Дисертації з теми "Plasmonic properties"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Plasmonic properties".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Cole, R. M. "Plasmonic properties of metal nanovoids." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597832.
Повний текст джерелаDieleman, Frederik. "Quantum properties of plasmonic waveguides." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/49436.
Повний текст джерелаPeruch, Silvia. "Ultrafast properties of plasmonic nanorod metamaterial." Thesis, King's College London (University of London), 2016. https://kclpure.kcl.ac.uk/portal/en/theses/ultrafast-properties-of-plasmonic-nanorod-metamaterial(d981b5e4-b959-4193-8cf1-219b68de08d6).html.
Повний текст джерелаChen, Lihui. "Synthesis and Plasmonic Properties of Copper-based Nanocrystals." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217134.
Повний текст джерелаStrandberg, Östman Felicia. "Optical Properties of Plasmonic Ag/Ni Square Nanostructures." Thesis, Uppsala universitet, Materialfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256885.
Повний текст джерелаChing, Suet Ying. "Plasmonic properties of silver-based alloy thin films." HKBU Institutional Repository, 2015. https://repository.hkbu.edu.hk/etd_oa/194.
Повний текст джерелаHung, Yu-Ju. "Studies of the optical properties of plasmonic nanostructures." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7735.
Повний текст джерелаThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Kolkowski, Radoslaw. "Studies of nonlinear optical properties of plasmonic nanostructures." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN001/document.
Повний текст джерелаThe aim of this thesis and the underlying research work is to demonstrate the benefits emerging from combination of the peculiar properties of plasmonic nanostructures with the most interesting aspects of nonlinear optics. For this purpose, analytical and numerical modeling was combined with experimental work, which included nanofabrication and measurements performed by means of polarization-resolved nonlinear confocal microscopy and by modified Z-scan technique (called "f-scan").It has been shown that the effective anisotropy of the second-harmonic generation in plasmonic crystals (formed by rectangular arrays of tetrahedral recesses in silver surface) can be controlled by proper choice of lattice constants. It also has been shown that this anisotropy arises mainly from the anisotropic photonic band structure, exhibiting plasmonic band gap with plasmonic band edge states, enabling enhancement of the local electric field.Two-dimensional chiral arrangements of triangular gold nanoparticles, forming plasmonic enantiomeric "meta-molecules", have been studied by nonlinear microscopy operating with circularly polarized light and by numerical modeling, revealing strong chiroptical effect in backscattered second-harmonic radiation. Small size of individual enantiomers allows to create "watermarks", encoded by the chirality of meta-molecules, which can be readout by imaging of second-harmonic generation excited by circularly polarized laser beam.Quantitative characterization of the third-order optical nonlinearity and saturable absorption efficiency of aqueous solutions of graphene and gold-nanoparticle decorated graphene has been performed by novel "f-scan" technique, which has been created and developed by incorporation of a focus-tunable lens into traditional Z-scan. These studies have shown that the graphene exhibits very efficient ultrafast saturable absorption, which is occasionally suppressed by reverse saturable absorption. Moreover, it turns out that decoration of graphene by gold nanoparticles may cause a slight improvement of the saturable absorption efficiency parameter within spectral range of their plasmon resonances.In summary, the following thesis presents various nonlinear optical properties of plasmonic nanostructures. Different possibilities of controlling these properties by means of nano-engineering, supported by analytical and numerical modeling, is also analyzed and demonstrated. This work opens up new perspectives for fabrication and rational design of novel photonic nano-materials and nano-devices based on nonlinear nanoplasmonic phenomena
MAGNOZZI, MICHELE. "Temperature-dependent optical properties of composite plasmonic nanomaterials." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/941310.
Повний текст джерелаFERRERA, MARZIA. "Local optical properties of 2D semiconductor/plasmonic heterostructures." Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1077989.
Повний текст джерелаWoollacott, Claire. "Electronic and plasmonic properties of real and artificial Dirac materials." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18227.
Повний текст джерелаLiu, Junjun. "Optical properties of chiral plasmonic nanoparticles and mesoporous silicon nanowires." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/385.
Повний текст джерелаNguyen, Thi Tuyet Mai. "Elaboration and optical properties of thermosensitive plasmonic hybrid nanostructures." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC285.
Повний текст джерелаDriven by the search for hybrid multifunctional nanomaterials with interesting and unique properties, we have considered the association of thermoresponsive pNIPAM with gold nanoparticles (GNPs), which ideally combine the responsiveness of pNIPAM with the optical, catalytic or photothermal properties of GNPs. In this PhD dissertation, we addressed strong synergies between GNPs and PNIPAM in hybrid GNP@PNIPAM nanostructures, obtained from the grafting of PNIPAM brushes on lithographie GNPs arrays. Firstly, the hybrid nanostructures including gold nanorod (GNRs) arrays coated by pNIPAM allowed us to investigate properly the influence of the GNPs anisotropy and the polymer thickness on the sensitivity to the local environment. The optimization of the GNR's aspect ratio r and the pNIPAM thickness, to provide a maximum of LSP shift upon a change in temperature,is obtained for r'-2. 4-2. 6 and hPNIPAM —25 nm, respectively. Secondly, such hybrid nanostructures allowed us to measure the phase transition time of pNIPAM brushes, 160±20 Ils for a 30 nm pNIPAM layer. Particularly, we used the pNIPAM brushes as a dynamic linker in order to control the coupling of plasmonic nanoparticles and the sensitive detection of Nile blue A molecules by SERS. Such hybrid nanostructures were also applied to probe the isomerization of azobenzene derived molecules by UV-visible spectroscopy. Interestingly, we developed a new strategy for the selective plasmon-mediated chemical grafting of aryl layers derived from diazonium salts on gold nanostripe arrays. This grafting occurs specifically in the regions of maximum field enhancement of GNPs. In perspective, this strategy is expected to allow us controlling the grafting of pNIPAM brushes, and thus the binding of analyte molecules to selected locations on the GNP surface with well-defined near-field enhancement factor for quantitative SERS measurements
Agreda, Adrian. "Electrical control of the nonlinear properties of plasmonic nanostructures." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCK010.
Повний текст джерелаThis work brings nano-electronics and nano-photonics technologies together to create an electron- plasmon device whose linear and nonlinear optical properties are electrically controlled. Here, we present the first demonstration of nonlinear photoluminescence modulation by electrical means in an uncluttered configuration. To this purpose, plasmonic nanoantennas are interfaced with elec- trical connections inducing localized regions of electron accumulation and depletion and therefore affecting the optical response. Additionally, a complete analysis of the nonlinear photoluminescence in plasmonic nanowires is carried out. The delocalization and transport of nonlinearities provided by such structures allow the remote activation of the signals. Different aspects including the un- derlying mechanisms behind the electrical modulation and the processes dictating the nonlinear photoluminescence generation are systematically explored
Ji, Botao. "Synthesis and optical properties of plasmonic fluorescent quantum dots." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066674/document.
Повний текст джерелаDue to the surface plasmons in metallic nanostructures and the exceptional optical and electrical properties of colloidal semiconductor quantum dots (QDs), QD/metal hybrid nanostructures attract much attention. However, although these structures are very promising, colloidal single QD/gold hybrids have rarely been synthesized.We managed to develop for the first time a generalized synthetic route to synthesize a QD/SiO2/Au core/shell/shell hybrid structure (golden QDs). First, hydrophobic QDs are individually encapsulated in silica beads via reverse microemulsion. The obtained QD/SiO2 nanoparticles are then coated with a continuous gold nanoshell using a solution deposition process. The thicknesses of the silica and the gold layers can be tailored independently to various dimensions. We showed that single golden thick-shell CdSe/CdS QDs provide a system with a stable and poissonian emission at room temperature and a high photostability. This novel hybrid golden QD structure behaves as a plasmonic resonator with a strong (~ 6) Purcell factor, in very good agreement with simulations. We also present the self-assembly of hydrophobic QDs into colloidal superparticles (SPs). With a fine choice of QDs, SPs could indeed possess outstanding properties including non-blinking fluorescence, high fluorescence intensity and multi-color emission. Multi-functional SPs could also be obtained by mixing fluorescent or magnetic nanocrystals. The subsequent growth of a silica shell on the SPs allowed an enhancement of their stability and we demonstrated this silica shell could itself be covered by a gold nanoshell to further improve the SPs photostability and biocompatibility
Pechprasarn, Suejit. "Analysis of sensitivity and resolution in plasmonic microscopes." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/13100/.
Повний текст джерелаDeSantis, Christopher John. "Manipulating the architecture of bimetallic nanostructures and their plasmonic properties." Thesis, Indiana University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3665584.
Повний текст джерелаThere has been much interest in colloidal noble metal nanoparticles due to their fascinating plasmonic and catalytic properties. These properties make noble metal nanoparticles potentially useful for applications such as targeted drug delivery agents and hydrogen storage devices. Historically, shape-controlled noble metal nanoparticles have been predominantly monometallic. Recent synthetic advances provide access to bimetallic noble metal nanoparticles wherein their inherent multifunctionality and ability to fine tune or expand their surface chemistry and light scattering properties of metal nanoparticles make them popular candidates for many applications. Even so, there are currently few synthetic strategies to rationally design shape-controlled bimetallic nanocrystals; for this reason, few architectures are accessible. For example, the "seed-mediated method" is a popular means of achieving monodisperse shape-controlled bimetallic nanocrystals. In this process, small metal seeds are used as platforms for additional metal addition, allowing for conformal core@shell nanostructures. However, this method has only been applied to single metal core/single metal shell structures; therefore, the surface compositions and architectures achievable are limited. This thesis expands upon the seed-mediated method by coupling it with co-reduction. In short, two metal precursors are simultaneously reduced to deposit metal onto pre-formed seeds in hopes that the interplay between two metal species facilitates bimetallic shell nanocrystals. Au/Pd was used as a test system due to favorable reduction potentials of metal precursors and good lattice match between Au and Pd. Alloyed shelled Au@Au/Pd nanocrystals were achieved using this "seed-mediated co-reduction" approach. Symmetric eight-branched Au/Pd nanocrystals (octopods) are also prepared using this method. This thesis investigates many synthetic parameters that determine the shape outcome in Au/Pd nanocrystals during seed-mediated co-reduction. Plasmonic, catalytic, and assembly properties are also investigated in relation to nanocrystal shape and architecture. This work provides a foundation for the rational design of architecturally defined bimetallic nanostructures.
Kamakura, Ryosuke. "Fabrications and optical properties of plasmonic arrays without noble metals." Kyoto University, 2018. http://hdl.handle.net/2433/232046.
Повний текст джерелаSediq, Khalid. "The optical properties of photonic-crystal nanocavities containing plasmonic nanoparticles." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12324/.
Повний текст джерелаPellegrini, Giovanni. "Modeling the optical properties of nanocluster-based functional plasmonic materials." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425967.
Повний текст джерелаPathak, Nilesh Kumar. "Study of plasmonic properties of metal nanoparticles and its applications." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7040.
Повний текст джерелаBarbosa, Neira Andres David. "Analysis and characterization of the nonlinear optical properties of plasmonic metamaterials." Thesis, King's College London (University of London), 2015. http://kclpure.kcl.ac.uk/portal/en/theses/analysis-and-characterization-of-the-nonlinear-optical-properties-of-plasmonic-metamaterials(aa1f642a-eb29-4a21-b599-e5d3b7acddad).html.
Повний текст джерелаGuidez, Emilie Brigitte. "Quantum mechanical origin of the plasmonic properties of noble metal nanoparticles." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17314.
Повний текст джерелаDepartment of Chemistry
Christine M. Aikens
Small silver and gold clusters (less than 2 nm) display a discrete absorption spectrum characteristic of molecular systems whereas larger particles display a strong, broad absorption band in the visible. The latter feature is due to the surface plasmon resonance, which is commonly explained by the collective dipolar motion of free electrons across the particle, creating charged surface states. The evolution between molecular properties and plasmon is investigated. Time-dependent density functional theory (TDDFT) calculations are performed to study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long and short axis of the nanorod respectively), similar to the plasmons observed experimentally for larger nanoparticles. These plasmon modes result from a constructive addition of the dipole moments of nearly degenerate single-particle excitations. The number of single-particle transitions involved increases with increasing system size, due to the growing density of states available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode. The high-energy, high-intensity beta-peak of acenes also results from a constructive addition of single-particle transitions and I show that it can be assigned to a plasmon. I also show that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple configuration interaction (CI) interpretation. The evolution between molecular absorption spectrum and plasmon is also investigated by computing the density of states of spherical thiolate-protected gold clusters using a charge-perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives good qualitative agreement with DFT calculations at a fraction of the cost. The progressive increase of the density of states with particle size observed is in accordance with the appearance of a plasmon peak. The optical properties of nanoparticles can be tuned by varying their composition. Therefore, the optical behavior of the bimetallic Au[subscript](25-n)Ag[subscript]n(SH)[subscript]18[superscript]- cluster for different values of n using TDDFT is analyzed. A large blue shift of the HOMO-LUMO absorption peak is observed with increasing silver content, in accordance with experimental results.
Myers, Kirby. "Experiments on the Thermal, Electrical, and Plasmonic Properties of Nanostructured Materials." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83822.
Повний текст джерелаPh. D.
Khosravi, Khorashad Larousse. "Theoretical and Computational Study of Optical Properties of Complex Plasmonic Structures." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou150834414639462.
Повний текст джерелаMoeferdt, Matthias. "Nonlocal and Nonlinear Properties of Plasmonic Nanostructures Within the Hydrodynamic Drude Model." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18129.
Повний текст джерелаThis thesis deals with the nonlocal and nonlinear properties of plasmonic nanoparticles, as described by the hydrodynamic model. The hydrodynamic material model represents an extension of the Drude model that contains corrections to the descriptions of the electron plasma. After a thorough derivation of the material model, analytical discussions of nonlocality are presented for the example of a single cylinder. The frequency shifts in the scattering and absorption spectra are quantified and treated asymptotically. Furthermore, by applying a conformal map, the problem of a cylindrical dimer is solved in the electrostatic limit and the modes of the structure are determined. These investigations lay the foundations for numerical investigations which are performed employing the discontinuous Galerkin time domain method. The analytical knowledge of the modes, in conjunction with group theoretical considerations and numerical analysis, enables the formulation of rigorous selection rules for the excitation of modes by linear and nonlinear processes. In further numerical studies, the influence of nonlocality on the field enhancement in dimer structures and double-resonant behavior (a resonance is found at the frequency of the incoming light and at the second harmonic) are investigated.
Patoka, Piotr [Verfasser]. "Tunable plasmonic properties of nanostructures fabricated by shadow nanosphere lithography / Piotr Patoka." Berlin : Freie Universität Berlin, 2011. http://d-nb.info/102549024X/34.
Повний текст джерелаNear, Rachel Deanne. "Theoretical and experimental investigation of the plasmonic properties of noble metal nanoparticles." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52181.
Повний текст джерелаKravets, Vira V. "Optical Properties of Plasmonic Nanostructures for Bio-Imaging and Bio-Sensing Applications." Thesis, University of Colorado at Colorado Springs, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10282081.
Повний текст джерелаKravets, Vira V. (Ph.D., Physics) Optical properties of plasmonic nanostructures for bio-imaging and bio-sensing applications Dissertation directed by Associate Professor Anatoliy Pinchuk. ABSTRACT This dissertation explores the physics of free electron excitations in gold nanoparticle chains, silver nanoparticle colloids, and thin gold films. Electron excitations in nanostructures (surface plasmons, SP) are responsible for unique optical properties, which are applied in bio-sensing and bio-imaging applications. For gold nanoparticle chains, the effect of SP on resonance light absorption was studied experimentally and theoretically. Mainly, how the spectral position of the absorption peak depends on inter-particle distances. This dependence is used in ?molecular rulers?, providing spatial resolution below the Rayleigh limit. The underlying theory is based on particle interaction via scattered dipole fields. Often in literature only the near-field component of the scattered field is considered. Here, I show that middle and far fields should not be neglected for calculation of extinction by particle chains. In silver nanoparticles, SP excitations produce two independent effects: (a) the intrinsic fluorescence of the particles, and (b) the enhancement of a molecule?s fluorescence by a particle?s surface. The mechanism of (a) is deduced by studying how fluorescence depends on particle size. For (b), I show that fluorescence of a dye molecule on the surface of a nanoparticle is enhanced, when compared to that of the free-standing dye. I demonstrate that the dye?s fluorescent quantum yield is dependent on the particle?s size, making labeled silver nanoparticles attractive candidates as bio-imaging agents. Labeled nanoparticles are applied to cell imaging, and their bio-compatibility with two cell lines is evaluated here. Finally, in gold films under attenuated total internal reflection (ATR) conditions, the SP create a propagating wave (SP-polariton, SPP) when coupled with the incident light. Because of the sensitivity of SPPs to the medium adjacent to the gold film surface, they are widely applied in bio-sensing applications. A toolbox for the description of sputter-deposited gold films is presented here: it employs three experimental techniques (ATR, transmittance and atomic force microscopy) in combination with the effective medium theory for double-layered film model. Our findings have allowed for the avoidance of superficial fitting parameters in our model.
Rose, Aaron Harold. "Emergent Properties of Plasmonic Systems in the Weak to Strong Coupling Regimes:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108654.
Повний текст джерелаIn this dissertation I present studies of plasmonic interactions in different coupling regimes, from zero to strong coupling and approaching ultrastrong coupling. Different physics are manifest in each regime, with different possible applications. The first project uses finite element electromagnetic simulations to model plasmonic waveguides that couple near field light into the far-field for sub-diffraction limited microscopy. Wavelength/32 resolution is shown by minimizing coupling between adjacent waveguiding nanowires, with minimal attenuation over a few microns. The next two projects, by contrast, seek to maximize coupling between plasmons and excitons into the strong coupling regime where the optoelectronic properties are modified and quantum coherent phenomena may be observed. Strong exciton–plasmon coupling in MoS2 is shown experimentally at room temperature and found to be a general phenomenon in other semiconducting transition metal dichalcogenides using transfer matrix modeling. A semiclassical oscillator model is fit to the experimental data to discover coherent hybridization between the ground and first excited states of MoS2. Enhanced coupling is found at the third excitonic transition, approaching the ultrastrong coupling regime where exotic properties are predicted to emerge, such as ground state virtual photons. Our strong coupling studies motivate further studies of the TMDCs as a platform for coherent quantum physics with possible applications in quantum computing and cryptography
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Hajimammadov, R. (Rashad). "Plasmonic, electrical and catalytic properties of one-dimensional copper nanowires:effect of native oxides." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526218878.
Повний текст джерелаTiivistelmä Jatkuva elektronisten laitteiden ja anturien pienentäminen on hyvin linjassa teknologian kehittymisen kanssa. Pyrkimys monitoimisiin ja tehokkaisiin materiaaleihin on muuttanut tavanomaisten materiaalien käsitystä. Viimeisimmät edistysaskeleet materiaalisynteesissä ovat johtaneet edullisen kuparin uudelleenlöytämiseen sen yksi- ja kaksidimensionaalisissa muodoissa ennustaen metallille uusia sovellutuksia alueilla, joissa sitä ei ole aiemmin hyödynnetty. Tässä väitöstyössä on tutkittu hydrotermisesti syntetisoitujen yksiulotteisten kuparinanojohtimien kemiallisia, sähköisiä, katalyyttisiä ja plasmonisia ominaisuuksia sekä näiden pieneen kokoon ja muotoon perustuvia etuoja ohutkalvo- ja bulkkikupariin verrattuna. Kuparinanojohtimia ja niiden luonnollisia oksideja karakterisoitiin useilla analyysitekniikoilla kuten röntgenelektroni- ja Auger-eletronispektroskopialla, Raman-spektroskopialla, röntgendiffraktiolla sekä pyyhkäisykärki- ja elektronimikroskopialla selvittäen hapettumismekanismeja ja oksidien soveltuvuutta eri käyttötarkoituksiin. Muutaman atomikerroksen paksuinen kupari(I)oksidikerros havaittiin muodostuvan välittömästi, luultavasti jo materiaalisynteesin aikana nanojohtimien pinnalle. Nanojohtimien altistuessa ympäröivälle ilmalle oksidikerros kehittyi hitaasti johtaen kupari(II)oksidin muodostumiseen. Pintaoksidien johdosta yksittäiset nanojohtimet ja niistä yhteenkasautuneet verkostot käyttäytyvät puolijohdemaisesti mikä monimutkaistaa näiden materiaalien käyttöä sellaisenaan elektroniikan johtimissa. Luonnollisista oksideista huolimatta kuparinanojohtimet ovat lupaavia monissa muissa sovelluksissa, kuten tässä työssä tutkituissa plasmonisessa ja heterogeenisessä katalyysissä. Väitöstyössä osoitetaan, että nanojohtimen pintaplasmonisia absorptio-ominaisuuksia voidaan hyödyntää pintaan absorboituneiden molekyylien kemiallisessa havainnoinnissa (mallinnettu yhdiste rodamiini 6G) vahvistamalla Raman–spektriä käyttämättä lainkaan litografiapohjaista anturisapluunaa. Myöskin vesien fenolikontaminaatio voidaan tehokkaasti muuntaa myrkyttömiksi polyfenoleiksi ja hiiidioksidiksi hyödyntämällä nanojohtimien pinnalla olevia oksideja tehokkaana katalyyttinä (jopa parempi kuin kaupallisten kupariin pohjautuvat katalyytit). Tässä väitöstyössä julkaistut tulokset edistävät kuparinanojohtimien sekä muiden pienikokoisten ja nopeasti hapettuvien kuparinanorakenteiden kemiallisen ja fyysisen käytöksen ymmärtämistä. Tieteellisten kehitysaskeleiden lisäksi tämä väitöstyö voi myös toimia lähteenä pienirakenteisten yleisten metallien sovelluksille
Jeannin, Mathieu Emmanuel. "Control of the emission properties of semiconducting nanowire quantum dots using plasmonic nanoantennas." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY053/document.
Повний текст джерелаIn this work, we study the coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots (NWQDs). This coupling requires spectral, spatial and polarisation matching of the antenna mode and of the NWQD emission. Hence, a full characterisation of both the antenna system and the NWQDs has to be performed to determine a relevant coupling geometry.Using cathodoluminescence (CL) we investigate the relation between the CL signal of circular patch plasmonic antennas and the electromagnetic local density of states (LDOS). The successive resonances supported by these antennas are complex superimpositions of Bessel modes of different radial and azimuthal order. Applying an analytical LDOS model, we show that we can fabricate and characterise antennas down to single mode resonances. However, the antennas CL spectrum goes beyond the radiative part of the LDOS. By changing the spacing layer thickness and the antennas materials, we propose an explanation for the origin of the additional CL signal we observe that is not related to the radiative LDOS of the patch antennas. We also demonstrate the fabrication of Al patch antennas working in the blue spectral range and apply our method to other geometries.We perform optical characterisation of different quantum dots (QDs) embedded inside semiconducting nanowires (NWs) made of II-VI materials. We use microphotoluminescence (µPL) to study the emission of single NWQDs. Time-resolved measurements and Fourier imaging allows us to extract their exciton lifetime and radiation patterns. The variability in the emission properties of the NWQDs due to inhomogeneity in the growth process are evidenced by studying a statistical set of nanowires. A complete model based on polarisation-resolved Fourier imaging and magneto-optical spectroscopy is detailed, allowing to fully determine the QD electronic and optical properties for an individual system.Finally, we develop a cathodoluminescence-based two-step electron-beam lithography technique to deterministically fabricate plasmonic antennas coupled to NWQDs, enhancing their µPL properties. The coupling results in an enhanced absorption of the pump laser inside the NW and in an increase of the radiative rate of the QD, leading to up to a two-fold intensity enhancement factor for the coupled system
Funes-Hernando, Daniel. "Advanced gold-based nanowires : from hybrid structures to original plasmonic and optical properties." Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4076/document.
Повний текст джерелаPlasmonics is an important research topic for nanophotonics based on surface plasmon polaritons (SPP) and localized surface plasmons (LSP). 1D-like metallic and hybrid nanostructures opens the way to exploit altogether the propagative nature of SPP in a guided way, and the strong field enhancement of LSPR. During my thesis work, I designed functional gold-based nanowires with controlled morphological and compositional characteristics for exploring and exploiting their plasmonic properties. A main achievement reports on the plasmon-mediated remote Raman sensing promoted by coaxial nanowires. Remote Raman spectroscopy is based on the separation by many micrometres of the excitation laser spot on one tip of the nanowire, and the Raman detection at the other tip. The very weak efficiency of Raman emission makes it challenging. Coaxial nanowires consisting of a gold core to propagate SPP and a Raman-emitting shell of poly(3,4-ethylene-dioxythiophene) were synthesized for the proof-of-concept. This study also permits to evidence a strong preferential orientation of the polymer chains due to the ultra-confined synthesis. In another study, the enhancement of both the SPP excitation and the light emission efficiency has been realized by transforming the gold nanowire tips with optimized laser treatments. It results in dog bones like nanowires, which improve the coupling with the excitation light for a suitable polarization and increase the scattered light at the opposite tip. These studies constitute alternative approaches for the remote detection of photo-degradable species and for exploring 1D nanosources and nanoantennae for integrated photonic and plasmonic systems
Dienerowitz, Maria. "Plasmonic effects upon optical trapping of metal nanoparticles." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1634.
Повний текст джерелаWalter, Felicitas [Verfasser]. "Optical properties and encoding of information of nonlinear and active plasmonic metasurfaces / Felicitas Walter." Paderborn : Universitätsbibliothek, 2018. http://d-nb.info/1171897685/34.
Повний текст джерелаMOHAMMED, AHMED ALSADIG AHMED. "Harnessing the plasmonic properties of gold nanoparticles: functionalization strategies coupled with novel spectroscopic tools." Doctoral thesis, Università degli Studi di Trieste, 2022. http://hdl.handle.net/11368/3030486.
Повний текст джерелаwide range of sensors and electronic devices. The relevance of molecular recognition and the binding of biological and chemical entities to diagnostics, biosensors, and drug delivery has attracted significant research interest. By addressing material functionalization design and advanced characterization methods, this doctoral work aims to highlight efforts to exploit the surface modification strategies to enhance the responsiveness of nanoparticle substrates for improved detection of health-relevant biomolecules. The self-assembly of small ligands, such as alkanethiols and oligonucleotides on the surface of AuNPs provided a possible starting route for the preparation of bio-nanomaterials with precise physicochemical properties. The versatile AuNPs were optimized and thoroughly characterized by employing electron microscopy techniques such as transmission electron microscope (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM), spectroscopic techniques, including ultraviolet/visible (UV/Vis), dynamic light scattering (DLS), and thermal lens spectrometry (TLS), and biochemical assays (gel electrophoresis, Dot plot, Western plot, and the Enzyme Linked Immunosorbent Assay (ELISA)). Subsequently, the molecular recognition capabilities of functionalized AuNPs were investigated using multiple techniques, including novel detection routes such as the electrophoresis approach coupled with online TLS. This work establishes a versatile platform for AuNP engineering with controlled size and surface functionality. The strategies presented in this thesis aim to improve medical diagnostics to make them affordable for point-of-care scenarios to enhance the quality of human health.
Baral, Susil. "Fundamental Studies of Photothermal Properties of a Nanosystem and the Surrounding Medium Using Er3+ Photoluminescence Nanothermometry." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1493301965290212.
Повний текст джерелаAmooali, Khosroabadi Akram. "Optical and Electrical Properties of Composite Nanostructured Materials." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333480.
Повний текст джерелаTanyeli, Irem. "Effect Of Substrate Type On Structural And Optical Properties Of Metal Nanoparticles For Plasmonic Applications." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613563/index.pdf.
Повний текст джерелаAlber, Ina [Verfasser], and Reinhard [Akademischer Betreuer] Neumann. "Synthesis and Plasmonic Properties of Metallic Nanowires and Nanowire Dimers / Ina Alber ; Betreuer: Reinhard Neumann." Heidelberg : Universitätsbibliothek Heidelberg, 2012. http://d-nb.info/1177039982/34.
Повний текст джерелаBordley, Justin Andrew. "Cubic architectures on the nanoscale: The plasmonic properties of silver or gold dimers and the catalytic properties of platinum-silver alloys." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55025.
Повний текст джерелаBabocký, Jiří. "Optické vlastnosti asymetrických plasmonických struktur." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231373.
Повний текст джерелаLiyanage, Dilhara. "Efficient Integration of Plasmonic and Excitonic Properties of Metal and Semiconductor Nanostructures via Sol-Gel Assembly." VCU Scholars Compass, 2017. http://scholarscompass.vcu.edu/etd/4768.
Повний текст джерелаSelvanathan, Pramila. "Photochromic switches for luminescence, plasmonic resonance, single molecule magnetic properties, and molecular wires for nano junctions." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S145.
Повний текст джерелаThis work is devoted to the synthesis and characterization of novel molecular switches and wires incorporating photochromic unit and ruthenium organometallic moieties. The first part deals with lanthanide Yb complex combined with photochromic unit and ruthenium acetylide moieties in order to modulate the luminescence with the help of redox and light stimuli. In the second part explained the combination of photochromic DTE units with ruthenium acetylide moieties to attach on the surface of metal nanoparticles in order to tune their plasmonic resonance through the surface environment modification by using light and redox stimuli. The third part describes the preparation of lanthanide complexes combined with a spiropyran photochromic unit in order to switch the SMM properties of the complexes via photoisomerization of the spiropyran unit. In the last part, we report the synthesis of Oligo(phenylene ethylene) molecular wires with different central cores in order to obtain various wire with different HOMO-LUMO energy levels to check the effect of pinning
De, Silva Vashista C. "Core-Shell Based Metamaterials: Fabrication Protocol and Optical Properties." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062904/.
Повний текст джерелаStockhausen, Verena. "Modulation of material properties using Nanoelectrochemistry : from active plasmonic devices and photovoltaic systems to ultrathin electroactive layers." Paris 7, 2011. http://www.theses.fr/2011PA077071.
Повний текст джерелаOver the last twenty years, a continuous increase in plastic electronics has lead to a revolution in lifestyle. In the first chapter, we will discuss hybrid conducting polymer/plasmonic nanoparticle Systems and demonstrate that optical answers of plasmonic structures can not only be reversibly switched according to conducting polymer electronic state. Furthermore, the polymer type induces distinct optical answers, offering tremendous possibilities for further tailoring of optical properties. The second chapter is dedicated to ultrathin electroactive film generation from diazonium salt electroreduction. The first part presents successful diazonium salt derived film deposition without core benzene unit. The second part is devoted to the influence of the thiophene derivative, attached to the core benzene, on diazonium salt generation and electronic properties of gratted films. The third chapter demonstrates that a bottom-up approach can be used to further elongate oligomer chains by overgrafting monomeric compounds. By that, film properties are modified according to the monomer used, enlarging possibilities of distinct electroactive thin film design. In the fourth chapter, we investigate dye sensitized solar cells (DSSC) or Grätzel type cells with regard to the establishment of low cost plasmonic DSSC. By that, we hope to increase efficiencies of the basic System. In a first time, cell setup will be optimized to allow comparison with literature and then, the redox mediator will be replaced in order to optimize the System for subsequent gold incorporation. Finally, several strategies for gold deposition and first tests in cell setup will be demonstrated
Wickremasinghe, Niranjala D. "Optical Properties of Organic Films, Multilayers and Plasmonic Metal-organic Waveguides Fabricated by Organic Molecular Beam Deposition." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439307144.
Повний текст джерелаWang, Wei. "Plasmonic properties of subwavelength structures and plasmonic optical devices." Thesis, 2009. http://hdl.handle.net/2152/ETD-UT-2009-08-303.
Повний текст джерелаtext
"Plasmonic properties of metallic nanostructures." Thesis, 2010. http://hdl.handle.net/1911/62086.
Повний текст джерелаKatyal, Jyoti. "Plasmonic properties of aluminiam nanostructures." Thesis, 2014. http://localhost:8080/iit/handle/2074/6578.
Повний текст джерела