Добірка наукової літератури з теми "POLYGENERATION SYSTEMS"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "POLYGENERATION SYSTEMS".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "POLYGENERATION SYSTEMS"

1

Calise, Francesco, and Massimo Dentice D’Accadia. "Simulation of Polygeneration Systems." Energies 9, no. 11 (November 8, 2016): 925. http://dx.doi.org/10.3390/en9110925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Calise, Francesco, Giulio de Notaristefani di Vastogirardi, Massimo Dentice d'Accadia, and Maria Vicidomini. "Simulation of polygeneration systems." Energy 163 (November 2018): 290–337. http://dx.doi.org/10.1016/j.energy.2018.08.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Khoshgoftar Manesh, Mohammad Hasan, and Viviani Caroline Onishi. "Energy, Exergy, and Thermo-Economic Analysis of Renewable Energy-Driven Polygeneration Systems for Sustainable Desalination." Processes 9, no. 2 (January 23, 2021): 210. http://dx.doi.org/10.3390/pr9020210.

Повний текст джерела
Анотація:
Reliable production of freshwater and energy is vital for tackling two of the most critical issues the world is facing today: climate change and sustainable development. In this light, a comprehensive review is performed on the foremost renewable energy-driven polygeneration systems for freshwater production using thermal and membrane desalination. Thus, this review is designed to outline the latest developments on integrated polygeneration and desalination systems based on multi-stage flash (MSF), multi-effect distillation (MED), humidification-dehumidification (HDH), and reverse osmosis (RO) technologies. Special attention is paid to innovative approaches for modelling, design, simulation, and optimization to improve energy, exergy, and thermo-economic performance of decentralized polygeneration plants accounting for electricity, space heating and cooling, domestic hot water, and freshwater production, among others. Different integrated renewable energy-driven polygeneration and desalination systems are investigated, including those assisted by solar, biomass, geothermal, ocean, wind, and hybrid renewable energy sources. In addition, recent literature applying energy, exergy, exergoeconomic, and exergoenvironmental analysis is reviewed to establish a comparison between a range of integrated renewable-driven polygeneration and desalination systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ramadhani, Farah, M. A. Hussain, Hazlie Mokhlis, and Oon Erixno. "Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design." Processes 10, no. 10 (October 19, 2022): 2126. http://dx.doi.org/10.3390/pr10102126.

Повний текст джерела
Анотація:
Solid oxide fuel cells are an emerging energy conversion technology suitable for high-temperature power generation with proper auxiliary heat. Combining SOFCs and polygeneration has produced practical applications for modern energy system designs. Even though many researchers have reviewed these systems’ technologies, opportunities and challenges, reviews regarding the optimal strategy for designing and operating the systems are limited. Polygeneration is more complicated than any other energy generation type due to its ability to generate many types of energy from various prime movers. Moreover, integration with other applications, such as vehicle charging and fueling stations, increases the complication in making the system optimally serve the loads. This study elaborates on the energy planning and guidelines for designing a polygeneration system, especially for residential applications. The review of polygeneration technologies also aligns with the current research trend of developing green technology for modern and smart homes in residential areas. The proposed guideline is expected to solve the complication in other applications and technologies and design the polygeneration system optimally.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Lingmei, Zheng Li, and Weidou Ni. "Emergy evaluation of polygeneration systems." Frontiers of Energy and Power Engineering in China 1, no. 2 (May 2007): 223–27. http://dx.doi.org/10.1007/s00000-007-0030-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Murugan, S., and Bohumil Horák. "Tri and polygeneration systems - A review." Renewable and Sustainable Energy Reviews 60 (July 2016): 1032–51. http://dx.doi.org/10.1016/j.rser.2016.01.127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dolotovsky, Igor, and Evgeni Larin. "Polygeneration technology and equipment for energy and water supply systems of oil and gas enterprises." Energy Safety and Energy Economy 6 (December 2021): 11–19. http://dx.doi.org/10.18635/2071-2219-2021-6-11-19.

Повний текст джерела
Анотація:
A novel polygeneration technology and equipment concept has been suggested for energy and water supply systems of oil and gas enterprises. It was created in order to enhance opportunities of mutual integration of power and manufacturing systems using recuperation and recycling. As an example, we have described a system which incorporates modules for combined energy resource and water generation as well as wastewater and low pressure hydrocarbon gas recycling. Feasibility of polygeneration and mutual integration was assessed with use of a multi-criterion concidering efficiency and effectiveness.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Homa, Maksymilian, Anna Pałac, Maciej Żołądek, and Rafał Figaj. "Small-Scale Hybrid and Polygeneration Renewable Energy Systems: Energy Generation and Storage Technologies, Applications, and Analysis Methodology." Energies 15, no. 23 (December 2, 2022): 9152. http://dx.doi.org/10.3390/en15239152.

Повний текст джерела
Анотація:
The energy sector is nowadays facing new challenges, mainly in the form of a massive shifting towards renewable energy sources as an alternative to fossil fuels and a diffusion of the distributed generation paradigm, which involves the application of small-scale energy generation systems. In this scenario, systems adopting one or more renewable energy sources and capable of producing several forms of energy along with some useful substances, such as fresh water and hydrogen, are a particularly interesting solution. A hybrid polygeneration system based on renewable energy sources can overcome operation problems regarding energy systems where only one energy source is used (solar, wind, biomass) and allows one to use an all-in-one integrated systems in order to match the different loads of a utility. From the point of view of scientific literature, medium- and large-scale systems are the most investigated; nevertheless, more and more attention has also started to be given to small-scale layouts and applications. The growing diffusion of distributed generation applications along with the interest in multipurpose energy systems based on renewables and capable of matching different energy demands create the necessity of developing an overview on the topic of small-scale hybrid and polygeneration systems. Therefore, this paper provides a comprehensive review of the technology, operation, performance, and economical aspects of hybrid and polygeneration renewable energy systems in small-scale applications. In particular, the review presents the technologies used for energy generation from renewables and the ones that may be adopted for energy storage. A significant focus is also given to the adoption of renewable energy sources in hybrid and polygeneration systems, designs/modeling approaches and tools, and main methodologies of assessment. The review shows that investigations on the proposed topic have significant potential for expansion from the point of view of system configuration, hybridization, and applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Pei, Dimitrios I. Gerogiorgis, and Efstratios N. Pistikopoulos. "Modeling and optimization of polygeneration energy systems." Catalysis Today 127, no. 1-4 (September 30, 2007): 347–59. http://dx.doi.org/10.1016/j.cattod.2007.05.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kasaeian, Alibakhsh, Evangelos Bellos, Armin Shamaeizadeh, and Christos Tzivanidis. "Solar-driven polygeneration systems: Recent progress and outlook." Applied Energy 264 (April 2020): 114764. http://dx.doi.org/10.1016/j.apenergy.2020.114764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "POLYGENERATION SYSTEMS"

1

Liu, Pei. "Modelling and optimization of polygeneration energy systems." Thesis, Imperial College London, 2009. http://hdl.handle.net/10044/1/5530.

Повний текст джерела
Анотація:
Ever-increasing energy consumption and consequent extensive greenhouse gas (GHG) emissions are two major urgent problems faced by all human beings in the 21st century. As a major contributor, the energy production section appears to be the most suitable field where further improvements could be explored to tackle these problems. Polygeneration is a typical type of next generation energy production technology with higher energy efficiency and lower/zero GHG emissions. However, methodologies guiding an efficient and stable transition from our existing energy systems to more advanced ones are still lacking. The purpose of this thesis is to provide a generic modelling and optimization framework to guide planning and design of energy systems. This framework of methodologies ad- dresses the following issues arising in the planning and designing of energy systems: a) decision making at both strategic planning level and process design level; b) selection of roadmaps, technologies, and types of equipment from many available options; c) planning or design according to both economic and environmental criteria; d) planning or design under inevitable and unpredictable future uncertainty. The thesis is organized as follows: first, a review of energy systems is presented, followed by methodologies of energy systems engineering and their applications. Then a section of polygeneration process modelling is provided, at both strategic planning and process design levels, comprising superstructure representations of polygeneration energy systems at different levels, implementations of the superstructure based modelling strategy using mixed-integer programming, multi-objective optimization for the optimal process design according to both economic and environmental criteria, and optimization under uncer- tainty to account the impacts of future uncertainties at the planning/design stage and to increase the flexibility and robustness of a process design. Finally, major achievements of this work are summarised and future research directions are recommended.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Yang Ph D. Massachusetts Institute of Technology Department of Chemical Engineering. "Optimal design and operation of energy polygeneration systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79192.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 301-319).
Polygeneration is a concept where multiple energy products are generated in a single plant by tightly integrating multiple processes into one system. Compared to conventional single-product systems, polygeneration systems have many economic advantages, such as potentially high profitability and high viability when exposed to market fluctuations. The optimal design of an energy polygeneration system that converts coal and biomass to electricity, liquid fuels (naphtha and diesel) and chemical products (methanol) with carbon dioxide (CO²) capture under different economic scenarios is investigated. In this system, syngas is produced by gasification of coal and/or biomass; purified by a cleaning process to remove particles, mercury, sulfur and CO²; and then split to different downstream sections such as the gas turbine, FT process and the methanol process. In this thesis, the optimal design with the highest net present value (NPV) is determined by optimizing equipment capacities, stream flow rates and stream split fractions. The case study results for static polygeneration systems reveal that the optimal design of polygeneration systems is strongly influenced by economic conditions such as feedstock prices, product prices, and potential emissions penalties for CO². Over the range of economic scenarios considered, it can be optimal to produce a mixture of electricity, liquid fuels, and methanol; only one each; or mixtures in-between. The optimal biomass/coal feed ratio significantly increases when the carbon tax increases or the biomass price decreases. An economic analysis of the optimal static polygeneration designs yielded a slightly higher NPV than comparable single-product plants. The flexible operation is then considered for the energy polygeneration system. In real applications, product prices can fluctuate significantly seasonally or even daily. The profitability of the polygeneration system can potentially be increased if some operational flexibility is introduced, such as adjusting the product mix in response to changing market prices. The major challenge of this flexible design is the determination of the optimal trade-off between flexibility and capital cost because higher flexibility typically implies both higher product revenues and larger equipment sizes. A two-stage optimization formulation for is used for the optimal design and operation of flexible energy polygeneration systems, which simultaneously optimizes design decision variables (e.g., equipment sizes) and operational decision variables (e.g., production rate schedules) in several different market scenarios to achieve the best expected economic performance. Case study results for flexible polygeneration systems show that for most of market scenarios, flexible polygeneration systems achieved higher expected NPVs than static polygeneration systems. Furthermore, even higher expected NPVs could be obtained with increases in flexibility. The flexible polygeneration optimization problem is a potentially large-scale nonconvex mixed-integer nonlinear program (MINLP) and cannot be solved to global optimality by state-of-the-art global optimization solvers, such as BARON, within a reasonable time. The nonconvex generalized Benders decomposition (NGBD) method can exploit the special structure of this mathematical programming problem and enable faster solution. In this method, the nonconvex MINLP is relaxed into a convex lower bounding problem which can be further reformulated into a relaxed master problem according to the principles of projection, dualization and relaxation. The relaxed master problem yields an nondecreasing sequence of lower bounds for the original problem. And an nonincreasing sequence of upper bounds is obtained by solving primal problems, which are generated by fixing the integer variables in the original problem. A global optimal objective is obtained when the lower and upper bounds coincide. The decomposition algorithm guarantees to find an E-optimal solution in a finite number of iterations. In this thesis, several enhanced decomposition methods with improved relaxed master problems are developed, including enhanced NGBD with primal dual information (NGBD-D), piecewise convex relaxation (NGBD-PCR) and lift-and-project cuts (NGBD-LAP). In NGBD-D, additional dual information is introduced into the relaxed master problem by solving the relaxed dual of primal problem. The soobtained primal dual cuts can significantly improve the convergence rate of the algorithm. In NGBD-PCR, the piecewise McCormick relaxation technique is integrated into the NGBD algorithm to reduce the gap between the original problem and its convex relaxation. The domains of variables in bilinear functions can be uniformly partitioned before solution or dynamically partitioned in the algorithm by using the intermediate solution information. In NGBD-LAP, lift-and-project cuts are employed for solving the piecewise lower bounding problem. In all three enhanced decomposition algorithms, there is a trade-off between tighter relaxations and more solution times for subproblems. The computational advantages of the enhanced decomposition methods are demonstrated via case studies on the flexible polygeneration problems. The computational results show that, while NGBD can solve problems that are intractable for a state-ofthe- art global optimization solver (BARON), the enhanced NGBD algorithms help to reduce the solution time by up to an order of magnitude compared to NGBD. And enhanced NGBD algorithms solved the large-scale nonconvex MINLPs to [epsilon]-optimality in practical times (e.g., a problem with 70 binary variables and 44136 continuous variables was solved within 19 hours).
by Yang Chen.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Karem, Agri, and Marcus Kristiansson. "Comparative study of polygeneration systems for commercial buildings." Thesis, KTH, Kraft- och värmeteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277934.

Повний текст джерела
Анотація:
In recent times the problems regarding global warming and climate change have become increasingly relevant in our society. Public attention is growing due to seemingly larger and more severe natural disasters each year and the search for solutions to these problems is greater than ever. Humanity is facing a lot of environmental challenges, but one could argue that the increasing rate of greenhouse gas emissions related to energy production and use is the main focus. This study focuses on how electricity generating and storage technologies can be installed for different types of buildings and businesses to maximize economic benefits and at the same time reduce dependency on grid bought electricity. The buildings in the analysis will have prior solar PV systems installed ranging from 35 kW to 254.8 kW in capacity. Three different buildings within this interval have been chosen and have the solar PV capacity of 35.84 kW, 143.36 kW and 254.8 kW. These buildings have been chosen to get three different load profiles that are as different as possible, given the available data. The study concludes that only using solar PV is the financially most profitable system configuration for all three buildings, rated by maximum IRR. Both wind power and batteries have a negative impact on IRR for all buildings. The building with the least changes in day-to-day peak demand benefited the most from solar PV. Wind power affects the demand in a similar way as solar PV, however batteries added more value to a building with a less consistent load curve.
På senare tid har problemen med global uppvärmning och klimatförändringar blivit alltmer relevanta i vårt samhälle. Allmänhetens uppmärksamhet växer på grund av till synes större och allvarligare naturkatastrofer varje år och sökandet efter lösningar på dessa problem är större än någonsin. Mänskligheten står inför många miljömässiga utmaningar, men det går att hävda att den ökande andelen växthusgasutsläpp relaterade till energiproduktion och användning är huvudfokus. Denna studie fokuserar på hur elproduktionens- och lagringsteknologier kan installeras för olika typer av byggnader och företag för att maximera ekonomiska fördelar och samtidigt minska beroendet av köpt el från elnätet. Byggnaderna i analysen har tidigare installerade solcellsanläggningar som sträcker sig från 35 kW till 254.8 kW. Tre olika byggnader inom detta intervall har valts och för dessa var solenergikapaciteten 35.84 kW, 143.36 kW och 254.8 kW. Dessa byggnader har valts för att få tre olika elförbrukningsprofiler som är så olika som möjligt med tanke på den tillgängliga datan. Studien drar slutsatsen att användningen av endast PV är den ekonomiskt est lönsamma systemkonfigurationen för alla tre byggnader, rankad efter maximal IRR. Både vindkraft och batterier påverkar IRR negativt för alla byggnaderna. Byggnaden med minst förändringar i det dagliga toppbehovet gynnades mest av solceller. Vindkraft påverkar elbehovet på liknande sätt som PV, men batterierna däremot gav mer värde till en byggnad med en förbrukningsprofil som var mindre konsekvent.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wegener, Moritz. "Island-based polygeneration systems : feasibility of bBiomass-driven distributed concepts." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671913.

Повний текст джерела
Анотація:
The colossal risks and challenges posed by climate change require innovative solutions that must fulfil energy service demands sustainably. The concept of small-scale, biomass-based polygeneration (SBP) is one such technological approach, which optimizes locally supplied fuels to provide several energy services like electricity, heating, cooling, potable water, and/or bio-chemical products. By presenting chosen SBP systems and models employed in various socio-geographic locations, in particular distributed applications, the thesis identifies benefits as well as drawbacks of the SBP concept and aims to promote its wider usage in the field. Because a multitude of technologies can be applied for polygeneration system design, the thesis starts with a thorough review of the highly complex and rapidly evolving field, where relevant literature is presented and assimilated. Based on this review, several models have been created for various solar-assisted SBP systems: Firstly, a small-scale Combined Cooling, Heating, and Power (CCHP) system based on biomass gasification has been investigated for a hotel resort on one of the Andaman Islands, India. Apart from economic and environmental superiority compared to a fossil-fuel reference system, the study also expanded technological aspects by adding a socio-political analysis of the benefits and drawbacks of the system for the entire island community. In the second study, a novel control algorithm was devised for a biogas-based polygeneration system generating electricity and potable water generation for a rural off-grid village in El Pando, Bolivia. It was found that the proposed system could lead to significant cost and emissions reductions paired with greater energy autonomy. In the third study, an optimization model for a combined gasification-based CCHP/Heat Pump (HP) system is presented for a tourist facility in Barcelona considering various climate scenarios. The study reveals that the system design is only slightly affected by future changes in climate and that the CCHP/HP system shows only a moderate economic performance but still considerable CO2-savings potential. The overall findings of these studies reveal that the economic feasibility of SBP systems depends greatly not just on their inherent design but also on their location. However, all proposed polygeneration systems could lower emissions significantly, while excelling in energy efficiency as well as adaptability towards service demands and other technologies. The presented studies contribute to the state of the art by adding innovative polygeneration system designs, proposing new modelling approaches and subsequent models including SBP system enhancing technologies, as well as by investigating the effects of geographical location and climate change on the system design process.
Los colosales riesgos y retos puestos por el cambio climático requieren soluciones creativas para satisfacer las demandas de servicios energéticos de una manera más sostenible, comparado con los sistemas actuales. El concepto de poligeneración a escala pequeña y basada en biomasa (Small-scale, biomass-based polygeneration o SBP) es uno de estos enfoques, que optimiza el uso de combustible locales para proveer varios servicios energéticos como electricidad, calor, enfriamiento, agua potable y/o productos bioquímicos. Presentando una selección de sistemas SBP y modelos empleados en varias localizaciones socio-geográficas, esta tesis identifica los beneficios e inconvenientes del concepto SBP con el objetivo de promover su un uso más amplio en el mundo. Como se puede aplicar una multitud de tecnologías para el diseño de sistemas SBP, la tesis empieza con una revisión profunda del campo, altamente complejo y dinámico, donde la literatura relevante está presentada en una forma estructurada y resumida. Basado en esta revisión, se han creado varios modelos SBP para varios sistemas SBP con asistencia solar: Principalmente, se ha investigado un sistema de generación conjunta de frio, calor y electricidad (en inglés: Combined Cooling, Heating, and Power or CCHP) basado en gasificación de biomasa para un resort (hotelero) en una de las islas Andamán, India. Además de mostrar de una superioridad económica y ambiental comparado con el sistema de referencia de combustibles fósiles, el estudio expandió el conocimiento científico añadiendo un análisis socio-político de los beneficios e inconvenientes del sistema SBP para la comunidad de la isla entera. En el segundo estudio, se ha desarrollado un nuevo algoritmo de control para un sistema de poligeneración basado en biogás, que genera electricidad y agua potable para una comunidad rural y sin conexión a una red eléctrica más grande en el Pando, Bolivia. Se ha revelado que el sistema propuesto podría bajar significantemente los costes y las emisiones junto con un aumento de la autonomía energética. En el tercer estudio se ha presentado un modelo de optimización para un sistema combinado de CCHP y bombas de calor (sistema CCHP/HP), que se considera para una estructura museístico-turística en Barcelona y para varios escenarios climáticos. En el estudio se ha descubierto que el cambio climático influye sólo ligeramente en el diseño del sistema óptimo, y que el sistema CCHP/HP demuestra sólo un moderado desempeño económico, similar al convencional, pero también un potencial considerable para la reducción de emisiones de CO2. El conjunto de los estudios revela que la viabilidad económica de los sistemas SBP depende altamente no solo de su diseño inherente, sino también de su entorno. De todos modos, todos los sistemas SBP propuestos podrían bajar las emisiones significantemente, mientras sobresalen en eficiencia energética y adaptabilidad a servicios energéticos y tecnologías alternativas. Los estudios presentados contribuyen al estado del arte añadiendo diseños innovadores de sistemas SBP, proponiendo nuevos enfoques de modelado y cálculo, y subsecuentemente nuevos modelos incluyendo tecnologías aumentando sistemas SBP, e investigando los efectos de la ubicación geográfica y del cambio climático al proceso del diseño de los sistemas SBP.
Sammanfattning Klimatförändringen bär med sig kolossala risker och utmaningar, som kräver innovativa lösningar för att tillhandahålla energitjänster på ett mer hållbart sätt än med tidigare energisystem. Konceptet med småskaliga, biomassa-baserade polygeneration (SBP) system är ett sådant teknologiskt tillvägagångssätt, vilket optimerar användningen av lokalt producerat bränsle för att tillhandahålla olika energitjänster som elektricitet, värma, kyla, dricksvatten, eller/och bio-kemiska produkter. Doktorsarbetet identifierar för- och nackdelar hos olika SBP konceptet genom att presentera ett urval av SBP system och modeller av dem för olika geografiska regioner, med mål att främja vidare applikation av dem i fält. Eftersom en mängd tekniker kan användas för design av polygenerationssystem, börjar avhandlingen med en grundlig genomgång av det mycket komplexa och snabbt utvecklande området, där relevant litteratur presenteras och assimileras. Baserat på denna recension har flera modeller skapats för olika solassisterade SBP-system: För det första har ett småskaligt kombinerat kyl-, värme- och kraftsystem (CCHP) baserat på biomassaförgasning undersökts för en hotellanläggning på en av Andamanöarna, Indien. Bortsett från ekonomisk och miljömässig överlägsenhet jämfört med ett referenssystem för fossila bränslen har studien även inkluderat tekniska aspekter genom att lägga till en socio-politisk analys av fördelarna och nackdelarna med systemet för hela ö-samhället. I den andra studien utvecklades en ny regleralgoritm för ett biogasbaserat polygenereringssystem som genererar el och renar vatten till dricksvatten för en by utan elförsörjning i El Pando, Bolivia. Det konstaterades att det föreslagna systemet kan leda till betydande kostnads- och utsläppsminskningar i kombination med större energiautonomi. I den tredje studien presenteras en optimeringsmodell för ett kombinerat förgasningsbaserat CCHP / värmepumpsystem (HP) för en turistanläggning i Barcelona under olika klimatscenarier. Studien avslöjar att systemdesignen bara i låg grad påverkas av framtida klimatförändringar och att CCHP / HP-systemet endast visar en måttlig ekonomisk prestanda men fortfarande en betydande potential för CO2-besparingar. De övergripande resultaten av dessa studier visar att den ekonomiska genomförbarheten för SBP-system inte bara beror på deras inneboende design utan också på deras lokalisering. Alla föreslagna SBP-system kan emellertid sänka emissionerna betydligt, samtidigt som de sticker ut i energieffektivitet samt anpassningsbarhet efter energitjänster och annan teknik. De presenterade studierna bidrar till vetenskapen genom att lägga till innovativa SBP-systemdesigner, föreslå nya modelleringsmetoder och efterföljande modeller inklusive SBP-systemförbättrande teknik, samt genom att undersöka effekterna av geografisk plats och klimatförändringar på systemdesignprocessen
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ortiga, Guillén Jordi. "Modelling environment for the design and optimisation of energy polygeneration systems." Doctoral thesis, Universitat Rovira i Virgili, 2010. http://hdl.handle.net/10803/8498.

Повний текст джерела
Анотація:
The optimal design and operation of an energy supply system is very important for the matching of the energy production and consumption especially in the residential-tertiary sector characterized by an energy demand with a high variability. The main objective of this thesis is to develop an optimisation environment for the preliminary design and analysis of polygeneration plants. The optimisation models are organized in different units represented by blocks that can be connected between each other to create the flowsheet of the polygeneration system. To characterize the energy demand in the residential and tertiary sector a graphic methodology has been developed to select typical energy demand days from a yearly energy demand profile. The environment developed has been applied to two case studies: a small scale polygeneration plant using a liquid desiccant system for air conditioning and a polygeneration plant connected to a district heating and cooling network.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karlsson, Ingrid, and Elise Ramqvist. "Decentralized Polygeneration Energy Systems: A General Overview on the Important Aspects." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190190.

Повний текст джерела
Анотація:
A polygeneration system is a small-scale energy system with multiple components of different technologies. The system consists of generations and storage that is sized and configured to match a specific demand. With these decentralized energy systems, located close to the end user, local energy resources can be used easily. Different technologies for electricity and heat generation and electrical and thermal storage are presented in the report. The objective of this thesis is to describe important aspects of polygeneration in decentralized energy systems. Interactions between environmental, economic and social aspects of life are essential when configuring a sustainable polygeneration system. Also, climate change and low levels of living standards is a driving force to provide better alternatives for energy supply. A case study in a rural village in India has been carried out to model and optimize a polygeneration system for the community. The optimization is made in the software HOMER (Hybrid Optimization of Multiple Energy Resources) with suitable data for different input parameters, resulting in a techno-economic analysis. Additionally, a sensitivity analysis of the system has been performed in order to consider fluctuations of uncertain input parameters. The result from the case study shows an optimized system with 79 % of renewable resources, which consists of solar PVs with a capacity of 50 kW. Moreover, the system includes a diesel generator with the capacity of 20 kW and 40 batteries of 6V each. In theory, a polygeneration system with 100 % of renewable resources would be the most sustainable configuration in regard to the environmental aspect. However, implementing that kind of system in a rural area would not be the most reliable or cost effective alternative for the end users. An implementation of a polygeneration system is indeed a complex process as a result of multiple aspects and energy supply is rarely the only aspect to be considered. The difference between needs in developing and developed countries vary, as the first may prefer to cover basic needs such as electric lighting to a low environmental footprint.
Ett polygenererande system är ett småskaligt energisystem bestående av ett flertal komponenter med olika teknologier. Systemet inkluderar komponenter för energiproduktion samt energilagring vars storlek och sammansättning syftar till att möta en specifik efterfrågan. Med dessa decentraliserade energisystem, placerade nära slutanvändaren, kan lokala energikällor tas till vara. Olika teknologier för el- och värmeproduktion samt elektrisk och termisk lagring beskrivs i rapporten. Syftet med kandidatarbetet är att beskriva viktiga aspekter av decentraliserade polygenererande energisystem. Samverkan mellan de miljömässiga, ekonomiska och sociala aspekterna är avgörande för att skapa ett hållbart polygenererande system. Klimatförändringar och låga nivåer av levnadsstandard är en drivkraft för att skapa bättre alternativ till energiproduktionen. En fallstudie har gjorts i en avlägsen by i Indien för att utforma och optimera ett polygenererande system för ett samhälle. Optimeringen är gjord i datorprogrammet HOMER (Hybrid Optimization of Multiple Energy Resources) med lämplig indata, vilket resulterat i en teknisk och ekonomisk analys. Utöver detta har en känslighetsanalys gjorts som tar hänsyn till fluktuationer i osäkra parametrar. Resultatet från fallstudien visar ett system bestående till 79 % av förnyelsebara energikällor, vilket i detta fall är solpaneler med en kapacitet på 50 kW. Systemet inkluderar även en dieselgenerator med en kapacitet på 20 kW och 40 batterier med 6 V vardera. I teorin är ett system bestående av 100 % förnyelsebar energi det mest hållbara systemet ur ett miljöperspektiv. Ett sådant system i en avlägsen by är dock varken det mest pålitliga eller kostnadseffektiva alternativet för slutanvändaren. Implementeringen av ett polygenererande energisystem är en komplex process eftersom energiförsörjningen sällan är det enda utfallet att beakta. Behoven i utvecklingsländer och industrialiserade länder skiljer sig åt. I utvecklingsländer är grundläggande behov så som elektriskt ljus av större vikt medan en liten miljöpåverkan är allt viktigare i industrialiserade länder.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klipic, Alma, and Sidar Eken. "Techno-Economic Analysis of Small-Scale Polygeneration Systems for a Ground Based Air Defence Operations Center in the Swedish Armed Forces." Thesis, KTH, Kraft- och värmeteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277757.

Повний текст джерела
Анотація:
Climate change is an important topic of today's discussion where scientists have determined that a large proportion of the increasing global temperatures is a product of the increasing greenhouse gases in the atmosphere. Globally it is expected that the share of renewable power generation is set to increase with 50 % between 2019 and 2024. Together with cost reductions and advancements in renewable energy technologies this opens up an opportunity for companies and market actors to reevaluate their power generation systems. By utilising a polygeneration system an energy system is able to combine multiple energy sources to produce several energy services in an efficient, cost effective and sustainable way. This thesis analyses the possibilities of implementing alternative power generation systems for a unit in the Swedish Armed Forces. In close conjunction with the Swedish Armed Forces works The Swedish Defence Material Administration with the primary assignment to procure, develop and deliver equipment and services to the Swedish defence. In this thesis, a Ground Based Air Defence Operations Center is used as a case study which utilises diesel gensets for power generation. The energy system of the unit is analysed as well as the power, heat and cooling demands. Different scenarios based on current and future developments in energy technology are modelled in the microgrid software Homer Pro. The system model 1 for the scenarios BAU, AF1 and AF2 requires no modification of the gensets in the current power generation system. Instead alternative fuel types are modelled where a biodiesel B20 blend is used for AF1 and 1 hydrogenated vegetable oil is used in the AF2 scenario. In the scenarios using the system model 2, FS1 is utilising the current genset upgraded with a heat recovery system running on hydrogenated vegetable oil. The FS2 scenario proposes a microturbine with a capacity of 30 kW as an alternative to the current genset. In the FIFS scenario a PEM fuel cell is modelled, also having a capacity of 30 kW. All of the system model 2 configurations included a battery system, a membrane distiller for water purification and a thermal storage tank as additional units. The main results from the thesis show that all scenarios except for FS2 reduce the annual emissions from the unit. However, this brings a higher net present value for the systems as well as a higher yearly operation cost. The results indicate that the FS1 scenario is able to decrease the CO2 emissions with almost 50 % with adjustments to the current gensets as well as providing the unit with excess heat for water purification and storage in the thermal tank.
Klimatförändringen är ett viktigt ämne idag där forskare har fastställt att en stor andel av ökningen av medeltemperaturen beror på ökade växthusgaser i atmosfären. Globalt förväntas kraftgenerering från förnybara källor att öka med 50 % mellan åren 2019 till 2024. Detta i samband med kostnadsminskningar och framsteg inom förnybara energiteknologier leder till en möjlighet för företag och aktörer att omvärdera sina energisystem. Genom att använda ett polygenereringssystem kan ett energisystem kombinera flera energikällor för att producera fler energitjänster på ett hållbart och kostnadseffektivt sätt. Detta examensarbete undersöker möjligheten att implementera alternativa kraftgenereringssystem för en enhet i Försvarsmakten. I ett nära samarbete med Försvarsmakten arbetar Försvarets Materielverk med det primära uppdraget att upphandla, utveckla och leverera materiel och tjänster till det svenska försvaret. I detta arbete har en luftvärnscentral som nyttjar dieselgeneratorer för kraftproduktion använts som en fallstudie. Enhetens energisystem har analyserats och därtill även el-, värme- och kylbehovet för denna enhet. Olika scenarier baserat på nuvarande och framtida utveckling inom energiteknik har modellerats i microgridprogrammet Homer Pro. För system modellerna 1 i scenarierna BAU, AF1 och AF2 görs inga modifieringar av befintliga system utöver bränsletyp. Scenario AF1 använder en biodieselblandning B20 och i AF2 drivs systemet med vätgasbehandlad växtolja. För modellerna som använder sig utav system modellerna 2 är FS1 ett scenario baserat på en uppgradering av nuvarande kraftenhet genom en värmeåtervinningsenhet. FS2 föreslår en alternativ kraftenhet i form av en mikroturbin med en kapacitet på 30 kW. En PEM-bränslecell är modellerad i scenario FIFS som även den har en kapacitet på 30 kW. Tillhörande komponenter till system modellerna 2 är ett batterisystem, en vattenreningsenhet och en varmvattentank. Resultaten visar att alla scenarier förutom FS2 minskar de årliga utsläppen från enheten. Detta på en bekostnad av en högre nuvärdeskostnad och en högre årlig kostnad för driften av systemen. Från simuleringen visar resultaten även att FS1 kan bidra till att minska utsläppen med nästan 50 % genom justeringar av nuvarande kraftenhet samtidigt som systemet levererar överskottsvärme för vattenrening och lagring i varmvattentanken.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bruck, Axel. "Artificial Intelligence in rural offgrid Polygeneration Systems: : A Case Study with RVE.Sol focusing on Electricity Supply & Demand Balancing." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264246.

Повний текст джерела
Анотація:
Growing data generation and increasing computational power accelerate the advance of machine learning (ML) as a subsection of artificial intelligence in various sectors, while in Sub-Saharan Africa (SSA) electrification cannot keep up with the pace of population growth. Hence, this study aims to determine how ML can support rural polygeneration minigrids and thus assisting the electrification efforts in SSA in cooperation with the company RVE.Sol. This study focuses on electricity supply and demand balancing, but also discusses other application areas and non-rural context. Within the (micro)grid and energy area, main application areas studied in academia are identified as power and load forecasting, scheduling and sizing. Building on existing works, this thesis proposes a concept aimed at improving the supply and demand mismatch, while discussing further ML applications and generating knowledge transfer to general, non-rural polygeneration systems. The load and generation mismatch and the impact of possible demand response (DR) implementation are quantified, followed by an expert questionnaire to back up machine learning knowledge in the discussed context. Moreover, GHI and PV power predictions are performed to obtain indications about promising features and algorithms. Finally, considering the previous steps a concept for ML supported generation and load matching by DR is proposed. Results indicate that DR could improve the significant mismatch of load and power generation in RVE.Sol’s grids. According to the proposed model, a 30% acceptance rate to the DR scheme results in 56% operational expenditure (OPEX) and approximately 60% CO2 and particulate matter (PM) emissions decline. A sensitivity analysis indicates that acceptance is a critical success factor for a DR scheme. Hence, a DR concept is proposed where load and PV power are forecasted by ML to set 4 different tariff periods 24 h in advance to improve acceptance. The tariff prices could possibly be derived by reinforcement learning. Preliminary PV power forecasting indicates that a random forest algorithm for regression with weather and time related input features is promising due to high accuracy and short training time compared to other algorithms including neural networks. While the proposed scheme has advantages within all three pillars of sustainability, the lack of data as well as small system and load sizes/low complexities remain as two major impediments for ML in rural polygeneration systems. Thus, ML likely bares better applicability in the urban and developed context, where data availability is higher and loads are more diverse.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vargas, Adriana Lopez [UNESP]. "Análise de oportunidades de poligeração em edificações e cidades." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137978.

Повний текст джерела
Анотація:
Submitted by ADRIANA LOPEZ VARGAS (adrialovargas@gmail.com) on 2016-04-14T14:20:54Z No. of bitstreams: 1 Analise de oportunidades de poligeração para edificações e cidades - Adriana Lopez Vargas.pdf: 3896010 bytes, checksum: 3c34d108a2a908648717c9ac5860cd3d (MD5)
Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-18T16:55:10Z (GMT) No. of bitstreams: 1 vargas_al_me_guara.pdf: 3896010 bytes, checksum: 3c34d108a2a908648717c9ac5860cd3d (MD5)
Made available in DSpace on 2016-04-18T16:55:10Z (GMT). No. of bitstreams: 1 vargas_al_me_guara.pdf: 3896010 bytes, checksum: 3c34d108a2a908648717c9ac5860cd3d (MD5) Previous issue date: 2016-02-24
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
A geração de energia distribuída em edificações e cidades tem sido proposta como uma importante alternativa para que os países ampliem a base tecnológica de suas matrizes energéticas. No caso do Brasil, a possibilidade da incorporação da geração distribuída em edificações apresenta amparo legal por meio de recentes regulamentações do setor elétrico e das normas de melhoria da eficiência energética de edificações. Por estas razões, novos empreendimentos imobiliários com visão de sustentabilidade ambiental, estão avaliando o uso da geração distribuída na etapa de planejamento. Nesta dissertação, foi analisada uma proposta para atender as necessidades energéticas de um hospital (vapor, água quente, resfriamento e eletricidade) considerando as informações de demanda, classificadas em oito dias típicos do ano, dois por cada estação do ano (outono, inverno, primavera e verão) sendo um dia de trabalho normal e outro de final de semana. A proposta consiste na otimização de uma superestrutura composta de diferentes tecnologias de geração e cogeração incluindo equipamentos solares, para assim obter a melhor configuração em termos econômicos. A superestrutura é flexível, ou seja, permite a venda ou compra de eletricidade e analisa três casos, verificando-se a viabilidade de gerar mais eletricidade. Finalmente são apresentados os resultados da configuração final obtida pela otimização.
Distributed generation in buildings and cities has been proposed as an important option for countries in order to include more technologies in their energy mixes. In Brazil, the possibility of including distributed generation in buildings has recent advances in energy policy and building energy efficiency standards. For these reasons, new construction projects of sustainable buildings include the assessment of distributed generation in the initial stages. In this work, we present an approach for attending energy needs (steam, hot water, cooling and electricity) of a hospital. The information about demand is classified in eight typical days, two for each season of the year (autumn, winter, spring and summer); a workday and a weekend day. The approach consists in the optimization of a superstructure containing different energy generation and cogeneration technologies like solar panels, for obtaining the best configuration in economic terms. The superstructure is flexible, this is, it allows buying or selling electricity. It also analyzes three cases, verifying the feasibility for generating more electricity. Finally, the results present the final configuration obtained from the optimization process.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Richard, Scott J. "A Study on the Integration of a Novel Absorption Chiller into a Microscale Combined Cooling, Heating, and Power (Micro-CCHP) System." ScholarWorks@UNO, 2013. http://scholarworks.uno.edu/td/1765.

Повний текст джерела
Анотація:
This study explores the application of micro-CCHP systems that utilize a 30 kW gas microturbine and an absorption chiller. Engineering Equation Solver (EES) is used to model a novel single-effect and double-effect water-lithium bromide absorption chiller that integrates the heat recovery unit and cooling tower of a conventional CCHP system into the chiller’s design, reducing the cost and footprint of the system. The results of the EES model are used to perform heat and material balances for the micro-CCHP systems employing the novel integrated chillers, and energy budgets for these systems are developed. While the thermal performance of existing CCHP systems range from 50-70%, the resulting thermal performance of the new systems in this study can double those previously documented. The size of the new system can be significantly reduced to less than one third the size of the existing system.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "POLYGENERATION SYSTEMS"

1

Polygeneration Systems. Elsevier, 2022. http://dx.doi.org/10.1016/c2019-0-01304-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cogeneration and Polygeneration Systems. Elsevier, 2021. http://dx.doi.org/10.1016/c2018-0-02100-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Amidpour, Majid, and Mohammad Hasan Khoshgoftar Man. Cogeneration and Polygeneration Systems. Elsevier Science & Technology, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Calise, Francesco, Massimo Dentice D’Accadia, Laura Vanoli, and Maria Vicidomini. Polygeneration Systems: Design, Processes and Technologies. Academic Press, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Calise, Francesco, Laura Vanoli, Maria Vicidomini, and Massimo Dentice D'Accadia. Polygeneration Systems: Design, Processes and Technologies. Elsevier Science & Technology Books, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "POLYGENERATION SYSTEMS"

1

Liu, Pei, Efstratios N. Pistikopoulos, and Zheng Li. "Polygeneration Systems Engineering." In Process Systems Engineering, 1–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631209.ch42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liu, Pei, Efstratios N. Pistikopoulos, and Zheng Li. "Polygeneration Systems Engineering." In Process Systems Engineering, 1–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631292.ch1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yi, Qun, Yan-Hong Hao, Ji-Long Zhang, and Wen-Ying Li. "Energy Polygeneration Systems and CO2 Recycle." In Advances in Energy Systems Engineering, 183–221. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42803-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Figaj, Rafał, Maria Di Palma, and Laura Vanoli. "Novel and Hybrid Biomass-Based Polygeneration Systems." In Biomass in Small-Scale Energy Applications: Theory and Practice, 157–84. Boca Raton : Taylor & Francis, CRC Press, 2019. | Series: Energy systems : from design to management: CRC Press, 2019. http://dx.doi.org/10.1201/9780429286063-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Pei, and Efstratios N. Pistikopoulos. "Mixed-Integer Optimization for Polygeneration Energy Systems Design." In Optimization in the Energy Industry, 167–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88965-6_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Qinhui. "Coal Staged Conversion Polygeneration Technology Combining with Pyrolysis and Combustion Processes." In Advances in Energy Systems Engineering, 157–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42803-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sadhukhan, Jhuma, Kok Siew Ng, and Elias Martinez-Hernandez. "Process Systems Engineering Tools for Biomass Polygeneration Systems with Carbon Capture and Reuse." In Process Design Strategies for Biomass Conversion Systems, 215–45. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118699140.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Oliveira, Silvio. "Exergy and Thermoeconomic Analysis of Power Plants, Refrigeration and Polygeneration Systems." In Exergy, 55–109. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4165-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ray, Avishek, Poulami Das, and Sudipta De. "Multi-criteria Optimization for System Integration of Decentralized Off-Grid Hybrid Renewable Polygeneration." In Handbook of Smart Energy Systems, 1–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72322-4_76-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ray, Avishek, Poulami Das, and Sudipta De. "Multi-criteria Optimization for System Integration of Decentralized Off-Grid Hybrid Renewable Polygeneration." In Handbook of Smart Energy Systems, 1–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72322-4_76-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "POLYGENERATION SYSTEMS"

1

Leiva, Roberto, Rodrigo Escobar, and José Cardemil. "Modeling of solar polygeneration plant." In SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2017. http://dx.doi.org/10.1063/1.4984566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Luciano De La Cruz, Lucero Cynthia, and Cesar Celis. "Design and Integration of a Renewable Energy Based Polygeneration System With Desalination for an Industrial Plant." In ASME 2019 Power Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/power2019-1932.

Повний текст джерела
Анотація:
Abstract Polygeneration improves energy efficiency and reduces both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration system, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. In particular, the design procedure followed in this work involves integer linear programming modeling (MILP). The technical and economic feasibility of integrating renewable energy technologies, thermal energy storage, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seeks to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lazzeroni, Paolo, and Maurizio Repetto. "Integration of different energy vectors in polygeneration systems." In 2016 IEEE Smart Energy Grid Engineering (SEGE). IEEE, 2016. http://dx.doi.org/10.1109/sege.2016.7589522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kaplun, Viktor, and Volodymyr Osypenko. "Energy Efficiency Analyses in Polygeneration Microgrids with Renewable Sources." In 2020 IEEE 7th International Conference on Energy Smart Systems (ESS). IEEE, 2020. http://dx.doi.org/10.1109/ess50319.2020.9160346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ferrari, Mario L., Matteo Pascenti, Alberto Traverso, and Massimo Rivarolo. "Smart Polygeneration Grid: A New Experimental Facility." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68585.

Повний текст джерела
Анотація:
This paper presents the development of a new experimental facility for analysis and optimization activities on smart polygeneration grids. The test rig is being designed and built in the framework of the European project “Energy-Hub for residential and commercial districts and transport” (E-HUB), which targets optimal energy management of residential and commercial districts. The experimental rig, named “Energy aNd Efficiency Research Demonstration District” (E-NERDD), is located inside the University campus in Savona, and is based on four different prime movers able to produce both electrical and thermal energy: a 100 kWe micro gas turbine, a 20 kWe internal combustion engine, a 3 kWe Stirling engine, and a 450 kWe fuel cell/gas turbine hybrid system emulator based on the coupling of a micro gas turbine with a modular vessel. While the electrical side is based on the connection with the campus grid (further developments are planned for a local electrical grid including storage units), thermal energy is managed through a dual ring-based water distribution system. The facility is also equipped with thermal storage tanks and fan cooler units to study and optimize different thermal management algorithms generating different thermal load demands. The facility also includes an absorption chiller for cold water generation. As a result, trigeneration operation is possible in a physically simulated urban district. Moreover, the rig is equipped with six photovoltaic panels (significant for the electrical aspects) and 10 kWp of thermal solar panels to be integrated in the grid. Further technologies to be considered for the E-NERDD are power plants based on other renewable resource (e.g. with biomass fuel). These systems are planned to be analyzed through real plants (remote connection with the field) or through virtual models based on real-time dynamic approaches. Experimental tests related to the performance of the micro gas turbine are reported and discussed in this paper. The focus here is on machine correction curves essential to evaluate factors for quantifying ambient temperature influence on machine performance. This analysis is essential for setting the thermal distribution grid and for future optimization tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ubando, A. T., K. B. Aviso, A. B. Culaba, D. K. S. Ng, and R. R. Tan. "Fuzzy Multi-Objective Approach for Designing of Biomass Supply Chain for Polygeneration With Triple Footprint Constraints." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66236.

Повний текст джерела
Анотація:
Polygeneration systems produce multiple energy products (i.e. electricity, heat, cooling), and other biochemical products (biofuels and syngas). Such systems offer a sustainable approach in meeting the ever-growing demand of energy, while reducing its environmental impact. The optimal design of such systems should consider the design of the supply-chain in producing the targeted energy products to reduce the resource consumption and waste generation and to maximize its economic potential. One of the important considerations in designing such a system is whether to out-source its raw materials or to produce them in-house. The criteria for such decision strategies are assessed through economics, product demand, and environmental impact. One holistic way to measure the environmental impact of such system is to consider the triple footprint: carbon, water, and land. The objective of this work is to maximize the economic potential while maintaining the footprints at acceptable levels and simultaneously meeting product demands. In this study, an adoption of fuzzy multi-objective approach is presented wherein the economic potential is introduced as a constraint. Moreover, predefined fuzzy trapezoidal-shaped limits for the product demand constraints are used which mimics the probabilistic demand scenario for each of the product streams. Lastly, the triple footprint constrains is utilized to assess the environmental impact of the polygeneration. The technique is demonstrated using a modified industrial case study of a polygeneration system.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jin, Hongguang, Lin Gao, Wei Han, and Jinyue Yan. "A New Approach Integrating CO2 Capture Into a Coal-Based Polygeneration System of Power and Liquid Fuel." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27678.

Повний текст джерела
Анотація:
Reducing the energy penalty for CO2 Capture and Storage (CCS) is a challenge. Most of previous studies for CCS have been focused on power generation system. When CCS is included in the polygeneration system, a new methodology that jointly considering CCS and liquid fuel production should be introduced. In this paper, we proposed a new approach integrating CCS into a coal-based polygeneration system for power generation and methanol production: the syngas produced from the coal gasifier, without adjusting the composition (CO/H2 ratio) by shift reaction, is used to synthesis methanol directly. Moreover, the partial-recycle scheme, in which a part of unreacted gas is recycled back to the synthesis reactor, is adopted in the synthesis unit. Another part of unreacted gas is treated to remove CO2, and then is used as clean fuel for the power generation subsystem. Compared to the conventional CCS approaches adopted by the power generation systems, the new approach is mainly characterized by two features: firstly, the combination of the removal of the composition adjustment process and a partial-recycle scheme can not only reduces the energy consumption for methanol production, but also obtains a high concentration of COX (CO and CO2) in the unreacted gas; secondly, the CO2 is captured from the unreacted gas, instead of from syngas generated by the gasifier. Due to increment of COX concentration, the new approach can reduce the energy consumption for CO2 capture compared to conventional pre-combustion CO2 capture. In the conventional coal based IGCC systems, the thermal efficiency is around 34-36% for a case with CO2 capture and around 44% for a case without CO2 capture. However, with the innovative approach integrating CCS, the polygeneration system in this paper can achieve the equivalent thermal efficiency as high as 47% when 72% of CO2 is recovered, which provides a significant improvement for CO2 capture. It’s clearly that the new approach can increase the thermal efficiency, instead of incurring an energy penalty for CO2 capture. The results achieved in this study have provided a new methodology integrating CO2 capture into the polygeneration system, which reveals the different characteristics compared to power-generation system that has been overlooked by the previous studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Piazza, G., S. Bracco, S. Siri, and F. Delfino. "Integration of electric mobility services within an existing polygeneration microgrid." In 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2019. http://dx.doi.org/10.1109/eeeic.2019.8783664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Harun, Nor Farida, David Tucker, and Thomas A. Adams. "Fuel Composition Transients in Fuel Cell Turbine Hybrid for Polygeneration Applications." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6509.

Повний текст джерела
Анотація:
Transient impacts on the performance of solid oxide fuel cell / gas turbine (SOFC/GT) hybrid systems were investigated using hardware-in-the-loop simulations (HiLS) at a test facility located at the U.S. Department of Energy, National Energy Technology Laboratory. The work focused on applications relevant to polygeneration systems which require significant fuel flexibility. Specifically, the dynamic response of implementing a sudden change in fuel composition from syngas to methane was examined. The maximum range of possible fuel composition allowable within the constraints of carbon deposition in the SOFC and stalling/surging of the turbine compressor system was determined. It was demonstrated that the transient response was significantly impact the fuel cell dynamic performance, which mainly drives the entire transient in SOFC/GT hybrid systems. This resulted in severe limitations on the allowable methane concentrations that could be used in the final fuel composition when switching from syngas to methane. Several system performance parameters were analyzed to characterize the transient impact over the course of two hours from the composition change.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cimmino, Luca, Jimmy Burgos, and Ursula Eicker. "Optimal Control Strategy for Mixed Fuel Use in a Renewable Polygeneration System." In 12th International Conference on Smart Cities and Green ICT Systems. SCITEPRESS - Science and Technology Publications, 2023. http://dx.doi.org/10.5220/0012000200003491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії