy quantum computers : a polyhedral approach." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27945.
Повний текст джерелаBarbato, Michele. "A Polyhedral Approach for the Double TSP with Multiple Stacks and Lexicographical Orders." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD049/document.
Повний текст джерелаIn this thesis we consider two problems arising in combinatorial optimization.The first one is the double traveling salesman problem with multiple stacks. In this problem a vehicle picks up a given set of items in a region and subsequently delivers them to demanding customers in another region. When an item is picked up, it is put in a stack of the vehicle. The items are delivered observing a last-in-first-out policy. The pickup phase and the delivery phase consist in two Hamiltonian circuits, each performed by the vehicle in the corresponding region. We give a new integer linear programming formulation for this problem. Its main features are the presence of precedence variables and new infeasible path constraints. We provide polyhedral results on the convex hull of the solutions to our formulation. In particular, we show strong links with a specific TSPpolytope and a specific set covering polytope. We deduce strengthening inequalities for the initial formulation, subsequently embedded in an efficient branch-and-cut algorithm. The second problem we consider consists in finding the description of the lexicographical polytopes. These are convex hulls of the integer points lexicographically between two given integer points. We give a complete description of these polytopes by means of linear inequalities. We show that the lexicographical polytope family is closed under intersection
Zhu, Sunsheng. "Novel Approach to Polyhedral Oligmeric Silsesquioxane-Based Giant Surfactants Basd on Thiol-Michael Addition "Click" Reaction." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1399555570.
Повний текст джерелаGrosser, Tobias. "A decoupled approach to high-level loop optimization : tile shapes, polyhedral building blocks and low-level compilers." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066270/document.
Повний текст джерелаDespite decades of research on high-level loop optimizations and theirsuccessful integration in production C/C++/FORTRAN com- pilers, most compilerinternal loop transformation systems only partially address the challengesposed by the increased complexity and diversity of today’s hardware. Especiallywhen exploiting domain specific knowledge to obtain optimal code for complextargets such as accelerators or many-cores processors, many existing loopoptimization frameworks have difficulties exploiting this hardware. As aresult, new domain specific optimization schemes are developed independentlywithout taking advantage of existing loop optimization technology. This resultsboth in missed optimization opportunities as well as low portability of theseoptimization schemes to different compilers. One area where we see the need forbetter optimizations are iterative stencil computations, an importantcomputational problem that is regularly optimized by specialized, domainspecific compilers, but where generating efficient code is difficult.In this work we present new domain specific optimization strategies that enablethe generation of high-performance GPU code for stencil computations. Differentto how most existing domain specific compilers are implemented, we decouple thehigh-level optimization strategy from the low-level optimization andspecialization necessary to yield optimal performance. As high-leveloptimization scheme we present a new formulation of split tiling, a tilingtechnique that ensures reuse along the time dimension as well as balancedcoarse grained parallelism without the need for redundant computations. Usingsplit tiling we show how to integrate a domain specific optimization into ageneral purpose C-to-CUDA translator, an approach that allows us to reuseexisting non-domain specific optimizations. We then evolve split tiling into ahybrid hexagonal/parallelogram tiling scheme that allows us to generate codethat even better addresses GPU specific concerns. To conclude our work ontiling schemes we investigate the relation between diamond and hexagonaltiling. Starting with a detailed analysis of diamond tiling including therequirements it poses on tile sizes and wavefront coefficients, we provide aunified formulation of hexagonal and diamond tiling which enables us to performhexagonal tiling for two dimensional problems (one time, one space) in thecontext of a general purpose optimizer such as Pluto. Finally, we use thisformulation to evaluate hexagonal and diamond tiling in terms ofcompute-to-communication and compute-to-synchronization ratios.In the second part of this work, we discuss our contributions to importantinfrastructure components, our building blocks, that enviable us to decoupleour high-level optimizations from both the necessary code generationoptimizations as well as the compiler infrastructure we apply the optimizationto. We start with presenting a new polyhedral extractor that obtains apolyhedral representation from a piece of C code, widening the supported C codeto exploit the full generality of Presburger arithmetic and taking special careof modeling language semantics even in the presence of defined integerwrapping. As a next step, we present a new polyhedral AST generation approach,which extends AST generation beyond classical control flow generation byallowing the generation of user provided mappings. Providing a fine-grainedoption mechanism, we give the user fine grained control about AST generatordecisions and add extensive support for specialization e.g., with a newgeneralized form of polyhedral unrolling. To facilitate the implementation ofpolyhedral transformations, we present a new schedule representation, scheduletrees, which proposes to make the inherent tree structure of schedules explicitto simplify the work with complex polyhedral schedules.The last part of this work takes a look at our contributions to low-levelcompilers
Ni, Bo. ""Clicking" Fluoriated Polyhedral Oligomeric Silsequioxane onto Polymers: A Modular Approach Toward Shape Amphiphiles with Flourous Molecular Clusters." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1398691169.
Повний текст джерелаAngulo, Cárdenas Alejandro Alberto. "Optimización lineal entera mixta aplicada a problemas de planificación estratégica en electricidad." Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/136231.
Повний текст джерелаEn esta tesis se presentan los resultados del trabajo desarrollado por el autor durante el periodo en que fue estudiante de doctorado en el Departamento de Industrias de la Universidad de Chile. El trabajo se centra en la aplicación de técnicas de optimización entera-mixtas a problemas de planificación estratégica del sector eléctrico, donde el problema de corto plazo correspondiente al predespacho de unidades de generación en sistemas térmicos es el tema central en estudio. En lo relativo al modelamiento del problema de predespacho de unidades, se considera el análisis de las distintas formulaciones entera-mixtas disponibles en la literatura junto con una nueva basada en un formulaciones extendidas tipo red. Se investiga su desempeño sobre un conjunto de instancias reales desde el punto de vista de su eficiencia computacional al ser resueltas con softwares comerciales. Lo anterior incluye análisis de tiempos de solución, nodos utilizados e iteraciones de simplex realizadas para distintas tolerancias requeridas. Los experimentos muestran la calidad de la aproximación propuesta, siendo esta completamente competitiva respecto a las ya documentadas. Este resultado era esperable, dada la estructura totalmente unimodular de gran parte de la formulación propuesta, pero para nada justificable debido al tamaño de la misma. Lo anterior muestra que el efecto del preproceso de los softwares comerciales puede ser fundamental en algunas formulaciones. Por otro lado, respecto a la función objetivo del problema de predespacho de unidades, que por lo general se representa como una función cuadrática de la generación, se presenta una nueva manera de linealizar su comportamiento de modo que su inclusión en una formulación entera-mixta lineal tradicional sea eficiente. Esto último debe entenderse a partir de la necesidad que el tamaño de la aproximación no crezca de manera desmedida si el error requerido para la misma decrece. Si bien ya existía la posibilidad de hacer esto mediante la aplicación de la aproximación desarrollada por Ben-Tal y Nemirovsky para conos de segundo orden [2], acá se presenta un método alternativo, con mejores propiedades numéricas, un orden de magnitud mejor en calidad de aproximación, y cuya aplicación a problemas reales de predespacho de unidades genera mejores resultados respecto de las aproximaciones tradicionales. Por último, con el fin de mejorar el desempeño de la formulación entera-mixta presentada, se realiza el análisis poliedral de una de sus subestructuras esperando identificar desigualdades válidas que permitan mejorar su cota dual. Esta subestructura corresponde al knapsack semicontinuo con restricciones adicionales del tipo generalized upper bound. Se demuestra que bajo supuestos simples es posible identificar facetas tipo generalized flow cover en espacios restringidos de dimensión inferior. Luego se llevan estas desigualdades al espacio original utilizando procedimientos de lifting multidimensional independiente de la secuencia [38, 27, 16, 17] y se iii prueba que con supuestos adicionales también son facetas allí. Experimentos computacionales en instancias derivadas de problemas de UC muestran su eficiencia, donde más de un 50% del gap integral del nodo raíz se reduce aplicando en promedio solo tres de estos cortes. Además, en este contexto, también se ha implementado un solver ad-hoc para la solución eficiente de las relajaciones lineales de la formulación tipo red, con un speed-up del orden de 4x a 8x respecto a CPLEX barrier optimizer, pero que aún no está documentado.
Ozsoy, Feyzullah Aykut. "An integer programming approach to layer planning in communication networks." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209935.
Повний текст джерелаPHLRP consists of partitioning a network into sub-networks, locating at least one hub in each subnetwork and routing the traffic within the network such that all inter-subnetwork traffic is routed through the hubs and all intra-subnetwork traffic stays within the sub-networks all the way from the source to the destination. Obviously, besides the hub location component, PHLRP also involves a graph partitioning component and a routing component. PHLRP finds applications in the strategic planning or deployment of the Intermediate System-Intermediate System (ISIS) Internet Protocol networks and the Less-than-truck load freight distribution systems.
First, we introduce three IP formulations for solving PHLRP. The hub location component and the graph partitioning components of PHLRP are
modeled in the same way in all three formulations. More precisely, the hub location component is represented by the p-median variables and constraints; and the graph partitioning component is represented by the size-constrained graph partitioning variables and constraints. The formulations differ from each other in the way the peculiar routing requirements of PHLRP are modeled.
We then carry out analytical and empirical comparisons of the three IP
formulations. Our thorough analysis reveals that one of the formulations is
provably the tightest of the three formulations. We also show analytically that the LP relaxations of the other two formulations do not dominate each other. On the other hand, our empirical comparison in a standard branch-and-cut framework that is provided by CPLEX shows that not the tightest but the most compact of the three formulations yield the best performance in terms of solution time.
From this point on, based on the insight gained from detailed analysis of the formulations, we focus our attention on a common sub-problem of the three formulations: the so-called size-constrained graph partitioning problem. We carry out a detailed polyhedral analysis of this problem. The main benefit from this polyhedral analysis is that the facets we identify for the size-constrained graph partitioning problem constitute strong valid inequalities for PHLRP.
And finally, we wrap up our efforts for solving PHLRP. Namely, we present
the results of our computational experiments, in which we employ some facets
of the size-constrained graph partitioning polytope in a branch-and-cut algorithm for solving PHLRP. Our experiments show that our approach brings
significant improvements to the solution time of PHLRP when compared with
the default branch-and-cut solver of XPress.
/
Dans cette thèse, nous introduisons le problème Partitionnement-Location des Hubs et Acheminement (PLHA), une variante du problème de location de hubs. Le problème PLHA partitionne un réseau afin d'obtenir des sous-réseaux, localise au moins un hub dans chaque sous-réseau et achemine le traffic dans le réseau de la maniére suivante :le traffic entre deux
sous-réseaux distincts doit être éxpedié au travers des hubs tandis que le traffic entre deux noeuds d'un même sous-réseau ne doit pas sortir de celui-ci. PLHA possède des applications dans le planning stratégique, ou déploiement, d'un certain protocole de communication utilisé
dans l'Internet, Intermediate System - Intermediate System, ainsi que dans la distribution des frets.
Premièrement, nous préesentons trois formulations linéaires en variables entières pour résoudre PLHA. Le partitionnement du graphe et la localisation des hubs sont modélisées de la même maniére dans les trois formulations. Ces formulations diffèrent les unes des autres dans la maniére dont l'acheminement du traffic est traité.
Deuxièmement, nous présentons des comparaisons analytiques et empiriques des trois formulations. Notre comparaison analytique démontre que l'une des formulations est plus forte que les autres. Néanmoins, la comparaison empirique des formulations, via le solveur CPLEX, montre que la formulation la plus compacte (mais pas la plus forte) obtient les meilleures performances en termes de temps de résolution du problème.
Ensuite, nous nous concentrons sur un sous-problème, à savoir, le partitionnement des graphes sous contrainte de taille. Nous étudions le polytope des solutions réalisables de ce sous-problème. Les facettes de ce polytope constituent des inégalités valides fortes pour
PLHA et peuvent être utilisées dans un algorithme de branch-and-cut pour résoudre PLHA.
Finalement, nous présentons les résultats d'un algorithme de branch-and-cut que nous avons développé pour résoudre PLHA. Les résultats démontrent que la performance de notre méthode est meilleure que celle de l'algorithme branch-and-cut d'Xpress.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Mohamed, Sidi Mohamed Ahmed. "K-Separator problem." Thesis, Evry, Institut national des télécommunications, 2014. http://www.theses.fr/2014TELE0032/document.
Повний текст джерелаLet G be a vertex-weighted undirected graph. We aim to compute a minimum weight subset of vertices whose removal leads to a graph where the size of each connected component is less than or equal to a given positive number k. If k = 1 we get the classical vertex cover problem. Many formulations are proposed for the problem. The linear relaxations of these formulations are theoretically compared. A polyhedral study is proposed (valid inequalities, facets, separation algorithms). It is shown that the problem can be solved in polynomial time for many special cases including the path, the cycle and the tree cases and also for graphs not containing some special induced sub-graphs. Some (k + 1)-approximation algorithms are also exhibited. Most of the algorithms are implemented and compared. The k-separator problem has many applications. If vertex weights are equal to 1, the size of a minimum k-separator can be used to evaluate the robustness of a graph or a network. Another application consists in partitioning a graph/network into different sub-graphs with respect to different criteria. For example, in the context of social networks, many approaches are proposed to detect communities. By solving a minimum k-separator problem, we get different connected components that may represent communities. The k-separator vertices represent persons making connections between communities. The k-separator problem can then be seen as a special partitioning/clustering graph problem
Naghmouchi, Mohamed yassine. "Gestion de la sécurité dans les systèmes de télécommunications : modèles, polyèdre et algorithmes." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED008.
Повний текст джерелаIn this thesis, we propose a new risk management framework for telecommunication networks. This is based on theconcept of Risk Assessment Graphs (RAGs). These graphs contain two types of nodes: access point nodes, or startingpoints for attackers, and asset-vulnerability nodes. The latter have to be secured. An arc in the RAG represents apotential propagation of an attacker from a node to another. A positive weight, representing the propagation difficulty ofan attacker, is associated to each arc. First, we propose a quantitative risk evaluation approach based on the shortestpaths between the access points and the asset-vulnerability nodes. Then, we consider a risk treatment problem, calledProactive Countermeasure Selection Problem (PCSP). Given a propagation difficulty threshold for each pair of accesspoint and asset-vulnerability node, and a set of countermeasures that can be placed on the asset vulnerability nodes, thePCSP consists in selecting the minimum cost subset of countermeasures so that the length of each shortest path froman access point to an asset vulnerability node is greater than or equal to the propagation difficulty threshold.We show that the PCSP is NP-Complete even when the graph is reduced to an arc. Then, we give a formulation of theproblem as a bilevel programming model for which we propose two single-level reformulations: a compact formulationbased on LP-duality, and a path formulation with an exponential number of constraints, obtained by projection. Moreover,we study the path formulation from a polyhedral point of view. We introduce several classes of valid inequalities. Wediscuss when the basic and valid inequalities define facets. We also devise separation routines for these inequalities.Using this, we develop a Branch-and-Cut algorithm for the PCSP along with an extensive computational study. Thenumerical tests show the efficiency of the polyhedral results from an algorithmic point of view.Our framework applies to a wide set of real cases in the telecommunication industry. We illustrate this in several practicaluse cases including Internet of Things (IoT), Software Defined Network (SDN) and Local Area Networks (LANs). We alsoshow the integration of our approach in a web application
Mesyagutov, Marat. "Exact Approaches for Higher-Dimensional Orthogonal Packing and Related Problems." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A27750.
Повний текст джерелаEs werden NP-schwere höherdimensionale orthogonale Packungsprobleme betrachtet. Wir untersuchen ihre logische Struktur genauer und zeigen, dass sie sich in Probleme kleinerer Dimension mit einer speziellen Nachbarschaftsstruktur zerlegen lassen. Dies beeinflusst die Modellierung des Packungsprozesses, die ihreseits zu drei neuen Lösungsansätzen führt. Unter Beachtung dieser Zerlegung modellieren wir die Probleme kleinerer Dimension in einer einzigen positionsindizierten Formulierung mit Nichtüberlappungsungleichungen, die als Bindungsbedingungen dienen. Damit entwickeln wir ein neues Modell der ganzzahligen linearen Optimierung und unterziehen dies einer Polyederanalyse. Weiterhin geben wir allgemeine Nichtüberlappungs- und Dichtheitsungleichungen an und beweisen unter geeigneten Annahmen ihre facettendefinierende Eigenschaft für die konvexe Hülle der ganzzahligen Lösungen. Basierend auf dem vorgeschlagenen Modell und den starken Ungleichungen entwickeln wir einen neuen Branch-and-Cut-Algorithmus. Jedes Problem kleinerer Dimension ist eine Relaxation des höherdimensionalen Problems. Darüber hinaus besitzt es Anwendungen in verschiedenen Bereichen, wie zum Beispiel im Scheduling. Für die Behandlung der Probleme kleinerer Dimension setzen wir das Gilmore-Gomory-Modell ein, das eine Dantzig-Wolfe-Dekomposition der positionsindizierten Formulierung ist. Um eine Nachbarschaftsstruktur zu erhalten, muss die Basismatrix der optimalen Lösung die consecutive-1’s-Eigenschaft erfüllen. Für die Konstruktion solcher Matrizen entwickeln wir neue Branch-and-Price-Algorithmen, die sich durch Strategien zur Enumeration von partiellen Lösungen unterscheiden. Wir beweisen auch einige Charakteristiken von partiellen Lösungen, die das Hilfsproblem der Spaltengenerierung verschärfen. Für die nichtlineare Modellierung der höherdimensionalen Packungsprobleme untersuchen wir moderne Ansätze des Constraint Programming, modifizieren diese und schlagen neue Dichotomie- und Überschneidungsstrategien für die Verzweigung vor. Für die Verstärkung der Constraint Propagation stellen wir neue Ablehnungskriterien vor. Wir nutzen dabei 1D Relaxationen mit Intervallen und verbotenen Paaren, erweiterte Streifen-Relaxation, 2D Scheiben-Relaxation und 1D Scheiben-Streifen-Relaxation mit verbotenen Paaren. Alle vorgestellten Kriterien basieren auf Relaxationen durch Probleme kleinerer Dimension, die wir weiter durch die LP-Relaxation des Gilmore-Gomory-Modells abschwächen. Wir schließen mit Umsetzungsfragen und numerischen Experimenten aller vorgeschlagenen Ansätze.
Reinert, Knut [Verfasser]. "A polyhedral approach to sequence alignment problems / von Knut Reinert." 2004. http://d-nb.info/972339531/34.
Повний текст джерелаAdenubi, Adewole Oluseyi. "The effect of using animated computer 3-D figures illustration in the learning of polyhedron in geometry." Diss., 2016. http://hdl.handle.net/10500/23611.
Повний текст джерелаMathematics Education
M. Sc. (Mathematics Education)
Vasista, Vinay V. "Automatic Optimization of Geometric Multigrid Methods using a DSL Approach." Thesis, 2017. http://etd.iisc.ernet.in/2005/3707.
Повний текст джерела