Статті в журналах з теми "Plant mating systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Plant mating systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Plant mating systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Eckert, Christopher G., Susan Kalisz, Monica A. Geber, Risa Sargent, Elizabeth Elle, Pierre-Olivier Cheptou, Carol Goodwillie, et al. "Plant mating systems in a changing world." Trends in Ecology & Evolution 25, no. 1 (January 2010): 35–43. http://dx.doi.org/10.1016/j.tree.2009.06.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Norderhaug, A. "Mating systems of three meadow plant species." Nordic Journal of Botany 15, no. 3 (July 1995): 243–50. http://dx.doi.org/10.1111/j.1756-1051.1995.tb00149.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Holsinger, Kent E. "Mass-Action Models of Plant Mating Systems: The Evolutionary Stability of Mixed Mating Systems." American Naturalist 138, no. 3 (September 1991): 606–22. http://dx.doi.org/10.1086/285237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tomaszewski, Caitlin E., Mason W. Kulbaba, and Lawrence D. Harder. "Mating consequences of contrasting hermaphroditic plant sexual systems." Evolution 72, no. 10 (August 23, 2018): 2114–28. http://dx.doi.org/10.1111/evo.13572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carr, David E., and Micky D. Eubanks. "Interactions Between Insect Herbivores and Plant Mating Systems." Annual Review of Entomology 59, no. 1 (January 7, 2014): 185–203. http://dx.doi.org/10.1146/annurev-ento-011613-162049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Petersen, Ronald H., and Andrew S. Methven. "Mating systems in the Xerulaceae: Xerula." Canadian Journal of Botany 72, no. 8 (August 1, 1994): 1151–63. http://dx.doi.org/10.1139/b94-141.

Повний текст джерела
Анотація:
Mating systems in Xerula australis, Xerula furfuracea, Xerula incognita (sp.nov.), Xerula megalospora, Xerula rugosoceps, and the Xerula radicata complex are described, with notes on culture morphology and biogeographic distribution. All taxa tested were bifactorial (i.e., tetrapolar) and genetically isolated from one another. Multiple collections of X. furfuracea and X. megalospora were found to interbreed in vitro. Two collections of putative European X. radicata were found to be haploid, monokaryotic, nonmeiotic basidiomes genetically isolated from each other and from all other tested taxa, including X. radicata. Neohaploidization experiments with Xerula rufobrunnescens failed. A discussion comparing mating systems in Xerula to those in other genera of the Xerulaceae is included. Key words: mating systems, interbreeding, biological species, intersterility groups, biogeography, Xerula, basidiomycetes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coates, David J., Jane F. Sampson, and Colin J. Yates. "Plant mating systems and assessing population persistence in fragmented landscapes." Australian Journal of Botany 55, no. 3 (2007): 239. http://dx.doi.org/10.1071/bt06142.

Повний текст джерела
Анотація:
Population size and habitat disturbance are key factors likely to shape the mating system of populations in disturbed and fragmented landscapes. They would be expected to influence the availability and behaviour of the pollinator, the ability to find mates in self-incompatible species, inbreeding in self-compatible species and the size of the pollen pool. These in turn might be expected to influence key variables critical for population persistence such as seed production, seed germination and seedling fitness. Here we investigate mating-system variation in six rare species, i.e. Banksia cuneata, B. oligantha, Lambertia orbifolia (Proteaceae), Verticordia fimbrilepis subsp. fimbrilepis, Eucalyptus rameliana (Myrtaceae), Acacia sciophanes (Mimosaceae), and two common species, i.e. Calothamnus quadrifidus (Myrtaceae) and Acacia anfractuosa. All seven species are animal-pollinated relatively long-lived woody shrubs with mixed-mating systems. Population variation in mating-system parameters was investigated in relation to population size and habitat disturbance. We show that although the mating system will vary depending on pollination biology and life-history, as populations get smaller and habitat disturbance increases there is a trend towards increased inbreeding, smaller effective sizes of paternal pollen pools and greater variation in outcrossing among plants. From the species investigated in this study we have found that changes in the mating system can be useful indicators of population processes and can give valuable insight into the development of conservation strategies for the persistence of plant species following anthropogenic disturbance and landscape fragmentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vanbergen, Adam J., Ben A. Woodcock, Alan Gray, Fiona Grant, Annika Telford, Phil Lambdon, Dan S. Chapman, Richard F. Pywell, Matt S. Heard, and Stephen Cavers. "Grazing alters insect visitation networks and plant mating systems." Functional Ecology 28, no. 1 (December 6, 2013): 178–89. http://dx.doi.org/10.1111/1365-2435.12191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stout, Jane C. "Anthropogenic impacts on pollination networks and plant mating systems." Functional Ecology 28, no. 1 (January 23, 2014): 1–2. http://dx.doi.org/10.1111/1365-2435.12220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pannell, John R., and Marie Voillemot. "Plant Mating Systems: Female Sterility in the Driver’s Seat." Current Biology 25, no. 12 (June 2015): R511—R514. http://dx.doi.org/10.1016/j.cub.2015.04.044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Karron, Jeffrey D., Christopher T. Ivey, Randall J. Mitchell, Michael R. Whitehead, Rod Peakall, and Andrea L. Case. "New perspectives on the evolution of plant mating systems." Annals of Botany 109, no. 3 (December 30, 2011): 493–503. http://dx.doi.org/10.1093/aob/mcr319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Porcher, Emmanuelle, and Russell Lande. "Reproductive compensation in the evolution of plant mating systems." New Phytologist 166, no. 2 (February 23, 2005): 673–84. http://dx.doi.org/10.1111/j.1469-8137.2005.01363.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Holsinger, Kent E. "Inbreeding depression and the evolution of plant mating systems." Trends in Ecology & Evolution 6, no. 10 (October 1991): 307–8. http://dx.doi.org/10.1016/0169-5347(91)90033-t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Benoit, Amanda D., and Susan Kalisz. "Predator Effects on Plant-Pollinator Interactions, Plant Reproduction, Mating Systems, and Evolution." Annual Review of Ecology, Evolution, and Systematics 51, no. 1 (November 2, 2020): 319–40. http://dx.doi.org/10.1146/annurev-ecolsys-012120-094926.

Повний текст джерела
Анотація:
Plants are the foundation of the food web and therefore interact directly and indirectly with myriad organisms at higher trophic levels. They directly provide nourishment to mutualistic and antagonistic primary consumers (e.g., pollinators and herbivores), which in turn are consumed by predators. These interactions produce cascading indirect effects on plants (either trait-mediated or density-mediated). We review how predators affect plant-pollinator interactions and thus how predators indirectly affect plant reproduction, fitness, mating systems, and trait evolution. Predators can influence pollinator abundance and foraging behavior. In many cases, predators cause pollinators to visit plants less frequently and for shorter durations. This decline in visitation can lead to pollen limitation and decreased seed set. However, alternative outcomes can result due to differences in predator, pollinator, and plant functional traits as well as due to altered interaction networks with plant enemies. Furthermore, predators may indirectly affect the evolution of plant traits and mating systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Petersen, Ronald H., and Karen W. Hughes. "Mating systems inOmphalotus (Paxillaceae, Agaricales)." Plant Systematics and Evolution 211, no. 3-4 (1998): 217–29. http://dx.doi.org/10.1007/bf00985360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Vogler, Donna W., and Susan Kalisz. "SEX AMONG THE FLOWERS: THE DISTRIBUTION OF PLANT MATING SYSTEMS." Evolution 55, no. 1 (2001): 202. http://dx.doi.org/10.1554/0014-3820(2001)055[0202:satftd]2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Vogler, Donna W., and Susan Kalisz. "SEX AMONG THE FLOWERS: THE DISTRIBUTION OF PLANT MATING SYSTEMS." Evolution 55, no. 1 (January 2001): 202–4. http://dx.doi.org/10.1111/j.0014-3820.2001.tb01285.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Campbell, Stuart A., Rayko Halitschke, Jennifer S. Thaler, and André Kessler. "Plant mating systems affect adaptive plasticity in response to herbivory." Plant Journal 78, no. 3 (April 24, 2014): 481–90. http://dx.doi.org/10.1111/tpj.12492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Clark, Jim, O'Neil Ray Collins, and Hsi-Chang Tang. "Didymium iridis Mating Systems: Partial Compatibility between Mating Series." Mycologia 83, no. 2 (March 1991): 210. http://dx.doi.org/10.2307/3759936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Clark, Jim, O'Neil Ray Collins, and Hsi-Chang Tang. "Didymium Iridis Mating Systems: Partial Compatibility Between Mating Series." Mycologia 83, no. 2 (March 1991): 210–13. http://dx.doi.org/10.1080/00275514.1991.12025997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Petersen, Ronald H. "Contributions of mating studies to mushroom systematics." Canadian Journal of Botany 73, S1 (December 31, 1995): 831–42. http://dx.doi.org/10.1139/b95-329.

Повний текст джерела
Анотація:
Three general topics are included. First, a summary of knowledge of mating systems in several genera is furnished, with discussion concerning individual species. Second, the consequence of mating studies in expansion or contraction of numbers of accepted names is discussed. Inherent in this topic is the species concept to be used by the systematis. Third, guidelines for establishment of standard batteries of tester strains are outlined, using Pleurotus as an example. Key words: mating systems, Agaricales, Pleurotus, systematics.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Johnson, J. E., and R. H. Petersen. "Mating Systems in Xeromphalina Species." Mycologia 89, no. 3 (May 1997): 393. http://dx.doi.org/10.2307/3761033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Johnson, J. E., and R. H. Petersen. "Mating systems in Xeromphalina species." Mycologia 89, no. 3 (May 1997): 393–99. http://dx.doi.org/10.1080/00275514.1997.12026798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Eakin-Busher, E. L., P. G. Ladd, J. B. Fontaine, and R. J. Standish. "Mating strategies dictate the importance of insect visits to native plants in urban fragments." Australian Journal of Botany 68, no. 1 (2020): 26. http://dx.doi.org/10.1071/bt19122.

Повний текст джерела
Анотація:
Plant species conservation relies on their reproductive success and likelihood of population persistence. Knowledge of plant mating systems, particularly the relationship between plants and their pollinators, is fundamental to inform conservation efforts. This knowledge could be critical for prioritising efforts in human-dominated fragmented landscapes such as the world’s biodiversity hotspots, where reproductive success can be compromised due to habitat loss, limited access to pollinators or other factors. Yet, fundamental data on plant mating systems are lacking for many Australian plants. Here we determined the mating systems of native plant species growing in native woodland fragments within Perth’s urban landscape in south-western Australia. We manipulated insect access to flowers and pollen transfer on five locally common native species, then observed floral visitors and examined reproductive success. Hemiandra pungens and Patersonia occidentalis had mixed mating systems with some ability to self-pollinate, whereas Dianella revoluta and Jacksonia sericea were reliant on insects for outcross pollination. The fruits and seeds produced by Tricoryne elatior were too low to draw conclusions about its mating system. The introduced honey bee (Apis mellifera) was the sole visitor to the mixed mating species, whereas native bees visited D. revoluta and J. sericea (one bee species each). Overall, our data suggest that D. revoluta and J. sericea are more vulnerable to fragmentation than H. pungens and P. occidentalis. Although insects contributed significantly to the reproductive output of the two former plant species, our observations suggested low frequency and richness of insect visitors to these urban fragments. More research is required to determine the generality of our findings. A comparative study in larger native woodland fragments would help estimate the effect of fragmentation on insect pollinators and consequences for the insect-reliant plant species.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Richardson, Matthew B. G., David J. Ayre, and Robert J. Whelan. "Pollinator behaviour, mate choice and the realised mating systems of Grevillea mucronulata and Grevillea sphacelata." Australian Journal of Botany 48, no. 3 (2000): 357. http://dx.doi.org/10.1071/bt98078.

Повний текст джерела
Анотація:
Successful long-term conservation and management of populations of plants requires successful management of the suite of factors that determine their ‘realised’ mating systems. Within the genus Grevillea, mating systems are potentially complex. They may vary among species and among populations within a species, reflecting variation in pollinator behaviour and diversity (‘potential’ mating systems) and in breeding system (the ‘preferred’ mating system). We used a combination of pollinator observations, pollination experiments and electrophoretic analysis of seed from open pollinations, to examine variation in potential and preferred mating systems in two populations of each of two ‘spider-flowered’ Grevillea species: G. mucronulata (visited by honeyeaters and honeybees, although only birds effected pollen removal and transfer) and G. sphacelata (visited only by honeybees, which made frequent contact with pollen and stigmas). Almost all observed bird and insect foraging bouts on either species involved movements among inflorescences within plants or among inflorescences on closely neighbouring plants. On the basis of these data, the mating system was predicted to involve a high level of selfing or inbreeding. However, the pollination experiment revealed that both species were highly self-incompatible and showed a clear preference for outcross pollen in mate-choice experiments. For both species, fruit set through autogamy was lower than 0.7% and fruit set from self-pollinations was always significantly lower than for outcross pollinations (0–11% cf. 25–33% for G. mucronulata and 0% cf. 4.2–8.8% for G. sphacelata). Allozyme studies revealed that genotypes in open-pollinated seeds on 20 G. mucronulata and 20 G. sphacelata plants were surprisingly uniform, best explained by outcrossed matings between close neighbours. We found little between-population variation in any aspect of the mating system for either species. These studies reveal that the preferred mating system of the plant and the pattern of pollinator behaviour interact to determine the mating system in a population, emphasising the need for a multifaceted investigation of mating systems, especially in predicting the fates of populations that have pollination systems altered by disturbance, small size, isolation and introduced species such as the honeybee.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Leonard, J. L. "Sexual selection: lessons from hermaphrodite mating systems." Integrative and Comparative Biology 46, no. 4 (May 5, 2006): 349–67. http://dx.doi.org/10.1093/icb/icj041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kariyat, Rupesh R., Jordan P. Sinclair, and Edward M. Golenberg. "Following Darwin's trail: Interactions affecting the evolution of plant mating systems." American Journal of Botany 100, no. 6 (June 2013): 999–1001. http://dx.doi.org/10.3732/ajb.1300157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ritland, K. "A Series of FORTRAN Computer Programs for Estimating Plant Mating Systems." Journal of Heredity 81, no. 3 (May 1990): 236–37. http://dx.doi.org/10.1093/oxfordjournals.jhered.a110982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Campbell, Diane R., and Nickolas M. Waser. "The Evolution of Plant Mating Systems: Multilocus Simulations of Pollen Dispersal." American Naturalist 129, no. 4 (April 1987): 593–609. http://dx.doi.org/10.1086/284660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Schemske, Douglas W., and Russell Lande. "On the Evolution of Plant Mating Systems: A Reply to Waller." American Naturalist 130, no. 5 (November 1987): 804–6. http://dx.doi.org/10.1086/284747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kelly, John K. "Family level inbreeding depression and the evolution of plant mating systems." New Phytologist 165, no. 1 (August 31, 2004): 55–62. http://dx.doi.org/10.1111/j.1469-8137.2004.01184.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chiou, Wen-Liang, Donald R. Farrar, and Tom A. Ranker. "The Mating Systems of Some Epiphytic Polypodiaceae." American Fern Journal 92, no. 2 (2002): 65. http://dx.doi.org/10.1640/0002-8444(2002)092[0065:tmsose]2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Goldingay, Ross L., and Susan M. Carthew. "Breeding and Mating Systems of Australian Proteaceae." Australian Journal of Botany 46, no. 4 (1998): 421. http://dx.doi.org/10.1071/bt97037.

Повний текст джерела
Анотація:
There has been a significant increase in the number of studies investigating plant breeding and mating systems over the past 10 years. The family Proteaceae, in particular, has dominated such research conducted in Australia. Thus it is now timely to present a critical review of the breeding and mating systems of the Australian Proteaceae. It is hoped that this will stimulate further research. The review covers key events between pollen deposition on stigmas through to fruit set. The genus Banksia, although not the most diverse of the family, has received a disproportionate amount of attention. It has featured in nine published studies of self-compatibility compared to 13 studies spanning the other 45 genera and has featured in eight genetic studies of the mating system compared to just two on other genera. Few studies have assessed the timing of stigma receptivity despite the intriguing situation in most Proteaceae of auto-deposition of self-pollen on or near stigmas at anthesis. Studies suggest that stigmas are not receptive until 0.5–4 days after anthesis. Banksia species appear to show low levels of self-compatibility although one subspecies shows high levels of selfing and evidence of selective fruit development. Self-compatibility may be more common in other genera, although a dearth of studies precludes generalisation. Assessment of mating systems indicates almost complete outcrossing for most species, lending support to the idea of selective fruit development. It is clear that many further studies of all topics are required but particularly across a wide range of genera because many have not been studied at all.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Evans, Alexandra, and Hans Jacquemyn. "Impact of mating system on range size and niche breadth in Epipactis (Orchidaceae)." Annals of Botany 126, no. 7 (July 29, 2020): 1203–14. http://dx.doi.org/10.1093/aob/mcaa142.

Повний текст джерела
Анотація:
Abstract Background and Aims The geographical distribution of plant species is linked fundamentally not only to environmental variables, but also to key traits that affect the dispersal, establishment and evolutionary potential of a species. One of the key plant traits that can be expected to affect standing genetic variation, speed of adaptation and the capacity to colonize and establish in new habitats, and therefore niche breadth and range size, is the plant mating system. However, the precise role of the mating system in shaping range size and niche breadth of plant species remains unclear, and different studies have provided contrasting results. In this study, we tested the hypothesis that range size and niche breadth differed with mating system in the orchid genus Epipactis. Methods We modelled the ecological niches of 14 Epipactis species in Europe using occurrence records and environmental satellite data in Maxent. Niche breadth and niche overlap in both geographic and environmental space were calculated from the resulting habitat suitability maps using ENMTools, and geographic range was estimated using α-hull range definition. Habitat suitability, environmental variable contributions and niche metrics were compared among species with different mating systems. Key Results We did not detect significant differences in niche breadth, occurrence probability or geographical range between autogamous and allogamous Epipactis species, although autogamous species demonstrated notably low variation in niche parameters. We also found no significant differences in niche overlap between species with the same mating system or different mating systems. For all Epipactis species, occurrence was strongly associated with land cover, particularly broad-leafed and coniferous forests, and with limestone bedrock. Conclusions These results suggest that the mating system does not necessarily contribute to niche breadth and differentiation, and that other factors (e.g. mycorrhizal specificity) may be more important drivers of range size and niche breadth in Epipactis and orchids in general.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Berbel-Filho, Waldir M., Andrey Tatarenkov, George Pacheco, Helder M. V. Espírito-Santo, Mateus G. Lira, Carlos Garcia de Leaniz, John C. Avise, Sergio M. Q. Lima, Carlos M. Rodríguez-López, and Sofia Consuegra. "Against the Odds: Hybrid Zones between Mangrove Killifish Species with Different Mating Systems." Genes 12, no. 10 (September 24, 2021): 1486. http://dx.doi.org/10.3390/genes12101486.

Повний текст джерела
Анотація:
Different mating systems are expected to affect the extent and direction of hybridization. Due to the different levels of sexual conflict, the weak inbreeder/strong outbreeder (WISO) hypothesis predicts that gametes from self-incompatible (SI) species should outcompete gametes from self-compatible (SC) ones. However, other factors such as timing of selfing and unilateral incompatibilities may also play a role on the direction of hybridization. In addition, differential mating opportunities provided by different mating systems are also expected to affect the direction of introgression in hybrid zones involving outcrossers and selfers. Here, we explored these hypotheses with a unique case of recent hybridization between two mangrove killifish species with different mating systems, Kryptolebias ocellatus (obligately outcrossing) and K. hermaphroditus (predominantly self-fertilizing) in two hybrid zones in southeast Brazil. Hybridization rates were relatively high (~20%), representing the first example of natural hybridization between species with different mating systems in vertebrates. All F1 individuals were sired by the selfing species. Backcrossing was small, but mostly asymmetrical with the SI parental species, suggesting pattern commonly observed in plant hybrid zones with different mating systems. Our findings shed light on how contrasting mating systems may affect the direction and extent of gene flow between sympatric species, ultimately affecting the evolution and maintenance of hybrid zones.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Tateyama, Hirofumi, Kaori Chimura, and Takashi Tsuchimatsu. "Evolution of seed mass associated with mating systems in multiple plant families." Journal of Evolutionary Biology 34, no. 12 (October 26, 2021): 1981–87. http://dx.doi.org/10.1111/jeb.13949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Igic, Boris, and Joshua R. Kohn. "THE DISTRIBUTION OF PLANT MATING SYSTEMS: STUDY BIAS AGAINST OBLIGATELY OUTCROSSING SPECIES." Evolution 60, no. 5 (May 2006): 1098–103. http://dx.doi.org/10.1111/j.0014-3820.2006.tb01186.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Igic, Boris, and Joshua R. Kohn. "THE DISTRIBUTION OF PLANT MATING SYSTEMS: STUDY BIAS AGAINST OBLIGATELY OUTCROSSING SPECIES." Evolution 60, no. 5 (2006): 1098. http://dx.doi.org/10.1554/05-383.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Petersen, Ronald H., David B. G. Nicholl, and Karen W. Hughes. "Mating systems of some putative polypore ? agaric relatives." Plant Systematics and Evolution 207, no. 3-4 (1997): 135–58. http://dx.doi.org/10.1007/bf00984386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Shaw, Ruth G., Diane L. Byers, and Frank H. Shaw. "Genetic Components of Variation in Nemophila menziesii Undergoing Inbreeding: Morphology and Flowering Time." Genetics 150, no. 4 (December 1, 1998): 1649–61. http://dx.doi.org/10.1093/genetics/150.4.1649.

Повний текст джерела
Анотація:
Abstract The standard approaches to estimation of quantitative genetic parameters and prediction of response to selection on quantitative traits are based on theory derived for populations undergoing random mating. Many studies demonstrate, however, that mating systems in natural populations often involve inbreeding in various degrees (i.e., self matings and matings between relatives). Here we apply theory developed for estimating quantitative genetic parameters for partially inbreeding populations to a population of Nemophila menziesii recently obtained from nature and experimentally inbred. Two measures of overall plant size and two of floral size expressed highly significant inbreeding depression. Of three dominance components of phenotypic variance that are defined under partial inbreeding, one was found to contribute significantly to phenotypic variance in flower size and flowering time, while the remaining two components contributed only negligibly to variation in each of the five traits considered. Computer simulations investigating selection response under the more complete genetic model for populations undergoing mixed mating indicate that, for parameter values estimated in this study, selection response can be substantially slowed relative to predictions for a random mating population. Moreover, inbreeding depression alone does not generally account for the reduction in selection response.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Milligan, Brook G. "Estimating Long-Term Mating Systems Using DNA Sequences." Genetics 142, no. 2 (February 1, 1996): 619–27. http://dx.doi.org/10.1093/genetics/142.2.619.

Повний текст джерела
Анотація:
Abstract Plant mating systems often involve a mixture of self fertilizations and outcross fertilizations. The degree of selfing has a large impact on the genetic composition of natural populations and on the evolution of the mating system itself in response to such factors as inbreeding depression. This paper describes a means of estimating the long-term rate of self-fertilization from samples of alleles taken from individuals in a population. Use is made of the genealogy of pairs of alleles at a locus within individuals and pairs between individuals. The degree of selfing is closely related to the extent to which the number of nucleotide sites differing within an individual is reduced relative to the number differing between individuals. Importantly, the estimate of long-term selfing is largely independent of population size and is not affected by historical fluctuations in population size; instead it responds directly to the mating system itself. The approach outlined here is most appropriate to evolutionary problems in which the long-term nature of the mating system is of interest, such as to determine the relationship between prior inbreeding and inbreeding depression.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gitzendanner, Matthew A., Gayle E. Dupper, Eleanor E. White, Brett M. Foord, Paul D. Hodgskiss, and Bohun B. Kinloch Jr. "Genetics of Cronartium ribicola. III. Mating System." Canadian Journal of Botany 74, no. 11 (November 1, 1996): 1852–59. http://dx.doi.org/10.1139/b96-222.

Повний текст джерела
Анотація:
Lack of genetic markers has hindered the study of the mating system of Cronartium ribicola, an exotic forest pathogen Meeting natural and cultivated white pines throughout North America. Isozymes, randomly amplified polymorphic DNA (RAPDs), and restriction length polymorphisms (RFLPs) were used to study the mating system of this rust. Heterozygosity (outcrossing) in diploid telia was demonstrated by analysis of cultures derived from the meiotic products (basidiospores) of individual telia. Families of basidiospores cultured from single telia were used to test for Mendelian segregation and for conformance of loci to Hardy–Weinberg equilibrium. A total of 18 polymorphic loci were identified with the three marker systems. All except for three RAPD loci showed Mendelian segregation in the single-telium families. To quantify the level of outcrossing, gene and genotype frequencies were calculated for families from a single population. Up to 24 families were surveyed with isozymes, 14 with RAPDs, and 18 with RFLPs. Except for one isozyme locus (MPI) in one sample, all 14 loci tested with these families were in Hardy–Weinberg equilibrium, indicating random mating. Further studies, with a different sample from the same population, showed all three isozyme loci to be in Hardy–Weinberg equilibrium. The three marker systems were consistent as to the amount of variation detected. Resistance selection and breeding programs must consider the implications of genetic recombination that outcrossing affords the rust. Keywords: isozymes, RAPDs, RFLPs, Hardy–Weinberg equilibrium, white pine blister rust.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lichtenzveig, Judith, Shahal Abbo, Avinoam Nerd, Noemi Tel-Zur, and Yosef Mizrahi. "Cytology and mating systems in the climbing cactiHylocereusandSelenicereus." American Journal of Botany 87, no. 7 (July 2000): 1058–65. http://dx.doi.org/10.2307/2657005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Barrett, Spencer C. H. "Understanding plant reproductive diversity." Philosophical Transactions of the Royal Society B: Biological Sciences 365, no. 1537 (January 12, 2010): 99–109. http://dx.doi.org/10.1098/rstb.2009.0199.

Повний текст джерела
Анотація:
Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Munoz, François, Cyrille Violle, and Pierre-Olivier Cheptou. "CSR ecological strategies and plant mating systems: outcrossing increases with competitiveness but stress-tolerance is related to mixed mating." Oikos 125, no. 9 (February 17, 2016): 1296–303. http://dx.doi.org/10.1111/oik.02328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Petrone Mendoza, Sandra, Martin Lascoux, and Sylvain Glémin. "Competitive ability of Capsella species with different mating systems and ploidy levels." Annals of Botany 121, no. 6 (February 17, 2018): 1257–64. http://dx.doi.org/10.1093/aob/mcy014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Holsinger, Kent E. "Dispersal and Plant Mating Systems: The Evolution of Self-Fertilization in Subdivided Populations." Evolution 40, no. 2 (March 1986): 405. http://dx.doi.org/10.2307/2408818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Holsinger, Kent E. "DISPERSAL AND PLANT MATING SYSTEMS: THE EVOLUTION OF SELF-FERTILIZATION IN SUBDIVIDED POPULATIONS." Evolution 40, no. 2 (March 1986): 405–13. http://dx.doi.org/10.1111/j.1558-5646.1986.tb00480.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Scheffknecht, Susanne, Stefan Dullinger, Georg Grabherr, and Karl Hülber. "Mating systems of snowbed plant species of the northeastern Calcareous Alps of Austria." Acta Oecologica 31, no. 2 (March 2007): 203–9. http://dx.doi.org/10.1016/j.actao.2006.09.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Cheptou, Pierre-Olivier, and Daniel J. Schoen. "Combining population genetics and demographical approaches in evolutionary studies of plant mating systems." Oikos 116, no. 2 (February 2007): 271–79. http://dx.doi.org/10.1111/j.0030-1299.2007.14655.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії