Статті в журналах з теми "Plasmons Tamm"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Plasmons Tamm".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Balevičius, Zigmas. "Strong Coupling between Tamm and Surface Plasmons for Advanced Optical Bio-Sensing." Coatings 10, no. 12 (December 5, 2020): 1187. http://dx.doi.org/10.3390/coatings10121187.
Повний текст джерелаBuchnev, Oleksandr, Alexandr Belosludtsev, Victor Reshetnyak, Dean R. Evans, and Vassili A. Fedotov. "Observing and controlling a Tamm plasmon at the interface with a metasurface." Nanophotonics 9, no. 4 (March 18, 2020): 897–903. http://dx.doi.org/10.1515/nanoph-2019-0514.
Повний текст джерелаIorsh, I., P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski. "Coupled Tamm plasmons." Technical Physics Letters 38, no. 4 (April 2012): 351–53. http://dx.doi.org/10.1134/s1063785012040074.
Повний текст джерелаChen, Yikai, Douguo Zhang, Liangfu Zhu, Qiang Fu, Ruxue Wang, Pei Wang, Hai Ming, Ramachandram Badugu, and Joseph R. Lakowicz. "Effect of metal film thickness on Tamm plasmon-coupled emission." Phys. Chem. Chem. Phys. 16, no. 46 (2014): 25523–30. http://dx.doi.org/10.1039/c4cp04031g.
Повний текст джерелаVijisha, M. V., Jagadeesan Ramesh, Chellaiah Arunkumar, and K. Chandrasekharan. "Impressive nonlinear optical responses of a cationic porphyrin derivative in a flexible all-polymer Bragg stack on optical Tamm mode coupling." Journal of Materials Chemistry C 8, no. 36 (2020): 12689–97. http://dx.doi.org/10.1039/d0tc01874k.
Повний текст джерелаPyatnov, Maxim V., Rashid G. Bikbaev, Ivan V. Timofeev, Ilya I. Ryzhkov, Stepan Ya Vetrov, and Vasily F. Shabanov. "Tamm Plasmons in TiO2 Nanotube Photonic Crystals." Photonics 10, no. 1 (January 6, 2023): 64. http://dx.doi.org/10.3390/photonics10010064.
Повний текст джерелаAuguié, Baptiste, Axel Bruchhausen, and Alejandro Fainstein. "Critical coupling to Tamm plasmons." Journal of Optics 17, no. 3 (February 13, 2015): 035003. http://dx.doi.org/10.1088/2040-8978/17/3/035003.
Повний текст джерелаLeuthold, Juerg, and Alexander Dorodnyy. "On-demand emission from Tamm plasmons." Nature Materials 20, no. 12 (October 21, 2021): 1595–96. http://dx.doi.org/10.1038/s41563-021-01128-7.
Повний текст джерелаShagurina, A., S. Kutrovskaya, I. Skryabin, and A. Kel’. "AFM lithography for TAMM plasmons observation." Journal of Physics: Conference Series 951 (January 2018): 012021. http://dx.doi.org/10.1088/1742-6596/951/1/012021.
Повний текст джерелаPühringer, Gerald, Cristina Consani, and Bernhard Jakoby. "Impact of Different Metals on the Performance of Slab Tamm Plasmon Resonators." Sensors 20, no. 23 (November 28, 2020): 6804. http://dx.doi.org/10.3390/s20236804.
Повний текст джерелаZhang, Cheng, Kai Wu, Vincenzo Giannini, and Xiaofeng Li. "Planar Hot-Electron Photodetection with Tamm Plasmons." ACS Nano 11, no. 2 (January 26, 2017): 1719–27. http://dx.doi.org/10.1021/acsnano.6b07578.
Повний текст джерелаLiu, Hai, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Haiming Yuan, and Hua Zhao. "Controllable Coupling of Localized and Propagating Surface Plasmons to Tamm Plasmons." Plasmonics 7, no. 4 (June 10, 2012): 749–54. http://dx.doi.org/10.1007/s11468-012-9369-x.
Повний текст джерелаLiu, Hai, Xiudong Sun, Fengfeng Yao, Yanbo Pei, Feng Huang, Haiming Yuan, and Yongyuan Jiang. "Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons." Optics Express 20, no. 17 (August 6, 2012): 19160. http://dx.doi.org/10.1364/oe.20.019160.
Повний текст джерелаGeng, Dongling, Elena Cabello-Olmo, Gabriel Lozano, and Hernán Míguez. "Tamm Plasmons Directionally Enhance Rare-Earth Nanophosphor Emission." ACS Photonics 6, no. 3 (February 14, 2019): 634–41. http://dx.doi.org/10.1021/acsphotonics.8b01407.
Повний текст джерелаKaliteevski, M., S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, T. C. H. Liew, and I. A. Shelykh. "Hybrid states of Tamm plasmons and exciton-polaritons." Superlattices and Microstructures 49, no. 3 (March 2011): 229–32. http://dx.doi.org/10.1016/j.spmi.2010.05.014.
Повний текст джерелаKaliteevski, M., S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh. "Hybrid states of Tamm plasmons and exciton polaritons." Applied Physics Letters 95, no. 25 (December 21, 2009): 251108. http://dx.doi.org/10.1063/1.3266841.
Повний текст джерелаGubaydullin, A. R., K. M. Morozov, and M. A. Kaliteevski. "Tamm Plasmons in Structures with Quasiperiodic Metal Gratings." JETP Letters 111, no. 11 (June 2020): 639–42. http://dx.doi.org/10.1134/s002136402011003x.
Повний текст джерелаPühringer, Gerald, and Bernhard Jakoby. "Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States." Materials 12, no. 6 (March 20, 2019): 929. http://dx.doi.org/10.3390/ma12060929.
Повний текст джерелаNormani, Simone, Francesco Federico Carboni, Guglielmo Lanzani, Francesco Scotognella, and Giuseppe Maria Paternò. "The impact of Tamm plasmons on photonic crystals technology." Physica B: Condensed Matter 645 (November 2022): 414253. http://dx.doi.org/10.1016/j.physb.2022.414253.
Повний текст джерелаMischok, Andreas, Bernhard Siegmund, Dhriti Sundar Ghosh, Johannes Benduhn, Donato Spoltore, Matthias Böhm, Hartmut Fröb, Christian Körner, Karl Leo, and Koen Vandewal. "Controlling Tamm Plasmons for Organic Narrowband Near-Infrared Photodetectors." ACS Photonics 4, no. 9 (August 17, 2017): 2228–34. http://dx.doi.org/10.1021/acsphotonics.7b00427.
Повний текст джерелаLiu, Hai, Jinsong Gao, Zhen Liu, Xiaoyi Wang, Haigui Yang, and Hong Chen. "Large electromagnetic field enhancement achieved through coupling localized surface plasmons to hybrid Tamm plasmons." Journal of the Optical Society of America B 32, no. 10 (September 4, 2015): 2061. http://dx.doi.org/10.1364/josab.32.002061.
Повний текст джерелаShao, Weijia, and Tingting Liu. "Planar narrowband Tamm plasmon-based hot-electron photodetectors with double distributed Bragg reflectors." Nano Express 2, no. 4 (November 22, 2021): 040009. http://dx.doi.org/10.1088/2632-959x/ac396b.
Повний текст джерелаZhang, Wei Li, Yao Jiang, Ye Yu Zhu, Fen Wang, and Yun Jiang Rao. "All-optical bistable logic control based on coupled Tamm plasmons." Optics Letters 38, no. 20 (October 9, 2013): 4092. http://dx.doi.org/10.1364/ol.38.004092.
Повний текст джерелаPan, Jintao, Wenguo Zhu, Huadan Zheng, Jianhui Yu, Yaofei Chen, Heyuan Guan, Huihui Lu, Yongchun Zhong, Yunhan Luo, and Zhe Chen. "Exploiting black phosphorus based-Tamm plasmons in the terahertz region." Optics Express 28, no. 9 (April 20, 2020): 13443. http://dx.doi.org/10.1364/oe.391709.
Повний текст джерелаHajian, Hodjat, Humeyra Caglayan, and Ekmel Ozbay. "Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials." Journal of Applied Physics 121, no. 3 (January 21, 2017): 033101. http://dx.doi.org/10.1063/1.4973900.
Повний текст джерелаReshetnyak, Victor Yu, Igor P. Pinkevych, Michael E. McConney, Timothy J. Bunning, and Dean R. Evans. "Tamm Plasmons: Properties, Applications, and Tuning with Help of Liquid Crystals." Crystals 15, no. 2 (January 27, 2025): 138. https://doi.org/10.3390/cryst15020138.
Повний текст джерелаLUO Guoping, 罗国平, 陈星源 CHEN Xingyuan, 胡素梅 HU Sumei та 朱伟玲 ZHU Weiling. "基于塔姆等离激元的近红外热电子光电探测器". ACTA PHOTONICA SINICA 51, № 4 (2022): 0404002. http://dx.doi.org/10.3788/gzxb20225104.0404002.
Повний текст джерелаBoriskina, Svetlana V., and Yoichiro Tsurimaki. "Sensitive singular-phase optical detection without phase measurements with Tamm plasmons." Journal of Physics: Condensed Matter 30, no. 22 (May 10, 2018): 224003. http://dx.doi.org/10.1088/1361-648x/aabefb.
Повний текст джерелаAfinogenov, Boris I., Vladimir O. Bessonov, Irina V. Soboleva, and Andrey A. Fedyanin. "Ultrafast All-Optical Light Control with Tamm Plasmons in Photonic Nanostructures." ACS Photonics 6, no. 4 (March 5, 2019): 844–50. http://dx.doi.org/10.1021/acsphotonics.8b01792.
Повний текст джерелаChen, Yikai, Douguo Zhang, Dong Qiu, Liangfu Zhu, Sisheng Yu, Peijun Yao, Pei Wang, Hai Ming, Ramachandram Badugu, and Joseph R. Lakowicz. "Back focal plane imaging of Tamm plasmons and their coupled emission." Laser & Photonics Reviews 8, no. 6 (October 2, 2014): 933–40. http://dx.doi.org/10.1002/lpor.201400117.
Повний текст джерелаZhang, Huayue, Xin Long, Hongxia Yuan, Xiaoyu Dai, Zhongfu Li, Leyong Jiang, and Yuanjiang Xiang. "Dirac semimetals Tamm plasmons-induced low-threshold optical bistability at terahertz frequencies." Results in Physics 43 (December 2022): 106054. http://dx.doi.org/10.1016/j.rinp.2022.106054.
Повний текст джерелаPyatnov, Maxim, Rashid Bikbaev, Ivan Timofeev, Ilya Ryzhkov, Stepan Vetrov, and Vasily Shabanov. "Broadband Tamm Plasmons in Chirped Photonic Crystals for Light-Induced Water Splitting." Nanomaterials 12, no. 6 (March 11, 2022): 928. http://dx.doi.org/10.3390/nano12060928.
Повний текст джерелаParker, Matthew, Edmund Harbord, Andrew Young, Petros Androvitsaneas, John Rarity, and Ruth Oulton. "Tamm plasmons for efficient interaction of telecom wavelength photons and quantum dots." IET Optoelectronics 12, no. 1 (February 1, 2018): 11–14. http://dx.doi.org/10.1049/iet-opt.2017.0076.
Повний текст джерелаWang, Zhiyu, J. Kenji Clark, Ya-Lun Ho, Bertrand Vilquin, Hirofumi Daiguji, and Jean-Jacques Delaunay. "Narrowband thermal emission from Tamm plasmons of a modified distributed Bragg reflector." Applied Physics Letters 113, no. 16 (October 15, 2018): 161104. http://dx.doi.org/10.1063/1.5048950.
Повний текст джерелаLiang, Wenyue, Zheng Xiao, Haitao Xu, Haidong Deng, Hai Li, Wanjun Chen, Zhaosu Liu, and Yongbing Long. "Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons." Optics Express 28, no. 21 (October 5, 2020): 31330. http://dx.doi.org/10.1364/oe.400258.
Повний текст джерелаWu, Jipeng, Yanzhao Liang, Jun Guo, Leyong Jiang, Xiaoyu Dai, and Yuanjiang Xiang. "Tunable and Multichannel Terahertz Perfect Absorber Due to Tamm Plasmons with Topological Insulators." Plasmonics 15, no. 1 (August 10, 2019): 83–91. http://dx.doi.org/10.1007/s11468-019-01011-x.
Повний текст джерелаWang, Xi, Xing Jiang, Qi You, Jun Guo, Xiaoyu Dai, and Yuanjiang Xiang. "Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene." Photonics Research 5, no. 6 (October 3, 2017): 536. http://dx.doi.org/10.1364/prj.5.000536.
Повний текст джерелаLiu, Yamei, Qiwen Zheng, Hongxia Yuan, Shenping Wang, Keqiang Yin, Xiaoyu Dai, Xiao Zou, and Leyong Jiang. "High Sensitivity Terahertz Biosensor Based on Mode Coupling of a Graphene/Bragg Reflector Hybrid Structure." Biosensors 11, no. 10 (October 8, 2021): 377. http://dx.doi.org/10.3390/bios11100377.
Повний текст джерелаLheureux, G., M. Monavarian, R. Anderson, R. A. Decrescent, J. Bellessa, C. Symonds, J. A. Schuller, J. S. Speck, S. Nakamura, and S. P. DenBaars. "Tamm plasmons in metal/nanoporous GaN distributed Bragg reflector cavities for active and passive optoelectronics." Optics Express 28, no. 12 (June 1, 2020): 17934. http://dx.doi.org/10.1364/oe.392546.
Повний текст джерелаYu, Tong, Cheng Zhang, Huimin Liu, Jianhui Liu, Ke Li, Linling Qin, Shaolong Wu, and Xiaofeng Li. "Planar, narrowband, and tunable photodetection in the near-infrared with Au/TiO2 nanodiodes based on Tamm plasmons." Nanoscale 11, no. 48 (2019): 23182–87. http://dx.doi.org/10.1039/c9nr07549f.
Повний текст джерелаJiang, Leyong, Haiqin Deng, Xinye Zhang, Pei Chen, Licheng Wu, Rongqing Yi, Pengcheng Wang, Jie Jiang, and Jun Dong. "Enhanced and tunable terahertz spin hall effect of reflected light due to tamm plasmons with topological insulators." Results in Physics 19 (December 2020): 103392. http://dx.doi.org/10.1016/j.rinp.2020.103392.
Повний текст джерелаYe, Yunyang, Wei Chen, Shuxin Wang, Yamei Liu, and Leyong Jiang. "Enhanced and tunable Goos-Hänchen shift of reflected light due to Tamm surface plasmons with Dirac semimetals." Results in Physics 43 (December 2022): 106105. http://dx.doi.org/10.1016/j.rinp.2022.106105.
Повний текст джерелаLi, Yaoyao, Xiaoyan Yang, Jia Hao, Junhui Hu, Qingjia Zhou, and Weijia Shao. "Reversibly Alterable Hot-Electron Photodetection Without Altering Working Wavelengths Through Phase-Change Material Sb2S3." Micromachines 16, no. 2 (January 26, 2025): 146. https://doi.org/10.3390/mi16020146.
Повний текст джерелаLo, Shu-cheng, Chia-wei Lee, Ruey-lin Chern, and Pei-kuen Wei. "Hybrid modes in gold nanoslit arrays on Bragg nanostructures and their application for sensitive biosensors." Optics Express 30, no. 17 (August 4, 2022): 30494. http://dx.doi.org/10.1364/oe.465748.
Повний текст джерелаDrazdys, Mantas, Ernesta Bužavaitė-Vertelienė, Darija Astrauskytė, and Zigmas Balevičius. "Atomic Layer Deposition for Tailoring Tamm Plasmon-Polariton with Ultra-High Accuracy." Coatings 14, no. 1 (December 26, 2023): 33. http://dx.doi.org/10.3390/coatings14010033.
Повний текст джерелаPlikusienė, Ieva, Ernesta Bužavaitė-Vertelienė, Vincentas Mačiulis, Audrius Valavičius, Almira Ramanavičienė, and Zigmas Balevičius. "Application of Tamm Plasmon Polaritons and Cavity Modes for Biosensing in the Combined Spectroscopic Ellipsometry and Quartz Crystal Microbalance Method." Biosensors 11, no. 12 (December 7, 2021): 501. http://dx.doi.org/10.3390/bios11120501.
Повний текст джерелаAnulytė, Justina, Ernesta Bužavaitė-Vertelienė, Evaldas Stankevičius, Kernius Vilkevičius, and Zigmas Balevičius. "High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application." Sensors 22, no. 23 (December 3, 2022): 9453. http://dx.doi.org/10.3390/s22239453.
Повний текст джерелаSpektor, Grisha, Eva Prinz, Michael Hartelt, Anna-Katharina Mahro, Martin Aeschlimann, and Meir Orenstein. "Orbital angular momentum multiplication in plasmonic vortex cavities." Science Advances 7, no. 33 (August 2021): eabg5571. http://dx.doi.org/10.1126/sciadv.abg5571.
Повний текст джерелаTomilina, O. A., A. L. Kudryashov, A. V. Karavaynikov, S. D. Lyashko, E. T. Milyukova, V. N. Berzhansky, and S. V. Tomilin. "Fabry-Perot and Tamm modes hybridization in spatially non-homogeneous magneto-photonic crystal." Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, no. 4 (November 26, 2024): 599–607. http://dx.doi.org/10.31857/s0367676524040115.
Повний текст джерелаBikbaev, Rashid, Stepan Vetrov, and Ivan Timofeev. "Epsilon-Near-Zero Absorber by Tamm Plasmon Polariton." Photonics 6, no. 1 (March 9, 2019): 28. http://dx.doi.org/10.3390/photonics6010028.
Повний текст джерела