Статті в журналах з теми "Polarisation du spin"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Polarisation du spin.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Polarisation du spin".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lohmann, B. "Recent Developments of Resonant Auger Transitions: Predictions and Propensity Rules for the Dynamic Spin Polarisation." Australian Journal of Physics 52, no. 3 (1999): 397. http://dx.doi.org/10.1071/ph99019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The angular distribution and spin polarisation of the resonantly photoexcited Xe¤(4d–15/2 6p3/2 ) N5O2,3O2,3 Auger spectrum is investigated. The two-step model has been used which allows us to independently determine the dynamic parameters of the primary excitation and the Auger emission process. Assuming either a fully circularly or linearly polarised photon beam the dynamic parameters determining the primary photoexcitation become constant numbers independent of the matrix elements. Applying a relativistic distorted wave approximation the relevant numbers describing the Auger decay dynamics, i.e. relative intensities, angular distribution and spin polarisation parameters have been calculated, and are compared with experimental and other theoretical data. With this, predictions for the spin polarisation vector are possible. A large degree of dynamic spin polarisation has been found for all Auger transitions to a final state with Jf = ½ . This is in contrast to earlier calculations for diagram Auger transitions. Recently, we have given an explanation for this deriving propensity rules for resonant Auger transitions. The propensity rules allow for predictions for which Auger line a large dynamic spin polarisation can be expected. The predictions are in accord with our multiconfigurational Dirac–Fock calculations for the resonant Xe N5O2,3O2,3 and Ar L3M2,3M2,3 Auger multiplets. It is demonstrated that the effect of a large spin polarisation is caused by a large shift of the scattering phase of the emitted ?s1/2 partial waves, whereas a small spin polarisation is due to a cancellation between the Coulomb and scattering phases of the partial waves.
2

Stephen, P. Clough, J. Eberle William, and Gilbert Gillman. "L'analyse de polarisation de spin :." Matériaux & Techniques 77, no. 3 (1989): 33–34. http://dx.doi.org/10.1051/mattech/198977030033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Schulz, H. J. "Spin-polarisation effects in luminescence." Journal of Luminescence 48-49 (January 1991): 675–79. http://dx.doi.org/10.1016/0022-2313(91)90217-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McEwen, Jason D., Martin Büttner, Boris Leistedt, Hiranya V. Peiris, Pierre Vandergheynst, and Yves Wiaux. "On spin scale-discretised wavelets on the sphere for the analysis of CMB polarisation." Proceedings of the International Astronomical Union 10, S306 (May 2014): 64–67. http://dx.doi.org/10.1017/s1743921314011107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractA new spin wavelet transform on the sphere is proposed to analyse the polarisation of the cosmic microwave background (CMB), a spin ± 2 signal observed on the celestial sphere. The scalar directional scale-discretised wavelet transform on the sphere is extended to analyse signals of arbitrary spin. The resulting spin scale-discretised wavelet transform probes the directional intensity of spin signals. A procedure is presented using this new spin wavelet transform to recover E- and B-mode signals from partial-sky observations of CMB polarisation.
5

Kaur, Nimardeep, Rupinder Kaur, and N. S. Saini. "Ion-Acoustic Cnoidal Waves with the Density Effect of Spin-up and Spin-down Degenerate Electrons in a Dense Astrophysical Plasma." Zeitschrift für Naturforschung A 75, no. 2 (February 25, 2020): 103–11. http://dx.doi.org/10.1515/zna-2019-0140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAn investigation of nonlinear ion acoustic (IA) cnoidal waves in a magnetised quantum plasma is presented by using spin evolution quantum hydrodynamics model, in which inertial classical ions and degenerate inertialess electrons with both spin-up and spin-down states taken as separate species are considered. The Korteweg–de Vries equation is derived using the reductive perturbation method. Further, using the Sagdeev pseudopotential approach, the solution for IA cnoidal waves is derived with suitable boundary conditions. There is the formation of only positive potential cnoidal, and in the limiting case, positive solitary waves are observed. The effects of density polarisation and other plasma parameters on the characteristic features of cnoidal and solitary waves have been analysed numerically. It is seen that the spin density polarisation significantly affects the characteristics of cnoidal structures as we move from strongly spin-polarised (μ = 1) to a zero spin-polarisation case (μ = 0). The results obtained in the present investigation may be useful in comprehending various nonlinear excitations in dense astrophysical regions, such as white dwarfs, neutron stars, and so on.
6

Lee, Wai Tung, Joel Hagman, Damian Martin Rodriguez, Annika Stellhorn, Alex Backs, Thomas Arnold, Elizabeth Blackburn, et al. "Polarisation Development at the European Spallation Source." EPJ Web of Conferences 286 (2023): 03004. http://dx.doi.org/10.1051/epjconf/202328603004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To meet the ever-increasing user demand, eleven of the fifteen European Spallation Source (ESS) instruments under construction aim to offer polarised neutrons for user experiments. They include an imaging instrument, a SANS instruments, two reflectometers, three diffractometers, and four spectrometers. In conjunction with in-kind contributions and instrumentation grants, the ESS Polarisation Project will support the incorporation of polarisation analysis on eight of the eleven instruments. The project aims to deliver polarised neutrons for first-science experiments as instruments enter operation. Different polariser and polarisation analyser techniques will be available to accommodate the specifics of experiments on a given instrument. Polarised 3He neutron spin filter using either Metastable Optical Pumping (MEOP) or Spin-Exchange Optical Pumping (SEOP) techniques will provide shared-use equipment among many instruments, with SEOP’s main application being in situ beam-polarisation. Several instruments will also use polarising-supermirror devices. To provide wide-bandwidth spin-flipping capability to the time-of-flight instruments, Adiabatic Fast Passage (AFP) neutron spin flippers, also known as gradient-field radiofrequency spin flippers will be the main method of choice. Devices based on the same AFP principle will also be used to flip 3He nuclear spins. We are constructing our first 3He polariser setup, including field coils to produce highly uniform magnetic field. Monte Carlo simulations are being done for the supermirror polarisers. To ensure science-focused development, we are working with university partners in doing scientific experiments with polarised neutrons. These are some of the activities developing polarisation analysis for ESS instruments in our project.
7

Schattschneider, P., V. Grillo, and D. Aubry. "Spin polarisation with electron Bessel beams." Ultramicroscopy 176 (May 2017): 188–93. http://dx.doi.org/10.1016/j.ultramic.2016.11.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carrón Duque, J., A. Carones, D. Marinucci, M. Migliaccio та N. Vittorio. "Minkowski Functionals in 𝖲𝖮(3) for the spin-2 CMB polarisation field". Journal of Cosmology and Astroparticle Physics 2024, № 01 (1 січня 2024): 039. http://dx.doi.org/10.1088/1475-7516/2024/01/039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The study of the angular power spectrum of Cosmic Microwave Background (CMB) anisotropies, both in intensity and in polarisation, has led to the tightest constraints on cosmological parameters. However, this statistical quantity is not sensitive to any deviation from Gaussianity and statistical isotropy in the CMB data. Minkowski Functionals (MFs) have been adopted as one of the most powerful statistical tools to study such deviations, since they characterise the topology and geometry of the field of interest. In this paper, we extend the application of MFs to CMB polarisation data by introducing a new formalism, where we lift the spin 2 polarisation field to a scalar function in a higher-dimensional manifold: the group of rotations of the sphere, SO(3). Such a function is defined as f = Q cos(2ζ) - U sin(2ζ). We analytically obtain the expected values for the MFs of f in the case of Gaussian isotropic polarisation maps. Furthermore, we present a new pipeline which estimates these MFs from input HEALPix polarisation maps. We apply it to CMB simulations in order to validate the theoretical results and the methodology. The pipeline is to be included in the publicly available Python package Pynkowski .
9

Battiato, M. "Spin polarisation of ultrashort spin current pulses injected in semiconductors." Journal of Physics: Condensed Matter 29, no. 17 (March 27, 2017): 174001. http://dx.doi.org/10.1088/1361-648x/aa62de.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McWilliam, Amy, Claire Marie Cisowski, Robert Bennett, and Sonja Franke-Arnold. "Angular momentum redirection phase of vector beams in a non-planar geometry." Nanophotonics 11, no. 4 (November 15, 2021): 727–36. http://dx.doi.org/10.1515/nanoph-2021-0528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract An electric field propagating along a non-planar path can acquire geometric phases. Previously, geometric phases have been linked to spin redirection and independently to spatial mode transformation, resulting in the rotation of polarisation and intensity profiles, respectively. We investigate the non-planar propagation of scalar and vector light fields and demonstrate that polarisation and intensity profiles rotate by the same angle. The geometric phase acquired is proportional to j = ℓ + σ, where ℓ is the topological charge and σ is the helicity. Radial and azimuthally polarised beams with j = 0 are eigenmodes of the system and are not affected by the geometric path. The effects considered here are relevant for systems relying on photonic spin Hall effects, polarisation and vector microscopy, as well as topological optics in communication systems.
11

Bai, Te, Jing Ai, Liyang Liao, Junwei Luo, Cheng Song, Yingying Duan, Lu Han, and Shunai Che. "Chiral Mesostructured NiO Films with Spin Polarisation." Angewandte Chemie 133, no. 17 (March 15, 2021): 9507–12. http://dx.doi.org/10.1002/ange.202101069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bai, Te, Jing Ai, Liyang Liao, Junwei Luo, Cheng Song, Yingying Duan, Lu Han, and Shunai Che. "Chiral Mesostructured NiO Films with Spin Polarisation." Angewandte Chemie International Edition 60, no. 17 (March 16, 2021): 9421–26. http://dx.doi.org/10.1002/anie.202101069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hasenburg, K. "Spin polarisation in elastic-positron-atom scattering." Journal of Physics B: Atomic and Molecular Physics 19, no. 12 (June 28, 1986): L499—L502. http://dx.doi.org/10.1088/0022-3700/19/12/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

McEwen, K. A., and W. G. Stirling. "Search for nuclear spin polarisation in praseodymium." Physica B: Condensed Matter 156-157 (January 1989): 754–55. http://dx.doi.org/10.1016/0921-4526(89)90783-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gelmont, B. L., V. I. Ivanov-Omskii, and E. I. Tsidilkovski. "Optically induced spin polarisation in semimagnetic semiconductors." Semiconductor Science and Technology 5, no. 3S (March 1, 1990): S281—S283. http://dx.doi.org/10.1088/0268-1242/5/3s/062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zakrzewski, Jakub. "Electron spin polarisation in laser induced autoionisation." Optics Communications 53, no. 2 (February 1985): 99–103. http://dx.doi.org/10.1016/0030-4018(85)90240-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

BERTINI, RAIMONDO. "Λ POLARISATION: A PROBE TO STUDY THE NUCLEON STRUCTURE". International Journal of Modern Physics A 20, № 08n09 (10 квітня 2005): 1607–12. http://dx.doi.org/10.1142/s0217751x05023062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The measurement of spin observables in the Λ hyperon production has shown how poor is our understanding of the spin effects in the nucleon structure and in the hadronisation processes. New possibilities are offered by future facilities.
18

KILIAN, K., D. GRZONKA, D. MÖHL, and W. OELERT. "WAYS TO MAKE POLARIZED ANTIPROTON BEAMS." International Journal of Modern Physics A 26, no. 03n04 (February 10, 2011): 757–59. http://dx.doi.org/10.1142/s0217751x1105275x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For making polarized antiproton beams the so called filter method is normally discussed. It is based on the depletion of one spin component due to the spin dependent interaction if a stored beam passes a polarized target. The method has been proven by the FILTEX collaboration and detailed studies are presently performed by the PAX collaboration. Another source for polarized antiprotons is the antilambda decay as it was used in the only experiment with polarized antiprotons so far at FERMILAB. Furthermore the antiproton production process itself if showing polarisation, would be by far the best way to get polarized [Formula: see text]. It can be assumed to result from a quasi-free proton-nucleon collison. Up to now it has never been investigated in detail. In such a hadronic interaction the antiprotons may have substantial polarisation which would simplify the preparation of a polarized antiproton beam drastically. It is proposed to measure the polarisation of antiprotons produced in a fixed target experiment.
19

Tait, Claudia E., Anjan Bedi, Ori Gidron, and Jan Behrends. "Photoexcited triplet states of twisted acenes investigated by Electron Paramagnetic Resonance." Physical Chemistry Chemical Physics 21, no. 38 (2019): 21588–95. http://dx.doi.org/10.1039/c9cp04135d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Manning, Andrew G., Shinichiro Yano, Sojeong Kim, Won Bo Lee, Soo-Hyung Choi, and Nicolas R. de Souza. "Identifying the Spin-Incoherent Contribution to Quasielastic Neutron Scattering with a Cold Triple-Axis Spectrometer." Quantum Beam Science 7, no. 4 (November 13, 2023): 35. http://dx.doi.org/10.3390/qubs7040035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polarisation analysis for neutron scattering experiments is a powerful tool suitable for a wide variety of studies, including soft-matter samples which have no bulk magnetic behaviour and/or a significant hydrogen content. Here, we describe a method to leverage the versatility and spin-polarisation capabilities of a cold triple-axis spectrometer to perform a measurement to separate coherent and incoherent neutron scattering for a non-magnetic sample in the quasielastic neutron scattering (QENS) regime. Such measurements are complementary to unpolarised QENS measurements, which may typically be performed on a backscattering or time-of-flight spectrometer instrument where polarisation analysis can be significantly more difficult to achieve, and utilise the strengths of each type of instrument.
21

Potter, Stephen, K. O. Mason, M. S. Cropper, J. A. Bailey, and J. H. Hough. "Simultaneous UBVRIJK Photometric and Polarimetric Observations of PQ Gem." International Astronomical Union Colloquium 158 (1996): 181–82. http://dx.doi.org/10.1017/s0252921100038574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present simultaneous multiwavelength observations of the intermediate polar PQ Gem (Mason et al. 1992) obtained on 1993 February 18 and 19 using the Hatfield Polarimeter on UKIRT.The data are folded on the 13.9 m spin period in Fig. 1. The light curves are double peaked at long wavelengths, with dips at phase ~ 0.15 and phase ~0.65, but almost sinusoidal in the U and B bands where the phase ~0.65 dip is absent. The percentage of circular polarisation also varies with the spin cycle, most notably in the I band, with both positive and negative excursions. The peaks in the positive and negative polarisation occur at phase ~ 0.15 and phase ~ 0.65 respectively, approximately coincident with the two intensity dips.
22

Hicks, T. J. "Neutron Polarisation Analysis, Spin Glasses and Other Systems." Australian Journal of Physics 50, no. 6 (1997): 1127. http://dx.doi.org/10.1071/p97027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper describes neutron scattering experiments on a spin glass, Cu–Mn, an inhomogeneous antiferromagnetic alloy, γ-Mn–Ni, and the crystal field excitations in PrAl3. In all materials the magnetic part of the scattering has been isolated using polarisation analysis with the long wavelength polarised neutron diffractometer–spectrometer (LONGPOL) installed at the HIFAR reactor at Lucas Heights.
23

McEachran, R. P., and A. D. Stauffer. "Spin polarisation of electrons elastically scattered from xenon." Journal of Physics B: Atomic and Molecular Physics 19, no. 21 (November 14, 1986): 3523–38. http://dx.doi.org/10.1088/0022-3700/19/21/017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

McEachran, R. P., and A. D. Stauffer. "Spin polarisation of electrons elastically scattered from mercury." Journal of Physics B: Atomic and Molecular Physics 20, no. 20 (October 28, 1987): 5517–28. http://dx.doi.org/10.1088/0022-3700/20/20/027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Scheuer, Jochen, Ilai Schwartz, Qiong Chen, David Schulze-Sünninghausen, Patrick Carl, Peter Höfer, Alexander Retzker, et al. "Optically induced dynamic nuclear spin polarisation in diamond." New Journal of Physics 18, no. 1 (January 18, 2016): 013040. http://dx.doi.org/10.1088/1367-2630/18/1/013040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rauer, R., G. Neuber, J. Kunze, J. Bäckström, M. Rübhausen, T. Walter, and K. Dörr. "Magneto-optical investigation of spin polarisation of and." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 948–51. http://dx.doi.org/10.1016/j.jmmm.2004.11.297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zeybek, O., N. P. Tucker, S. D. Barrett, and E. A. Seddon. "High-resolution secondary electron spin-polarisation from gadolinium." Journal of Magnetism and Magnetic Materials 198-199 (June 1999): 674–76. http://dx.doi.org/10.1016/s0304-8853(98)01191-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Hergenhahn, U., and U. Becker. "Angular distribution and spin-polarisation of Auger electrons." Journal of Electron Spectroscopy and Related Phenomena 76 (December 1995): 225–28. http://dx.doi.org/10.1016/0368-2048(95)02465-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bejenke, Isabel, Robert Zeier, Roberto Rizzato, Steffen J. Glaser, and Marina Bennati. "Cross-polarisation ENDOR for spin-1 deuterium nuclei." Molecular Physics 118, no. 18 (June 12, 2020): e1763490. http://dx.doi.org/10.1080/00268976.2020.1763490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Sienkiewicz, J. E. "Spin polarisation of electrons elastically scattered from lead." Physics Letters A 143, no. 4-5 (January 1990): 244–46. http://dx.doi.org/10.1016/0375-9601(90)90747-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wili, Nino, Jan Henrik Ardenkjær-Larsen, and Gunnar Jeschke. "Reverse dynamic nuclear polarisation for indirect detection of nuclear spins close to unpaired electrons." Magnetic Resonance 3, no. 2 (August 10, 2022): 161–68. http://dx.doi.org/10.5194/mr-3-161-2022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Polarisation transfer schemes and indirect detection are central to magnetic resonance. Using the trityl radical OX063 and a pulse electron paramagnetic resonance spectrometer operating in the Q-band (35 GHz, 1.2 T), we show here that it is possible to use pulsed dynamic nuclear polarisation (DNP) to transfer polarisation from electrons to protons and back. The latter is achieved by first saturating the electrons and then simply using a reverse DNP step. A variable mixing time between DNP and reverse DNP allows us to investigate the decay of polarisation on protons in the vicinity of the electrons. We qualitatively investigate the influence of solvent deuteration, temperature, and electron concentration. We expect reverse DNP to be useful in the investigation of nuclear spin diffusion and envisage its use in electron–nuclear double-resonance (ENDOR) experiments.
32

PASECHNIK, ROMAN, ANTONI SZCZUREK, and OLEG TERYAEV. "SPIN EFFECTS IN DIFFRACTIVE CHARMONIA PRODUCTION." International Journal of Modern Physics A 26, no. 03n04 (February 10, 2011): 583–85. http://dx.doi.org/10.1142/s0217751x11052104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We consider exclusive double diffractive production of polarised axial-vector χc(1+) and tensor χc(2+) charmonia in proton-(anti)proton collisions at Tevatron energy. The corresponding amplitudes for these processes are derived within the kt-factorisation approach. Contributions from different polarisation states of axial-vector and tensor charmonia are quantified. Corresponding experimental consequences are discussed.
33

Buckle, S. J. "The hydrodynamics of spin polarisation and alignment in electron-spin-polarised deuterium." Journal of Physics C: Solid State Physics 19, no. 17 (June 20, 1986): 3105–23. http://dx.doi.org/10.1088/0022-3719/19/17/008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mrudul, M. S., and Gopal Dixit. "Controlling valley-polarisation in graphene via tailored light pulses." Journal of Physics B: Atomic, Molecular and Optical Physics 54, no. 22 (November 17, 2021): 224001. http://dx.doi.org/10.1088/1361-6455/ac41ae.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Analogous to charge and spin, electrons in solids endows an additional degree of freedom: the valley pseudospin. Two-dimensional hexagonal materials such as graphene exhibit two valleys, labelled as K and K′. These two valleys have the potential to realise logical operations in two-dimensional materials. Obtaining the desired control over valley polarisation between the two valleys is a prerequisite for the logical operations. Recently, it was shown that two counter-rotating circularly polarised laser pulses can induce a significant valley-polarisation in graphene. The main focus of the present work is to optimise the valley polarisation in monolayer graphene by controlling different laser parameters, such as wavelength, intensity ratio, frequency ratio and sub-cycle phase in two counter-rotating circularly polarised laser setup. Moreover, an alternate approach, based on single or few-cycle linearly polarised laser pulse, is also explored to induce significant valley polarisation in graphene. Our work could help experimentalists to choose a suitable method with optimised parameter space to obtain the desired control over valley polarisation in monolayer graphene.
35

Poutanen, Juri. "Relativistic rotating vector model for X-ray millisecond pulsars." Astronomy & Astrophysics 641 (September 2020): A166. http://dx.doi.org/10.1051/0004-6361/202038689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The X-ray radiation produced on the surface of accreting magnetised neutron stars is expected to be strongly polarised. A swing of the polarisation vector with the pulsar phase gives a direct measure of the source inclination and magnetic obliquity. In the case of rapidly rotating millisecond pulsars, the relativistic motion of the emission region causes additional rotation of the polarisation plane. Here, we develop a relativistic rotating vector model, where we derive analytical expression for the polarisation angle as a function of the pulsar phase accounting for relativistic aberration and gravitational light bending in the Schwarzschild metric. We show that in the case of fast pulsars the rotation of the polarisation plane can reach tens of degrees, strongly influencing the observed shape of the polarisation angle’s phase dependence. The rotation angle grows nearly linearly with the spin rate but it is less sensitive to the neutron star radius. Overall, this angle is large even for large spots. Our results have implications with regard to the modelling of X-ray polarisation from accreting millisecond pulsars that are to be observed with the upcoming Imaging X-ray Polarimeter Explorer and the enhanced X-ray Timing and Polarimetry mission. The X-ray polarisation may improve constraints on the neutron star mass and radius coming from the pulse profile modelling.
36

Cherepkov, N. A., and V. V. Kuznetsov. "Fixed-molecule photoelectron angular distributions with defined spin polarisation." Journal of Physics B: Atomic and Molecular Physics 20, no. 5 (March 14, 1987): L159—L163. http://dx.doi.org/10.1088/0022-3700/20/5/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Adams, Mike, Nianqiang Li, Ben Cemlyn, Hadi Susanto, and Ian Henning. "Algebraic expressions for the polarisation response of spin-VCSELs." Semiconductor Science and Technology 33, no. 6 (May 2, 2018): 064002. http://dx.doi.org/10.1088/1361-6641/aabda3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Branford, W. R., S. B. Roy, S. K. Clowes, Y. Miyoshi, Y. V. Bugoslavsky, S. Gardelis, J. Giapintzakis, and L. F. Cohen. "Spin polarisation and anomalous Hall effect in NiMnSb films." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E1399—E1401. http://dx.doi.org/10.1016/j.jmmm.2003.12.913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Voss, H. "W polarisation and spin density matrix measurements at LEP." Nuclear Physics B - Proceedings Supplements 117 (April 2003): 168–71. http://dx.doi.org/10.1016/s0920-5632(03)90517-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

McLauchlan, K. A. "Physical chemistry through electron spin polarisation. The Bruker lecture †." Journal of the Chemical Society, Perkin Transactions 2, no. 12 (1997): 2465–72. http://dx.doi.org/10.1039/a702507f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Granitza, B., X. Guo, JM Hum, J. Lower, S. Mazevet, IE McCarthy, Y. Shen, and E. Weigold. "Spin Effects in the (e, 2e) Cross Section of Xenon." Australian Journal of Physics 49, no. 2 (1996): 383. http://dx.doi.org/10.1071/ph960383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In a series of experiments investigating the spin-dependent aspects of electron impact induced ionisation of atoms with a spin-resolved incident electron beam we have measured spin-resolved (e, 2e) cross sections for xenon. By experimentally resolving the fine structure levels of the ground state residual ion the existence of an effect analogous to the fine structure effect in excitation has been established, whereby strong and opposite polarisation effects are observed in the ionisation of a spinless closed shell target leading to a fine structure doublet.
42

Benn, Reinhard, Herbert Brenneke, and Rolf-Dieter Reinhardt. "103Rh-NMR bei 9,4 T - Verbesserter Nachweis infolge verkürzter Relaxationszeiten und selektivem Polarisationstransfer / 103Rh NMR at 9.4 T - Improved Signal Detection due to Shortened Relaxation Times and Selective Polarisation Transfer." Zeitschrift für Naturforschung B 40, no. 12 (December 1, 1985): 1763–65. http://dx.doi.org/10.1515/znb-1985-1231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract At 9.4 T the I03Rh relaxation times (T ,) of unsym metrical organorhodium com pounds of the type LR h(7r-ligand) 2 are in the order of seconds, and relaxation is dominated by the Chemical Shift Anisotropy mechanism. In symmetrical complexes like (acac)3Rh (7), T, of 103Rh is considerably longer and dominated by the Spin Rotation mechanism. Through this effect, together with selective polarisation transfer via the Rh olefin-proton spin-spin couplings at high magnetic fields, a significantly improved detection of the insensitive Rh nucleus results
43

Oda, N., T. Nakai, K. Sato, D. Shiomi, M. Kozaki, K. Okada та T. Takui. "Highly symmetric high-spin oligonitrenes; molecular design for super high-spin systems with robust π-spin polarisation". Synthetic Metals 121, № 1-3 (березень 2001): 1840–41. http://dx.doi.org/10.1016/s0379-6779(00)01096-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Potasz, P., A. D. Güçlü, I. Ozfidan, and P. Hawrylak. "Spin-orbit coupling and optical detection of spin polarisation in triangular graphene quantum dots." International Journal of Nanotechnology 12, no. 3/4 (2015): 174. http://dx.doi.org/10.1504/ijnt.2015.067202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Liu, Xu-Hui, Ming Tan, Yan-Jun Gong, and Li Peng. "Spin-orbit coupling induced spin polarisation in both magnetically and electrically modulated semiconductor heterostructure." Philosophical Magazine Letters 100, no. 5 (March 23, 2020): 213–23. http://dx.doi.org/10.1080/09500839.2020.1741045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Mathur, K. C., and S. P. Purohit. "Polarisation, alignment and spin asymmetry in electron-sodium resonant scattering." Journal of Physics B: Atomic, Molecular and Optical Physics 22, no. 9 (May 14, 1989): L223—L229. http://dx.doi.org/10.1088/0953-4075/22/9/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Keller, F., and F. C. Farnoux. "Characteristic features of spin polarisation for outer subshells of mercury." Journal of Physics B: Atomic and Molecular Physics 18, no. 17 (September 14, 1985): 3581–90. http://dx.doi.org/10.1088/0022-3700/18/17/018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yu, Dehong, Christian Math, Matthias Meier, Matthias Escher, Georgi Rangelov, and Markus Donath. "Characterisation and application of a SPLEED-based spin polarisation analyser." Surface Science 601, no. 24 (December 2007): 5803–8. http://dx.doi.org/10.1016/j.susc.2007.06.061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Alberto, H. V., A. Weidinger, Rui Vilão, J. Piroto Duarte, J. M. Gil, N. Ayres de Campos, J. S. Lord, and S. F. J. Cox. "Muonium as a probe of electron spin polarisation in CdTe." Physica B: Condensed Matter 404, no. 23-24 (December 2009): 5110–12. http://dx.doi.org/10.1016/j.physb.2009.08.244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Chen, T. M., A. C. Graham, M. Pepper, I. Farrer, and D. A. Ritchie. "Spontaneous spin polarisation in one dimension under finite DC-bias." Physica E: Low-dimensional Systems and Nanostructures 40, no. 5 (March 2008): 1295–97. http://dx.doi.org/10.1016/j.physe.2007.08.146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії