Дисертації з теми "Plant development, Microproteins, Molecular Biology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-36 дисертацій для дослідження на тему "Plant development, Microproteins, Molecular Biology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
van, Zyl Albertha R. "Development of plant-produced Bluetongue virus vaccines." Doctoral thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/28248.
Повний текст джерелаDennis, Susan Jennifer. "Development of plant-produced African horse sickness vaccines." Thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/33687.
Повний текст джерелаCao, Jingyi. "CELL TYPE-SPECIFIC ALTERNATIVE POLYADENYLATION IN ARABIDOPSIS DURING DEVELOPMENT AND STRESS RESPONSE." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1492702815819455.
Повний текст джерелаHable, Whitney Elizabeth 1967. "Expression and regulation of phytoene desaturase during maize seed development." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/282172.
Повний текст джерелаMurphy, Phillip James. "Plant-fungal interactions during vesicular-arbuscular mycorrhiza development : a molecular approach." Title page, contents and abstract only, 1995. http://web4.library.adelaide.edu.au/theses/09PH/09phm9778.pdf.
Повний текст джерелаDouglas, Stephanie. "The development of molecular markers for use across all plant species using expressed sequence tags." FIU Digital Commons, 2006. http://digitalcommons.fiu.edu/etd/3234.
Повний текст джерелаPaddock, Troy N. "Genetic manipulation of NADPH: Protochlorophyllide Oxidoreductase content in Arabidopsis reveals essential roles in prolamellar body formation and plant development." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211899658.
Повний текст джерелаWehmeyer, Nadja. "Arabidopsis class I small heat shock proteins: Regulation and functional analysis during seed development." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/284011.
Повний текст джерелаXu, Limin. "Development of molecular approaches in the study of lettuce downy mildew (Bremia lactucae) population biology." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/49561/.
Повний текст джерелаCalixte, Sophie. "RNA processing of the ccmFn-rps1 and rpl5-Psirps14-cox3 loci in wheat mitochondria during seedling development." Thesis, University of Ottawa (Canada), 2008. http://hdl.handle.net/10393/27580.
Повний текст джерелаRegnard, Guy Louis. "Development of a potential challenge model and plant-produced vaccine candidate for beak and feather disease virus." Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/15690.
Повний текст джерелаAngobe, Aune Tuyoleni. "Development of a plant-made immunoassay for the detection of Porcine circovirus infections in South African swine herds." Master's thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33629.
Повний текст джерелаHayashi, Satomi. "Molecular characterisation of early nodulation events in soybean." Thesis, The University of Queensland, 2014.
Знайти повний текст джерелаSarrión, Perdigones Manuel Alejandro. "Design and development of modular DNA assembly tools for Multigene Engineering and Synthetic Biology in Plants." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/35399.
Повний текст джерелаSarrión Perdigones, MA. (2014). Design and development of modular DNA assembly tools for Multigene Engineering and Synthetic Biology in Plants [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35399
TESIS
Canto, Pastor Alex. "Small RNAs in tomato : from defence to development." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273780.
Повний текст джерелаWierzba, Michael. "A Family of Four LRR-RLKs Modulate Development and Defense Signaling in Arabidopsis thaliana through Interaction with the Co-receptor BAK1." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/312668.
Повний текст джерелаChun, Elizabeth M. "Developing a Recombinant Plant Virus Nanoparticle Vaccine for Rift Valley Fever Virus." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/scripps_theses/1345.
Повний текст джерелаMitra, Sayantan. "Arabidopsis Cohesin proteins: WAPL, CTF7 and PHD finger proteins: MMDL1, MMDL2 are essential for proper meiosis, gamete development and plant growth." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1517605898967702.
Повний текст джерелаIaffaldano, Brian. "Evaluating the Development and Potential Ecological Impact of Genetically Engineered Taraxacum kok-saghyz." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452174223.
Повний текст джерелаBustamante, Montoya Mariana. "Genomic analyses of the cup-shaped cotyledoni 1 network." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/461296.
Повний текст джерелаFlower development has been an active field of research for many years and the thorough analysis of genetic interactions provided a general framework to understand how floral organs are specified. More recently, the introduction of genome-wide technologies helped confirm and expand the existing models about organ identity establishment and other important events during flower formation. Still, there are other aspects of flower development for which general models are lacking, such as the formation of floral organ boundaries. The Arabidopsis thaliana CUP-SHAPED COTYLEDON1 (CUC1) gene is a key transcription factor involved in the regulation of flower development by controlling boundary formation. In plants, proper boundaries are fundamental for meristem maintenance and to coordinate organogenesis. This occurs throughout plant development, from the early separation of cotyledons in dicots to the formation of boundaries between ovules during the reproductive phase. CUC1 suppresses growth in the boundary regions that it helps to delimit, and it has been proposed that it does so by affecting cell division. Despite the crucial role of CUC1, the molecular mechanisms by which it controls boundary formation are still poorly understood. Here, CUC1 regulatory network is characterized at the genome-wide level, using state-of-the-art genomic technologies. In this work, several aspects of CUC1 function were analyzed for the first time through the combination of complementary genome-wide approaches including transcriptomics, transcription factor binding profiles and protein interactome analyses. The results obtained from such techniques allowed to elucidate a set of transcriptional targets, molecular pathways and CUC1 interactors that help delineate the mechanisms by which this NAC transcription factor contributes to the establishment of floral organ boundaries. These results represent a substantial advance in the understanding of the molecular events that are controlled by CUC1 in this key developmental stage of plant development. In this regard, this Thesis provides a foundational body of work that can be used to further explore CUC1's regulatory network.
Basu, Debarati. "Identification and Characterization of Five Arabidopsis Hydroxyproline Galactosyltransferases and Their Functional Roles in Arabinogalactan-Protein Glycosylation, Growth, Development, and Cellular Signaling." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1438874729.
Повний текст джерелаRodrigo-Peiris, Thushani. "Unraveling the Functions of Plant Ran GTPase-Activating Protein (RanGAP) by T-DNA Mutant Analysis and Investigation of Molecular Interactions of Tandem Zinc Finger 1 (TZF1) in Arabidopsis thaliana." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343796551.
Повний текст джерелаEvans, Joshua R. "Transcriptional Regulation of Select Light-Harvesting Genes during Photoacclimation in Lympha mucosa gen. et sp. prov. (Batrachospermales, Rhodophyta)." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1501068045787163.
Повний текст джерелаMcIntosh, Cecilia A., Karin Bartoszuk, and Scott Kirkby. "Professional Development Provided by the School of Graduate Studies: Enhancing Mentoring and the Graduate Student Experience." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/363.
Повний текст джерелаBrown, Jennifer Erin. "The evolutionary mechanisms promoting sex chromosome divergence within Carica papaya." Miami University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=miami1385934540.
Повний текст джерелаDeblais, Loic. "Understanding of Salmonella-phytopathogen-environment-plant interactions and development of novel antimicrobial to reduce the Salmonella burden in fresh tomato production." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534437638478448.
Повний текст джерелаKhojayori, Farahnoz N. "Floral symmetry genes elucidate the development and evolution of oil-bee pollinated flowers of Malpighiaceae and Krameriaceae." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5585.
Повний текст джерелаAdhikari, Binaya. "Understanding natural expression of cytoplasmic male sterility in flowering plants using a wildflower Lobelia siphilitica L. (Campanulaceae)." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1532954470078823.
Повний текст джерелаDahl, Anna Caroline E. "Membrane protein mechanotransduction : computational studies and analytics development." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:67798647-8ed5-46e0-bde9-c71235fe70ba.
Повний текст джерелаNething, Daniel B. "Detection of Cellulose Synthase Antisense Transcripts Involved in Regulating Cell Wall Biosynthesis in Barley, Brachypodium and Arabidopsis." Ohio University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1500996680467756.
Повний текст джерелаGreer, Mary Ruth. "PART 1: Screening of Thirty-one Medicinal Plant Species Against Herpes Simplex Virus, Acetone and Methanol Extracts from the Root Tissue of Kalanchoe pinnata Interferes with HSV Types 1 and 2 DNA replication and Early and Late Gene Expression Preventing the Spread of HSV in vitro. PART 2: Professional Development Curriculum: Integrating Molecular Biology and Microbiology into the Existing Secondary Biology Curricula." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/6160.
Повний текст джерелаGunadi, Andika. "Characterization of Rps8 and Rps3 Resistance Genes to Phytophthora sojae through Genetic Fine Mapping and Physical Mapping of Soybean Chromosome 13." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354640151.
Повний текст джерелаZhang, Yuan. "Functional Characterization of Beta-Glucuronosyltransferases (GLCATs) and Hydroxyproline-Galactosyltransferases (GALTs) Involved in Arabinogalactan-Protein (AGP) Glycosylation Using CRISPR/Cas9 Gene Editing Technology In Arabidopsis." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1588687871450172.
Повний текст джерелаDusi. "CYSTINE-KNOT PEPTIDES AND BBX MICROPROTEINS AS CONTROLLING FACTORS OF FLOWER AND FRUIT DEVELOPMENT." Doctoral thesis, 2022. http://hdl.handle.net/11562/1074488.
Повний текст джерелаMurphy, Phillip James. "Plant-fungal interactions during vesicular-arbuscular mycorrhiza development : a molecular approach / Phillip James Murphy." Thesis, 1995. http://hdl.handle.net/2440/18631.
Повний текст джерела[ix], 200, [29] leaves, [6] leaves of plates : ill. (chiefly col.) ; 30 cm.
Vesicular-arbuscular (VA) mycorrhiza formation is a complex process which is under the genetic control of both plant and fungus. This project aims to develop a model infection system in Hordeum vulgare L. (barley) suitable for molecular analysis; to identify host plant genes differentially expressed during the early stages of the infection process; and to screen a mutant barley population for phenotypes which form abnormal mycorrhizas.
Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1995
Bernabé, Orts Juan Miguel. "Development and characterization of two new tools for plant genetic engineering: A CRISPR/Cas12a-based mutagenesis system and a PhiC31-based gene switch." Doctoral thesis, 2019. http://hdl.handle.net/10251/133055.
Повний текст джерела[CAT] La millora genètica vegetal té com a objectiu l'obtenció de plantes amb trets millorats o característiques noves que podrien ajudar a superar els objectius de sostenibilitat. Amb aquesta finalitat, la biotecnologia vegetal necessita incorporar noves eines d'enginyeria genètica que combinen una major precisió amb una major capacitat de millora. Les eines d'edició genètica recentment descobertes basades en la tecnologia CRISPR/Cas9 han obert el camí per modificar els genomes de les plantes amb una precisió sense precedents. D'altra banda, els nous enfocaments de biologia sintètica basats en la modularitat i l'estandardització dels elements genètics han permès la construcció de dispositius genètics cada vegada més complexos i sofisticats aplicats a la millora genètica vegetal. Amb l'objectiu final d'expandir la caixa d'eines biotecnològiques per a la millora vegetal, aquesta tesi descriu el desenvolupament i l'adaptació de dues noves eines: una nova endonucleasa específica de lloc (SSN) i un interruptor genètic modular per a la regulació de l'expressió transgènica . En una primera part, aquesta tesi descriu l'adaptació de CRISPR/Cas12a per a l'expressió en plantes i compara l'eficiència de les variants de Acidaminococcus (As) i Lachnospiraceae (Lb) Cas12a amb la ben establida Streptococcus pyogens Cas9 (SpCas9), en vuit loci de Nicotiana benthamiana usant expressió transitòria. LbCas12a va mostrar l'activitat de mutagènesi mitjana més alta en els loci analitzats. Aquesta activitat també es va confirmar en experiments de transformació estable realitzats en tres plantes model diferents, a saber, N. benthamiana, Solanum lycopersicum i Arabidopsis thaliana. Per a aquest últim, els efectes mutagènics col·laterals van ser analitzats en línies segregants sense l'endonucleasa Cas12a, mitjançant seqüenciació completa del genoma i descartant efectes indiscriminats. En conjunt, els resultats mostren que LbCas12a és una alternativa viable a SpCas9 per a l'edició genètica en plantes. En una segona part, aquest treball descriu un interruptor genètic reversible destinat a controlar l'expressió gènica en plantes amb major precisió que els sistemes induïbles tradicionals. Aquest interruptor, basat en el sistema de recombinació del bacteriòfag PhiC31, va ser construït com un dispositiu modular fet de parts d'ADN estàndard i dissenyat per controlar l'estat transcripcional (encès o apagat) de dos gens d'interès mitjançant la inversió alternativa d'un element regulador central d'ADN. L'estat de l'interruptor pot ser operat externa i reversiblement per acció dels actuadors de recombinació i la seva cinètica, memòria i reversibilitat van ser àmpliament caracteritzats en experiments de transformació transitòria i estable en N. benthamiana. En conjunt, aquesta tesi mostra el disseny i la caracterització funcional d'eines per a l'enginyeria del genòmica i biologia sintètica de plantes que ara ha sigut completat amb el sistema d'edició genètica CRISPR/Cas12a i un interruptor genètic biestable i reversible basat en el sistema de recombinació del bacteriòfag PhiC31.
[EN] Plant breeding aims to provide plants with improved traits or novel features that could help to overcome sustainability goals. To this end, plant biotechnology needs to incorporate new genetic engineering tools that combine increased precision with higher breeding power. The recently discovered genome editing tools based on CRISPR/Cas9 technology have opened the way to modify plant¿s genomes with unprecedented precision. On the other hand, new synthetic biology approaches based on modularity and standardization of genetic elements have enabled the construction of increasingly complex and refined genetic devices applied to plant breeding. With the ultimate goal of expanding the toolbox of plant breeding techniques, this thesis describes the development and adaptation to plant systems of two new breeding tools: a site-specific nuclease (SSNs), and a modular gene switch for the regulation of transgene expression. In a first part, this thesis describes the adoption of the SSN CRISPR/Cas12a for plant expression and compares the efficiency of Acidaminococcus (As) and Lachnospiraceae (Lb) Cas12a variants with the previously described Streptococcus pyogens Cas9 (SpCas9) in eight Nicotiana benthamiana loci using transient expression experiments. LbCas12a showed highest average mutagenesis activity in the loci assayed. This activity was also confirmed in stable genome editing experiments performed in three different model plants, namely N. benthamiana, Solanum lycopersicum and Arabidopsis thaliana. For the latter, off-target effects in Cas12a-free segregating lines were discarded at genomic level by deep sequencing. Collectively, the results show that LbCas12a is a viable alternative to SpCas9 for plant genome engineering. In a second part, this work describes the engineering of a new reversible genetic switch aimed at controlling gene expression in plants with higher precision than traditional inducible systems. This switch, based on the bacteriophage PhiC31 recombination system, was built as a modular device made of standard DNA parts and designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally and reversibly operated by the action of the recombination actuators and its kinetics, memory, and reversibility were extensively characterized in N. benthamiana using both transient expression and stable transgenics. Altogether, this thesis shows the design and functional characterization of refined tools for genome engineering and synthetic biology in plants that now has been expanded with the CRISPR/Cas12a gene editing system and the phage PhiC31-based toggle switch.
Bernabé Orts, JM. (2019). Development and characterization of two new tools for plant genetic engineering: A CRISPR/Cas12a-based mutagenesis system and a PhiC31-based gene switch [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133055
TESIS