Зміст
Добірка наукової літератури з теми "Pile à combustible à membrane polymere"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pile à combustible à membrane polymere".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Pile à combustible à membrane polymere"
Tekin, Mestan, Christophe Espanet, and Daniel Hissel. "Optimisation énergétique par essaims particulaires d'un groupe motocompresseur pour pile à combustible à membrane polymère." Journal Européen des Systèmes Automatisés 38, no. 9-10 (December 30, 2004): 1121–40. http://dx.doi.org/10.3166/jesa.38.1121-1140.
Повний текст джерелаStoica, Daniela, Lionel Ogier, and Fannie Aloin. "Membrane à matrice poly(épichlorhydrine) pour pile à combustible alcaline." Revue internationale de génie électrique 9, no. 4-5 (October 30, 2006): 635–48. http://dx.doi.org/10.3166/rige.9.635-648.
Повний текст джерелаAmrouche, Fethia, Bouziane Mahmah, Maiouf Belhamel, and Hocine Benmoussa. "Modélisation d’une pile à combustible PEMFC alimentée directement en hydrogène-oxygène et validation expérimentale." Journal of Renewable Energies 8, no. 2 (December 31, 2005): 109–21. http://dx.doi.org/10.54966/jreen.v8i2.856.
Повний текст джерелаBedet, Jérôme, Pierre Mutzenhardt, Daniel Canet, Gaël Maranzana, Sébastien Leclerc, Olivier Lottin, Christian Moyne, and Didier Stemmelen. "Étude du comportement de l'eau dans une pile à combustible à membrane échangeuse d'ions (PEMFC): étude par RMN et IRM." Comptes Rendus Chimie 11, no. 4-5 (April 2008): 465–73. http://dx.doi.org/10.1016/j.crci.2007.07.004.
Повний текст джерелаANTONI, Laurent, Jean-Philippe POIROT-CROUVEZIER, Francis ROY, and Xavier GLIPA. "GENEPAC : pile à combustible à membrane échangeuse de protons PEMFC." Chimie verte, August 2013. http://dx.doi.org/10.51257/a-v2-in52.
Повний текст джерелаTatiana Quishpi Chasiluisa, Noemi, Sonnia Marisol Miranda Sánchez, Rafael Alexander Córdova Uvidia, and Magdy Mileni Echeverría Guadalupe. "Renewable Energy Integration for Vehicles: Solar Energy and Green Hydrog." ESPOCH Congresses: The Ecuadorian Journal of S.T.E.A.M., June 29, 2022, 611–22. http://dx.doi.org/10.18502/espoch.v2i2.11419.
Повний текст джерелаBelatel, Mimi, Fatima Zohra Aissous, and Fadila Ferhat. "Contribution à l’étude d’une pile à combustible de type PEMFC utilisée pour la production d’énergie électrique verte." Journal of Renewable Energies 15, no. 1 (October 23, 2023). http://dx.doi.org/10.54966/jreen.v15i1.297.
Повний текст джерелаBen Moussa, Hocine, Djamel Haddad, Kafia Oulmi, Bariza Zitouni, Bouziane Mahmah, and Maiouf Belhamel. "Modélisation et simulation numérique des transferts fluidique et thermique dans le canal et couches cathodiques d’une PEMFC." Journal of Renewable Energies 10, no. 1 (November 12, 2023). http://dx.doi.org/10.54966/jreen.v10i1.807.
Повний текст джерелаДисертації з теми "Pile à combustible à membrane polymere"
Monin, Guillaume. "Stabilisation chimique des électrolytes polymères pour pile à combustible." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00728176.
Повний текст джерелаCoursange, Jean-François. "Modélisation de pile à combustible à membrane de polymère en 3D /." Trois-Rivières : Université du Québec à Trois-Rivières, 2003. http://www.uqtr.ca/biblio/notice/resume/17681831R.html.
Повний текст джерелаCe mémoire contient aussi un article de périodique, publié dans la revue Fuel Cells, 2003.- "Performance comparison between planar and tubular-shaped PEM fuel cells by three-dimensional numerical simulation" / J.-F. Coursange, A. Hourri, J. Hamelin. Bibliogr.: f. 51-52.
Coursange, Jean-François. "Modélisation de pile à combustible à membrane de polymère en 3D." Thèse, Université du Québec à Trois-Rivières, 2003. http://depot-e.uqtr.ca/4024/1/000103641.pdf.
Повний текст джерелаGerbaux, Luc. "Modélisation d'une pile à combustible de type hydrogène/air et validation expérimentale." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0163.
Повний текст джерелаGibon, Cécile. "Membrane composite polymère fluoré / polyélectrolyte pour pile à combustible : relations structure - propriétés." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00143683.
Повний текст джерелаLes solubilités en solution du polyélectrolyte puis du mélange sont étudiées. Les morphologies des membranes et la cristallinité du Kynar sont ensuite caractérisées. Un comportement de type LCST est mis en évidence. L'utilisation de contre-ions tétrabutylammonium (TBA) permet d'obtenir des mélanges miscibles. Le TBA est ensuite échangé, la forme acide du PAMPS étant nécessaire au fonctionnement en pile. La perméabilité à l'eau et la conductivité ionique sont enfin caractérisées. Une nanostructuration de type bicontinu est particulièrement efficace pour l'application envisagée. Pour stabiliser cette morphologie, un copolymère polyélectrolyte réticulable est synthétisé.
Chabert, France. "Élaboration par extrusion de membranes polymères pour piles à combustible." Grenoble INPG, 2004. http://www.theses.fr/2004INPG0132.
Повний текст джерелаThe aim of these studies was to process membranes by extrusion to be used in fuel cells. The functional polymers used are generally processed by polluting techniques like casting-evaporation, which are not easily transposable on industrial scale. Extrusion is a widely used shaping operation in the polymer processing industry. However, extrusion had not been used until now for arylsulfonic ionic polymers. In order to avoid any risk of degradation of the polymer during extrusion, it was necessary to define the best processing conditions. On one hand, the physicochemical characterization of the polysulfones (commercial) and sulfonated polysulfones (or synthesized by the project partners), were performed by determining their molecular weights and their thermal transitions. On the order hand, their flow behaviour was characterized over a wide range of temperatures and shearing rates using rheometric techniques. The combination of these two characterizations allowed to define the appropriate extrusion conditions. For the extruded films, the conductivities, measured by impedance spectroscopy were found to be similar with those of the membranes processed by casting-evaporation and close to those of Nafion® membranes. In addition, the incorporation of a proton-conducting filler and reinforcing fibres was also considered and the extrusion of these composite materials was validated. This work could be extended to other proton-conducting polymers, like polyetherethercetones and polyetherimides, whose membranes produced by casting-evaporation have already shown their performances in the fuel cells
Thiry, Xavier. "Synthèse et caractérisation de matériaux polymères conducteurs protoniques pour membranes de pile à combustible." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI041/document.
Повний текст джерелаThis thesis deals with the conception of proton conducting materials used as PEMFCmembrane. The proposed approach is quite new in this application field and is based on thedevelopment of semi-interpenetrating networks (semi-IPN). A linear conducting polymer(sulfonated PEEK) was combined with a crosslinked fluorinated network, a poly(aryl etherperfluorocyclobutane) (PFCB). These macromolecules are obtained by thermalcyclodimerization of bis and tris trifluorovinylether monomers (TFVE). Different series ofsemi-IPN were prepared by changing the PFCB nature, the crosslinking degree, the synthesisprocess and the proportion of the network added to the sPEEK. The overall results show aspecific semi-IPN composition for which the conductivity, the swelling and mechanicalstrength properties are optimal. A membrane with a proton conductivity of 155 mS.cm-1 and alimited water swelling (50 % lower than for a sPEEK membrane which exhibits a protonconductivity of 127 mS.cm-1) is obtained by adding 10 wt-% of fluorinated network. Inaddition, the incorporation of sulfonated TFVE monomers into the network PFCB has beenconsidered. A significant effort in organic chemistry enabled the synthesis of bis-TFVEmolecules containing protected sulfonated functions in a sulfonate ester form. Linearconducting PFCB polymers with a predeterminated IEC were obtained by directcopolycondensation of these monomers
Schieda, Mauricio. "Elaboration par CVD plasma et caractérisation de matériaux pour pile à combustible à membrane alcaline." Montpellier 2, 2007. http://www.theses.fr/2007MON20202.
Повний текст джерелаGuimet, Adrien. "Nouvelles Membranes Conductrices Protoniques à base de Polymères Perfluorosulfonés Acides pour Application Pile à Combustible." Thesis, Cergy-Pontoise, 2015. http://www.theses.fr/2015CERG0767/document.
Повний текст джерелаThis work focuses on the synthesis and characterization of new proton conducting membranes based on Aquivion®, a perfluorosulfonic acid ionomer (PFSA), for Proton Exchange Membrane Fuel Cell (PEMFC) application. Two approaches have been used to strengthen thermomechanical properties of this PFSA for operation above 80 °C. The first approach is the blend of Aquivion® with a sulfonated poly (ether ether ketone) (S-PEEK), leading to Aquivion/S-PEEK materials. In the second approach, Aquivion® is combined with a neutral Fluorolink® MD 700 fluorinated polymer network through semi-interpenetrating polymer network architecture (semi-IPN). In comparison, S-PEEK has also been associated with the same neutral network. All of these materials have been synthesized over a wide range of compositions.Their ion exchange capacity, mechanical properties, sorption and transport of water, and proton conductivity as well as their mechanical, chemical and thermal stabilities have been extensively characterized. Morphology of these new materials has also been studied using different microscopy techniques. Finally, thanks to these ex-situ studies, fuel cell tests from 80 to 105 °C have been investigated on the most promising membranes, whose performances are similar or higher compared to single PFSA membranes
Zaton, Marta. "Study of the degradation of perfluorosulfonic acid fuel cell membranes and development of mitigation strategy." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20197.
Повний текст джерелаThis thesis describes the study the chemical degradation of perfluorosulfonic acid (PFSA) membranes used in proton exchange membrane fuel cells, in order to gain a better understanding of the mechanisms leading to failure, and to propose strategies to mitigate this degradation. Studies of membrane chemical decomposition were performed on pristine Nafion and on cerium and manganese ion exchanged membranes. The effectiveness of Mn and Ce species as free radical scavengers was studied by using accelerated stress tests: in situ in a single fuel cell under open circuit voltage (OCV), and ex situ using Fenton's reagent. Membrane chemical degradation was assessed by the fluoride emission rate (FER). Significant reduction in FER was observed with Mn and Ce ion modified Nafion. These observations were related to the fuel cell performances losses and migration or elution of metal ions, as evaluated by SEM/EDX and HPLC, and to changes in the oxidation state of the metal species, determined by XPS. The results have been used to provide further guidance on materials strategies to mitigate membrane chemical degradation. A composite nanofibre CeOx/PFSA mat was prepared by electrospinning of a mixed dispersion of Nafion® ionomer with CeOx nanoparticles synthesised by flash combustion. The electrospinning technique allows fabrication of a homogenous material with well controlled thickness and highly dispersed CeOx. This mat was assembled with PFSA membranes by hot-pressing. These nanofibre mats are the means of siting the CeOx radical scavenger specifically in close proximity to one or other catalyst layer, rather than distributed throughout the membrane. The new membranes were further investigated by OCV hold testing in a fuel cell. The results show that MEAs integrating a non-modified PFSA membrane, or a PFSA membrane modified by an interlayer of nanofibre PFSA (no CeOx) only, demonstrate a marked drop in OCV with time, and high FER. In contrast an MEA comprising a CeOx nanofibre interlayer gives very stable open circuit voltage and low fluoride emission. Finally it was observed that the nanofibre – ceria interlayer is more effective when incorporated at the anode side. Post mortem analysis of the MEAs and analysis of exhaust water were combined to draw a picture of the overall degradation processes occurring in cerium oxide protected and non-modified MEAs. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy analyses of aged MEAs indicated a lower degree of degradation for CeOx protected membranes than for a non-modified PFSA membrane. These results are in agreement with OCV profile and fluoride emission rate. In conclusion this new approach to the strategy of incorporating of radical scavengers to mitigate membrane chemical degradation efficiently increases membrane durability, and allows location of the radical scavenger within the MEA at the sites potentially most exposed to radical attack
Книги з теми "Pile à combustible à membrane polymere"
Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges. Taylor & Francis Group, 2013.
Знайти повний текст джерелаFranco, Alejandro A. Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges. Jenny Stanford Publishing, 2016.
Знайти повний текст джерела