Зміст
Добірка наукової літератури з теми "Pivot sémantique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pivot sémantique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pivot sémantique"
Balibar-Mrabti, Antoinette. "Règles Formelles et Règles Rhétoriques Sur un Cas D'analyse D'adverbes." Lingvisticæ Investigationes. International Journal of Linguistics and Language Resources 11, no. 2 (January 1, 1987): 303–35. http://dx.doi.org/10.1075/li.11.2.04bal.
Повний текст джерелаFenoglio, Irène. "Des couples « interprétants » plutôt que des représentations : la démarche de Benveniste." Histoire Epistémologie Langage 40, no. 1 (2018): 67–79. http://dx.doi.org/10.1051/hel/e2018-80005-3.
Повний текст джерелаKandeel, Rana. "Les stratégies de la post-édition en traduction automatique des proverbes par des apprenants FLE et de traduction." Texto Livre: Linguagem e Tecnologia 14, no. 3 (August 13, 2021): e29459. http://dx.doi.org/10.35699/1983-3652.2021.29459.
Повний текст джерелаSardier, Anne. "Compétence paraphrastique et interprétation : Le verbe et ses entours en grande section de maternelle (5 ans)." SHS Web of Conferences 78 (2020): 07022. http://dx.doi.org/10.1051/shsconf/20207807022.
Повний текст джерелаLarcher, Pierre. "Un cas de dérivation « pivot » en arabe." Arabica 60, no. 1-2 (2013): 201–7. http://dx.doi.org/10.1163/15700585-12341240.
Повний текст джерелаThéorêt, Manon. "La résilience, de l’observation du phénomène vers l’appropriation du concept par l’éducation." Revue des sciences de l'éducation 31, no. 3 (November 8, 2006): 633–58. http://dx.doi.org/10.7202/013913ar.
Повний текст джерелаWaibel, Birgit, and Albert Hamm. "Phrasal verbs and the foreign language learner : results from a pilot study based on the International Corpus of Learner English." Recherches anglaises et nord-américaines 38, no. 1 (2005): 65–74. http://dx.doi.org/10.3406/ranam.2005.1747.
Повний текст джерелаFaye, David C., Gilles Nachouki, and Patrick Valduriez. "SenPeer : un système pair-à-pair de médiation de données." Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées Volume 4, 2006 (October 20, 2006). http://dx.doi.org/10.46298/arima.1847.
Повний текст джерелаPark, Jung-ran. "Semantic Interoperability across Digital Image Collections: Evaluation of Metadata Mapping for Resource Discovery and Sharing." Proceedings of the Annual Conference of CAIS / Actes du congrès annuel de l'ACSI, October 20, 2013. http://dx.doi.org/10.29173/cais303.
Повний текст джерелаДисертації з теми "Pivot sémantique"
De, Lagane de Malezieux Guillaume. "Contributions à l’ingénierie multilingue et sémantique des exigences en système de systèmes." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM061.
Повний текст джерелаContributions to the multilingual and semantic engineering of systems of systems requirementsOur research concerns the processing of large specifications in the field of systems of systems. A specification is a structured set of requirements. Current tools do not allow to detect cases of inconsistency, incompleteness, or even ambiguity or difficulty of comprehension, which pose many problems, and can even cause disasters during the realization and then the implementation. After having reviewed the state of the art on requirements processing systems (RPS), we propose an architecture implementing NLP techniques, interactive meaning elicitation, content extraction in one or more ontologies, and semantic computation. A cross-lingual representation (UNL graph) of each requirement is obtained thanks to a multiple factoring analysis followed by an interactive disambiguation (ID) step that improves on the technique prototyped in the LIDIA project [Blanchon & al. 1994]: automatic computation of a question tree, then user-initiated implementation, with a configurable strategy and more ergonomic interfaces (word clouds for lexical ambiguities, direct manipulation possibility for structural ambiguities). At this point, it is possible to create and store annotations that can be visualized in an self-explanatory format.A recurring and difficult problem is the implementation of solutions of this type (NLP + AI) as an addition to the already heavy systems for managing sets of requirements (under DOORS, RQS, or SBOCS). For this, we offer two environments. (1) UNSEL-INTER ensures the implementation of the resources and algorithms of UNSEL-DEVLING and UNSEL-DEVSEM, and of the disambiguation dialogue preliminary to the extraction, then of the possible interaction launched by UNSEL-SEM during the detection inconsistencies or incompleteness. (2) UNSEL-OPER is a front-end interacting with the content of a STEX, implementing linguistic-semantic processing by calls to UNSEL-INTER, storing the results (UNL graphs, extracted logical content, translations, SED form) in a database referring to STEX requirements, and notifying STEX of reformulations recommended by UNSEL-SEM. The complete UNSEL prototype could be validated on part of the SSS specification managed by SBOCS. The prospects are, in addition to scaling up and operationalizing in an industrial setting, the adaptation to other applications, such as high-quality interactive MT, the construction of meaning-guaranteed textual presentations, and answering targeted questions on voluminous documents such as annual company reports. This work has also led to the introduction of an innovative research direction, to be pursued in the future, namely the machine-aided discovery in a corpus of not yet described ambiguity types and the automatic proposal of ID rules
Moll, Georges-Henri. "Un langage pivot pour le couplage de Prolog avec des bases de données : formalisation et environnement opérationnel." Lyon 1, 1987. http://www.theses.fr/1987LYO10102.
Повний текст джерелаNikiema, Jean. "Intégration de connaissances biomédicales hétérogènes grâce à un modèle basé sur les ontologies de support." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0179/document.
Повний текст джерелаIn the biomedical domain, there are almost as many knowledge resources in health as there are application fields. These knowledge resources, described according to different representation models and for different contexts of use, raise the problem of complexity of their interoperability, especially for actual public health problematics such as personalized medicine, translational medicine and the secondary use of medical data. Indeed, these knowledge resources may represent the same notion in different ways or represent different but complementary notions.For being able to use knowledge resources jointly, we studied three processes that can overcome semantic conflicts (difficulties encountered when relating distinct knowledge resources): the alignment, the integration and the semantic enrichment of the integration. The alignment consists in creating a set of equivalence or subsumption mappings between entities from knowledge resources. The integration aims not only to find mappings but also to organize all knowledge resources’ entities into a unique and coherent structure. Finally, the semantic enrichment of integration consists in finding all the required mapping relations between entities of distinct knowledge resources (equivalence, subsumption, transversal and, failing that, disjunction relations).In this frame, we firstly realized the alignment of laboratory tests terminologies: LOINC and the local terminology of Bordeaux hospital. We pre-processed the noisy labels of the local terminology to reduce the risk of naming conflicts. Then, we suppressed erroneous mappings (confounding conflicts) using the structure of LOINC.Secondly, we integrated RxNorm to SNOMED CT. We constructed formal definitions for each entity in RxNorm by using their definitional features (active ingredient, strength, dose form, etc.) according to the design patterns proposed by SNOMED CT. We then integrated the constructed definitions into SNOMED CT. The obtained structure was classified and the inferred equivalences generated between RxNorm and SNOMED CT were compared to morphosyntactic mappings. Our process resolved some cases of naming conflicts but was confronted to confounding and scaling conflicts, which highlights the need for improving RxNorm and SNOMED CT.Finally, we performed a semantically enriched integration of ICD-10 and ICD-O3 using SNOMED CT as support. As ICD-10 describes diagnoses and ICD-O3 describes this notion according to two different axes (i.e., histological lesions and anatomical structures), we used the SNOMED CT structure to identify transversal relations between their entities (resolution of open conflicts). During the process, the structure of the SNOMED CT was also used to suppress erroneous mappings (naming and confusion conflicts) and disambiguate multiple mappings (scale conflicts)