Добірка наукової літератури з теми "Polar dielectric liquids"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Polar dielectric liquids".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Polar dielectric liquids"

1

Tabassum, Shagufta, and V. P. Pawar. "Complex permittivity spectra of binary polar liquids using time domain reflectometry." Journal of Advanced Dielectrics 08, no. 03 (June 2018): 1850019. http://dx.doi.org/10.1142/s2010135x18500194.

Повний текст джерела
Анотація:
The study of complex properties in a binary mixture of polar liquids has been carried out in the frequency range of 10[Formula: see text]MHz to 30 GHz at 293[Formula: see text]K and 298[Formula: see text]K temperatures using time domain reflectometry. The complex properties of polar liquids in binary mixture give information about the frequency dispersion in the dielectric permittivity ([Formula: see text]) and dielectric loss ([Formula: see text]). The information regarding the orientation of electric dipoles in a polar liquid mixture is given by Kirkwood parameters. The Bruggeman parameters are used as the indicator of liquid1 and liquid2 interaction. Molar entropy ([Formula: see text]) and molar enthalpy ([Formula: see text]) are also discussed at the end of the paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Monder, Hila, Leo Bielenki, Hanna Dodiuk, Anna Dotan, and Samuel Kenig. "Poly (Dimethylsiloxane) Coating for Repellency of Polar and Non-Polar Liquids." Polymers 12, no. 10 (October 21, 2020): 2423. http://dx.doi.org/10.3390/polym12102423.

Повний текст джерела
Анотація:
The wettability of poly (dimethylsiloxane) (PDMS) coating on plasma-treated glass was studied at room temperature using polar and non-polar liquids. The wettability was investigated regarding the liquids’ surface tensions (STs), dielectric constants (DCs) and solubility parameters (SPs). For polar liquids, the contact angle (CA) and contact angle hysteresis (CAH) are controlled by the DCs and non-polar liquids by the liquids’ STs. Solubility parameter difference between the PDMS and the liquids demonstrated that non-polar liquids possessed lower CAH. An empirical model that integrates the interfacial properties of liquid/PDMS has been composed. Accordingly, the difference between the SPs of PDMS and the liquid is the decisive factor affecting CAH, followed by the differences in DCs and STs. Moreover, the interaction between the DCs and the SPs is of importance to minimize CAH. It has been concluded that CAH, and not CA, is the decisive attribute for liquid repellency of PDMS coating.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Useinova, S. "Application of the Variational Method in Studying of Polar Liquids and Their Concentrated Solutions." Bulletin of Science and Practice, no. 12 (December 15, 2022): 20–27. http://dx.doi.org/10.33619/2414-2948/85/02.

Повний текст джерела
Анотація:
The developed new variational method for measuring the permittivity ξ' and dielectric losses ξ'' of polar liquids is free from a number of shortcomings. At which the minimum amplitude of the reflected wave (ρ) or the standing wave coefficient η takes place, and the value of ηm at this liquid thickness is based on measuring the thickness of the liquid layer in the cell. A variant of this method was considered in the assumption of the active value of the initial resistance of the waveguide section with liquid at the layer thickness corresponding to the minimum value of (ρ) or η, justified only for the case of polar liquids with low dielectric losses. Thus, polar liquids — cyclopentanol, cyclopentanone and their concentrated solutions in each other were studied for the first time, and variational method found a worthy application as the results showed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

de Souza, J. Pedro, Alexei A. Kornyshev, and Martin Z. Bazant. "Polar liquids at charged interfaces: A dipolar shell theory." Journal of Chemical Physics 156, no. 24 (June 28, 2022): 244705. http://dx.doi.org/10.1063/5.0096439.

Повний текст джерела
Анотація:
The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular properties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles at the interface.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chandra, Amalendu, and Biman Bagchi. "Exotic dielectric behavior of polar liquids." Journal of Chemical Physics 91, no. 5 (September 1989): 3056–60. http://dx.doi.org/10.1063/1.456927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matyushov, Dmitry V. "Nonlinear dielectric response of polar liquids." Journal of Chemical Physics 142, no. 24 (June 28, 2015): 244502. http://dx.doi.org/10.1063/1.4922933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Woisetschläger, Jakob, Adam D. Wexler, Gert Holler, Mathias Eisenhut, Karl Gatterer, and Elmar C. Fuchs. "Horizontal bridges in polar dielectric liquids." Experiments in Fluids 52, no. 1 (October 16, 2011): 193–205. http://dx.doi.org/10.1007/s00348-011-1216-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

del Castillo, L. F., L. A. Dávalos-Orozco, and L. S. Garcı́a-Colı́n. "Ultrafast dielectric relaxation response of polar liquids." Journal of Chemical Physics 106, no. 6 (February 8, 1997): 2348–54. http://dx.doi.org/10.1063/1.473789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kalmykov, Yurii P. "Dielectric relaxation in solutions of polar liquids." Journal of Molecular Liquids 49 (September 1991): 201–7. http://dx.doi.org/10.1016/0167-7322(91)80077-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chaube, Hemantkumar A., and Vipinchandra A. Rana. "Dielectric and Electrical Properties of Binary Mixtures of Anisole and Some Primary Alcohols in the Frequency Range 20 Hz to 2 MHz." Advanced Materials Research 665 (February 2013): 194–201. http://dx.doi.org/10.4028/www.scientific.net/amr.665.194.

Повний текст джерела
Анотація:
The complex relative dielectric function ε*(ω) = ε-jε of binary mixture of anisole (AN) with methanol (MeOH) ,1-propanol (1-PrOH), 1-butanol (1-BuOH), 1-heptanol (1-HeOH) of varying concentration have been measured using Precision LCR meter in the frequency range 20 Hz to 2 MHz at 303 K. The electrical/dielectric properties of the liquid samples are represented in terms of intensive quantities namely, complex relative dielectric function ε*(ω), electrical modulus M*(ω), and extensive quantities, i.e. complex admittance Y*(ω) and complex impedance Z*(ω). All of these presentations are used to explore various processes contributed in the electrical/dielectric properties of the mixtures of polar-polar liquids.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Polar dielectric liquids"

1

Basak, Rabindra Chandra. "Dielectric behaviour of some polar liquids under high frequency electric field." Thesis, University of North Bengal, 2000. http://hdl.handle.net/123456789/643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saha, Ujjwal. "Dielectric relaxation parameters of polar liquids from ultra-high frequency conductivity of solutes in non-polar solvents." Thesis, University of North Bengal, 1993. http://hdl.handle.net/123456789/660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hunger, Johannes. "Effects of polar compounds on the dynamics and dielectric properties of room-temperature ionic liquids." kostenfrei, 2009. http://epub.uni-regensburg.de/11973/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agapov, Alexander. "Decoupling Phenomena in Dynamics of Soft Matter." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1321922264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Коробко, Олександр Анатолійович. "Удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40781.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 "Прилади і методи контролю та визначення складу речовин" (15 – Автоматизація та приладобудування) – Національний технічний університет "Харківський політехнічний інститут". Мета роботи: удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків задля підвищення його чутливості до рівня 10⁻⁵ з одночасною мінімізацією впливу "сортової невизначеності". Запропоновані та досліджені: спрощена математична модель емульсії на основі моделі штучного діелектрика Кока; нові багаточастотні різновиди резонансного діелькометричного методу; новий тип розподіленого вимірювального перетворювача. Розроблено, теоретично та експериментально досліджено вологоміри середньочастотного та дуже високочастотного діапазонів. Експериментальним шляхом підтверджено досягнення мети роботи.
Thesis for a candidate degree (PhD) in specialty 05.11.13 "Instruments and methods of control and determination of substances" (15 – Automation and Instrumentation) − National Technical University "Kharkiv Polytechnic Institute". The thesis is devoted to the improvement of the resonant dielectric method of monitoring and determining the humidity of emulsions such as liquid non-polar dielectric - water in order to increase its sensitivity to level 10⁻⁵ while simultaneously minimizing the type and grade of non-polar dielectric ("varietal uncertainty") on the measurement results. An analytical review and analysis of the existing methods and means of implementation of the dielectric method in general and its resonant variety has been carried out. The main research areas have been identified: development of a simplified emulsion model; development of new varieties of the resonant dielectric method with minimization of the effect of "varietal uncertainty" for measuring humidity at a level of 10⁻⁵; development of a new type of distributed transducer. A simplified emulsion model was chosen based on the Kok artificial dielectric model, its applications were determined by frequency, humidity, and the values of its systematic errors were determined. New multifrequency varieties of the resonant dielectric method have been developed based on the proposed mathematical model of the emulsion, taking into account the parasitic capacitances of the measuring generator and the measuring converter. Metrological characteristics of the generalized four-frequency method and its simplified three-and two-frequency varieties are obtained. The areas of applicability of multifrequency methods are analyzed and their systematic errors are determined. The most sensitive method, the two-frequency method, was determined, the effect of dielectric losses in water was analyzed for it, and the generation frequency of the measuring generator, which corresponds to its maximum sensitivity, 100 MHz, was determined. A new type of distributed-type measuring transducer is proposed for the practical implementation of the two-frequency method — a stepwise heterogeneous coaxial resonator; its theoretical and experimental studies are carried out; its advantages in relation to the known transducers are determined. A hygrometer of the mid-frequency range based on a concentrated-type capacitive transducer and a hydrometer of a very high-frequency range based on a stepped heterogeneous coaxial resonator have been developed. The circuit solutions of the measuring transducer and the measuring generator of the hygrometer of the midfrequency range, which provided the minimum values of their parasitic capacitances, were developed and implemented. The circuit solutions of the measuring transducer and the measuring generator of a hygrometer of a very high frequency range have been developed and implemented, which provided almost zero effect of their parasitic capacitances. A methodology has been developed for conducting experimental research on the implementation of four- and three-frequency methods using a mid-range moisture meter and implementing a two-frequency method and a simplified version of it using a very high-frequency moisture meter. Experimental studies on manufactured test emulsions, as well as analysis and processing of their results, were carried out. For all developed multi-frequency methods and moisture values of test emulsions in the range of 10⁻⁴ – 10⁻², the value of the relative extended uncertainty of moisture measurement did not exceed 5.28 %. For the humidity of the test emulsion 10⁻⁵, the value of this uncertainty did not exceed 10.39 % (due to the lack of stability of the frequency of the reference generator frequency Ch 3 - 34, which was used in the research). The developed improved multi-frequency resonance dielectric methods for determining humidity have increased the sensitivity to a level of 10⁻⁵ while minimizing "varietal uncertainty".
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Коробко, Олександр Анатолійович. "Удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40783.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 "Прилади і методи контролю та визначення складу речовин" (15 – Автоматизація та приладобудування) – Національний технічний університет "Харківський політехнічний інститут". Мета роботи: удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків задля підвищення його чутливості до рівня 10⁻⁵ з одночасною мінімізацією впливу "сортової невизначеності". Запропоновані та досліджені: спрощена математична модель емульсії на основі моделі штучного діелектрика Кока; нові багаточастотні різновиди резонансного діелькометричного методу; новий тип розподіленого вимірювального перетворювача. Розроблено, теоретично та експериментально досліджено вологоміри середньочастотного та дуже високочастотного діапазонів. Експериментальним шляхом підтверджено досягнення мети роботи.
Thesis for a candidate degree (PhD) in specialty 05.11.13 "Instruments and methods of control and determination of substances" (15 – Automation and Instrumentation) − National Technical University "Kharkiv Polytechnic Institute". The thesis is devoted to the improvement of the resonant dielectric method of monitoring and determining the humidity of emulsions such as liquid non-polar dielectric - water in order to increase its sensitivity to level 10⁻⁵ while simultaneously minimizing the type and grade of non-polar dielectric ("varietal uncertainty") on the measurement results. An analytical review and analysis of the existing methods and means of implementation of the dielectric method in general and its resonant variety has been carried out. The main research areas have been identified: development of a simplified emulsion model; development of new varieties of the resonant dielectric method with minimization of the effect of "varietal uncertainty" for measuring humidity at a level of 10⁻⁵; development of a new type of distributed transducer. A simplified emulsion model was chosen based on the Kok artificial dielectric model, its applications were determined by frequency, humidity, and the values of its systematic errors were determined. New multifrequency varieties of the resonant dielectric method have been developed based on the proposed mathematical model of the emulsion, taking into account the parasitic capacitances of the measuring generator and the measuring converter. Metrological characteristics of the generalized four-frequency method and its simplified three-and two-frequency varieties are obtained. The areas of applicability of multifrequency methods are analyzed and their systematic errors are determined. The most sensitive method, the two-frequency method, was determined, the effect of dielectric losses in water was analyzed for it, and the generation frequency of the measuring generator, which corresponds to its maximum sensitivity, 100 MHz, was determined. A new type of distributed-type measuring transducer is proposed for the practical implementation of the two-frequency method — a stepwise heterogeneous coaxial resonator; its theoretical and experimental studies are carried out; its advantages in relation to the known transducers are determined. A hygrometer of the mid-frequency range based on a concentrated-type capacitive transducer and a hydrometer of a very high-frequency range based on a stepped heterogeneous coaxial resonator have been developed. The circuit solutions of the measuring transducer and the measuring generator of the hygrometer of the midfrequency range, which provided the minimum values of their parasitic capacitances, were developed and implemented. The circuit solutions of the measuring transducer and the measuring generator of a hygrometer of a very high frequency range have been developed and implemented, which provided almost zero effect of their parasitic capacitances. A methodology has been developed for conducting experimental research on the implementation of four- and three-frequency methods using a mid-range moisture meter and implementing a two-frequency method and a simplified version of it using a very high-frequency moisture meter. Experimental studies on manufactured test emulsions, as well as analysis and processing of their results, were carried out. For all developed multi-frequency methods and moisture values of test emulsions in the range of 10⁻⁴ – 10⁻², the value of the relative extended uncertainty of moisture measurement did not exceed 5.28 %. For the humidity of the test emulsion 10⁻⁵, the value of this uncertainty did not exceed 10.39 % (due to the lack of stability of the frequency of the reference generator frequency Ch 3 - 34, which was used in the research). The developed improved multi-frequency resonance dielectric methods for determining humidity have increased the sensitivity to a level of 10⁻⁵ while minimizing "varietal uncertainty".
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hunger, Johannes [Verfasser]. "Effects of polar compounds on the dynamics and dielectric properties of room-temperature ionic liquids / vorgelegt von Johannes Hunger." 2009. http://d-nb.info/1001182146/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Polar dielectric liquids"

1

Matyushov, Dmitry V. "Nonlinear Dielectric Response of Polar Liquids." In Advances in Dielectrics, 1–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77574-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hefter, Glenn, Richard Buchner, Johannes Hunger, and Alexander Stoppa. "Chemical Speciation in Ionic Liquids and their Mixtures with Polar Solvents Using Dielectric Spectroscopy." In ACS Symposium Series, 61–74. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1030.ch004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Forcada, M. L., A. Gras-Martí, N. R. Arista, H. M. Urbassek, and R. Garcia-Molina. "Interaction of a Charged Particle With a Semi Infinite Non Polar Dielectric Liquid." In Interaction of Charged Particles with Solids and Surfaces, 639–45. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8026-9_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mehrotra, Suresh, Ashok Kumbharkhane, and Ajay Chaudhari. "Structural Investigation of Biomolecules Through Dielectric Parameters." In Binary Polar Liquids, 403–27. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00009-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mehrotra, Suresh, Ashok Kumbharkhane, and Ajay Chaudhari. "Dielectric Spectroscopic Study of Molecular Interaction Between Nitriles With Water and Alcohol." In Binary Polar Liquids, 215–48. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00005-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mehrotra, Suresh, Ashok Kumbharkhane, and Ajay Chaudhari. "Dielectric Relaxation and Molecular Dynamics in Associating Dipolar Liquids and Polyhydroxyl Polymers." In Binary Polar Liquids, 383–402. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00008-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mehrotra, Suresh, Ashok Kumbharkhane, and Ajay Chaudhari. "Dielectric Relaxation in Binary Polar Liquids Containing Alcohols and Molecules With –OH Group." In Binary Polar Liquids, 45–72. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-813253-1.00002-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chipperfield, John R. "Some molecular solvents." In Non-Aqueous Solvents. Oxford University Press, 1999. http://dx.doi.org/10.1093/hesc/9780198502593.003.0003.

Повний текст джерела
Анотація:
This chapter looks at the chemistry of a number of electrolytic molecular solvents and discusses supercritical fluids. These share many of the properties of molecular liquids. It mentions acetic acid, which has a liquid range that is similar to water and boils at the same temperature as similarly sized molecules. It also describes acetonitrile as a popular dipolar solvent that combines several desirable characteristics, such as having a dielectric constant that places it towards the lower polarity end of electrolytic solvents. The chapter refers to the solubilities in liquid ammonia that favour non-polar molecular compounds and inorganic compounds where ammine formation can take place. It discusses dinitrogen tetroxide, which is a useful solvent for investigating nitrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hunda, Li, M. A. Kazaryan, and I. V. Shamanin. "Periodic action of electric and magnetic fields on the electrically isolated salt solution in polar dielectric liquids." In Electroinduced Drift of Neutral Charge Clusters in Salt Solutions, 1–50. CRC Press, 2020. http://dx.doi.org/10.1201/9781003047049-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Liquid Crystals." In Polar Dielectrics and Their Applications, 403–30. University of California Press, 2023. http://dx.doi.org/10.2307/jj.5233071.21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Polar dielectric liquids"

1

Maharolkar, Aruna P., A. Murugkar, and P. W. Khirade. "Microwave dielectric study of polar liquids at 298 K." In 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pawar, V. P., Shagufta Tabassum, and A. V. Patil. "Structural properties in binary mixtures of polar molecules through microwave dielectric technique." In 2017 IEEE 19th International Conference on Dielectric Liquids (ICDL). IEEE, 2017. http://dx.doi.org/10.1109/icdl.2017.8124634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cocks, Daniel G., and Ron D. White. "Excitation processes as a pathway for electron solvation in non-polar liquids." In 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maharolkar, Aruna P., A. Murugkar, and P. W. Khirade. "Microwave dielectric polarization study of polar liquids at 298 K." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ghanadzadeh, A., A. Ranjkesh, H. Ghanadzadeh, and M. M. Moghadam. "Dielectric study and molecular interaction of halogenated compounds in non-polar solvent at different temperatures." In 2008 IEEE International Conference on Dielectric Liquids (ICDL 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdl.2008.4622501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schmidt, Werner F., George Bakale, Alexey Khrapak, and Katsumi Yoshino. "Drift velocity of ions and electrons in non-polar dielectric liquids at high electric field strengths." In 2011 IEEE 17th International Conference on Dielectric Liquids (ICDL). IEEE, 2011. http://dx.doi.org/10.1109/icdl.2011.6015493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ladanyi, Branka M., and Baw-Ching Perng. "Computer simulation of wavevector-dependent dielectric properties of polar and nondipolar liquids." In SIMULATION AND THEORY OF ELECTROSTATIC INTERACTIONS IN SOLUTION. ASCE, 1999. http://dx.doi.org/10.1063/1.1301531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sun, Yiwen, and Emma Pickwell-MacPherson. "Probing dielectric relaxation models of polar liquids using terahertz time-domain pulsed spectroscopy." In 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010). IEEE, 2010. http://dx.doi.org/10.1109/icimw.2010.5612744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shamanin, Igor V., Mishik A. Kazaryan, and Victor I. Sachkov. "Structure of salts solution in polar dielectric liquids and electrically induced separation of solvated ions." In XII International Conference on Atomic and Molecular Pulsed Lasers, edited by Victor F. Tarasenko and Andrey M. Kabanov. SPIE, 2015. http://dx.doi.org/10.1117/12.2225223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gritsenko, Ivanovich M., and Sergey I. Kucheev. "Polar-dependent deformation of director near the dielectric pore in the metal-dielectric-nematic-metal structure." In Liquid Crystals, edited by Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski, and Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії