Добірка наукової літератури з теми "Piezoresistor"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Piezoresistor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Piezoresistor"

1

Li, Liang, Lei, Hong, Li, Li, Ghaffar, Li, and Xiong. "Quantitative Analysis of Piezoresistive Characteristic Based on a P-type 4H-SiC Epitaxial Layer." Micromachines 10, no. 10 (September 20, 2019): 629. http://dx.doi.org/10.3390/mi10100629.

Повний текст джерела
Анотація:
In this work, the piezoresistive properties of heavily doped p-type 4H-SiC at room temperature were investigated innovatively. It was verified by a field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and laser Raman spectroscopy (LRS) that the crystal quality of the epitaxial layer was good. The doping concentration and thickness of the epitaxial layer were measured by secondary ion mass spectrometry (SIMS) to be ~1.12 × 1019 cm−3 and ~1.1 μm, respectively. The 4H-SiC cantilever beam along crystal orientation was fabricated, and the fixed end of the cantilever beam was integrated with longitudinal and transverse p-type 4H-SiC piezoresistors. A good ohmic contact was formed between Ni/Ti/Al/Au and a p-type 4H-SiC piezoresistor under nitrogen environment annealing at 1050 °C for 5 min. The free end of the cantilever beam was forced to cause strain on the p-type 4H-SiC piezoresistor, and then the resistances were measured by a high precision multimeter. The experimental results illustrated that longitudinal and transverse gauge factors (GFs) of the p-type 4H-SiC piezoresistors were 26.7 and −21.5, respectively, within the strain range of 0–336με. In order to further verify the electro-mechanical coupling effect of p-type 4H-SiC, the piezoresistors on the beam were connected to the Wheatstone full-bridge circuit and the output changes were observed under cyclic loading of 0–0.5 N. The measuring results revealed that the transducer based on the 4H-SiC piezoresistive effect exhibited good linearity and hysteresis, which confirmed that p-type 4H-SiC has the potential for pressure or acceleration sensing applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Chi, Zheng You, and Hu Huang. "Design and Simulation of Electromagnetic Two-Dimensional MOEMS Scanning Mirror." Key Engineering Materials 483 (June 2011): 185–89. http://dx.doi.org/10.4028/www.scientific.net/kem.483.185.

Повний текст джерела
Анотація:
This paper presents design methodology, dynamics simulation and fabrication process of a magnetically actuated two-dimensional MOEMS scanning mirror with piezoresistor sensors. In the device, the mirror has two gimbal structures with two integrated driving coils and piezoresistors for the control and measurement of the both tilt angles, respectively. The dynamic model is established and the FEM simulation results show that the resonant frequencies for both directions are 254Hz and 523Hz, respectively. The two-dimensional MOEMS scanning mirror has advantages of tilt angles control and measurement feedback for the both directions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pashmforoush, Farzad. "Multiphysics simulation of piezoresistive pressure microsensor using finite element method." FME Transactions 49, no. 1 (2021): 214–19. http://dx.doi.org/10.5937/fme2101214p.

Повний текст джерела
Анотація:
In this study, the electro-mechanical behavior of a specially designed highsensitive piezoresistor pressure microsensor was simulated using finite element method, through COMSOL multiphysics software. The mechanical deformation of the diaphragm and the distribution of electrical potential in the piezoresistive were evaluated for various pressure values. In order to determine the influence of the temperature sensitivity parameter, different temperature conditions were investigated. According to the obtained results, by increase of the applied pressure, the resistance of the piezoresistor decreased, while, the sensitivity increased. Also, it was observed that at constant pressure, as the temperature increases, the stress on the diaphragm surface decreases, indicating high stress distribution at the sides and the middle of the diaphragm at low temperatures such as -50 °C. Furthermore, the obtained results demonstrated that temperature variations were not very effective on the potential distribution in the piezoresistor. However, the temperature coefficient of sensitivity demonstrated an increasing tendency with increase of the temperature from -50 °C to 50 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Agarwal, R., R. Mukhiya, R. Sharma, M. K. Sharma, and A. K. Goel. "Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications." Defence Science Journal 66, no. 5 (September 30, 2016): 485. http://dx.doi.org/10.14429/dsj.66.10702.

Повний текст джерела
Анотація:
Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare® simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare®.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gridchin, Victor A., and Michail A. Chebanov. "FEATURES OF MICRON-SIZED MESA-PIEZORESISTOR." Sensor Electronics and Microsystem Technologies 7, no. 4 (November 23, 2010): 42–47. http://dx.doi.org/10.18524/1815-7459.2010.4.116318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Miller, Steve. "Instrumentals: Measuring a nematode with a piezoresistor." Analytical Chemistry 80, no. 1 (January 2008): 28. http://dx.doi.org/10.1021/ac085997j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Du, Li Dong, Zhan Zhao, Shao Hua Wu, and Zhen Fang. "Analysis Temperature Characteristics of Atmosphere Pressure Sensor Caused by Residual Gas." Key Engineering Materials 645-646 (May 2015): 504–8. http://dx.doi.org/10.4028/www.scientific.net/kem.645-646.504.

Повний текст джерела
Анотація:
In this paper, temperature characteristic of a previous developed nickel-chromium (Ni-Cr) thin film atmosphere pressure sensor is analyzed caused by residual gas. As expected, the output signal of the previous fabricated sensor increases with atmosphere pressures. But when pressure load is fixed, the voltage-temperature characteristic is nonlinear. One factor of this effect is residual gas. Based on the pressure-displacement equation of membrane, the gas balance equation and Provided that the deformation of membrane is spherical crown, the relationship equation of relative change of piezoresistor is defined. Studying the First order derivative and second order derivative of relationship equation of relative change of piezoresistor, it is proved that the residual gas will affect the temperature characteristic of previous designed sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Petlacalco Ramírez, Héctor Eduardo, Salvador Alcántara Iniesta, Blanca Susana Soto Cruz, and Jesús Israel Mejía Silva. "Evaluation of the Piezoresistivity of a Thin Film of ZnO Doped with Fluorine and Deposited via the Ultrasonic Spray Pyrolysis Technique for Applications in Micro/Nano-Electromechanical Sensors." Crystals 12, no. 11 (November 11, 2022): 1607. http://dx.doi.org/10.3390/cryst12111607.

Повний текст джерела
Анотація:
In this study, thin films of zinc oxide doped with fluorine ZnO: F were deposited via ultrasonic spray pyrolysis (USP) with an atomic ratio of [F/Zn] in a starting solution of 15 at.% on borosilicate glass coverslips and SiO2/Si substrates. The structure, electrical resistivity, and thickness were obtained via X-ray diffraction, the four-point technique, and profilometry, respectively. A ZnO: F piezoresistor was modeled at the fixed end of the cantilever through lithography and chemical etching. A SiO2/Si cantilever structure was used to evaluate the piezoresistivity of a ZnO: F thin film, and temperature coefficient of resistance (TCR) measurements were performed in an electric furnace. The strain on the ZnO: F piezoresistor caused by the application of masses at the free end of the cantilever was determined using a theoretical equation, in addition to a simulation in the COMSOL Multiphysics 5.3a FEM (finite element method) software considering the dimensions and materials of the manufactured device. The ZnO: F thin films were hexagonal wurtzite (phase 002), with thicknesses in the range from 234 nm to 295 nm and with resistivities of the order of 10−2 Ω.cm. The ZnO: F thin-film piezoresistor showed a gauge factor (GF) of 12.7 and a TCR of −3.78 × 10−3 %/K up to 525 K, which are suitable properties for sensor development.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Li Bo, Xu Dong Fang, Yu Long Zhao, Zhuang De Jiang, and Yong Li. "A High Pressure Sensor with Circular Diaphragm Based on MEMS Technology." Key Engineering Materials 483 (June 2011): 206–11. http://dx.doi.org/10.4028/www.scientific.net/kem.483.206.

Повний текст джерела
Анотація:
A pressure sensor in the range of 25 MPa with circular diaphragm is designed and fabricated, and the calibration experiments prove its excellent performance, which also reflects the correct choice of design after analyzing the effect of diaphragm dimension, location and shapes of piezoresistors. Circular diaphragms of different thickness and diameters are simulated to meet the pressure requirement of 25 MPa. It also displays the advantage of piezoresistive sensors over others and the difference characteristics between different types of piezoresistive sensors. And then the effect of piezoresistor location is analyzed and simulated to attain high accuracy and sensitivity after the circular diaphragm chip is packaged with borosilicate glass ring. The whole fabrication process of the chip is inexpensive and compatible with standard MEMS process. The experimental results show the developed high pressure sensor with the sensitivity of 2.533 mV/MPa has excellent performance, such as linearity of 0.08%FS, hysteresis of 0.03%FS, accuracy of 0.11%FS and repeatability of 0.03%FS under high temperature of 200 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ansari, Mohd Zahid, Shashank Kumar, Sunil Kumar Prajapati, and Chongdu Cho. "Modeling and Numerical Characterization of High Sensitive Microcantilever Biosensors with Parabolic Piezoresistor." Nano 13, no. 05 (May 2018): 1850055. http://dx.doi.org/10.1142/s1793292018500558.

Повний текст джерела
Анотація:
The biaxial and planar characteristics of surface stress produce a parabolic differential stress distribution inside the sensing zone of microcantilever biosensors, which can be used to design novel biosensors. The present work studies and compares the effect of parabolic and conventional rectangular-shaped piezoresistor placed inside this sensing zone on sensitivity of the biosensors. Two different cantilevers made of silicon and silicon dioxide with doped silicon as piezoresistor are used in five design variations. The cantilevers are characterized for their deflections, von Mises stresses, resonant frequencies and self-heating temperatures produced using ANSYS. Analytical models for predicting deflections in the cantilevers is presented and compared with numerical results obtained. Results show good compatibility between analytical and numerical values for deflection with a 4–5% average deviation and that parabolic designs have higher sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Piezoresistor"

1

Tan, T. H. "Silicon piezoresistors for MEMS pressure sensor applications." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.677842.

Повний текст джерела
Анотація:
Silicon based micromachining technology enables the realization of high performance micro electromechanical systems (MEMS) including a range of physical and environmental sensors. Pressure sensors are used for a wide range of monitoring and control applications, e.g. environmental, industrial, aircraft, automotive. Monitoring of vehicle tyre pressures offers benefits such as improved safety, fuel economy, and tyre life. Micromachined pressure sensors are used at present, but require further research to improve their performance in terms of size, power consumption and manufacturing cost. This thesis has reviews pressure sensor technology and new developments in this area. A comparison of existing and potential future sensing mechanisms has been undertaken and identified as silicon piezoresistors. The focus of the research is motivated by the recently discovered enhanced piezoresistive effect in silicon nanowires where sensitivity can be increased by decreasing the dimension of nanowire. This thesis investigates the piezoresistive effect in p-type <110> silicon nanowires, fabricated using top down approach. It is found that the piezoresistive effect increases when the nanowire width is reduced below 400nm. Compared with micrometre sized piezoresistors, silicon nanowires have produced up to 100% enhancement. In addition, measurements indicate that the temperature coefficient of resistance (TCR) of silicon nanowire has improved with up to 40% decrease in TCR. The improvement in these two areas will be beneficial for the development of new MEMS pressure sensors. COMSOL is employed to simulate the piezoresistance effect in p-type <110> silicon for a range of doping concentrations. Simulation results demonstrate a similar trend to experimental results and publication data and show that the piezoresistance effect decreases as the doping concentration increases.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dieme, Robert. "Investigation of process fabrication for low-noise P-type diffused piezoresistors." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0022606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Messina, M. "Design and optimization of a novel tri-axial miniature ear-plug piezoresistive accelerometer with nanoscale piezoresistors." Thesis, Cranfield University, 2013. http://dspace.lib.cranfield.ac.uk/handle/1826/8002.

Повний текст джерела
Анотація:
This work aims at the advancement of state-of-art accelerometer design and optimization methodology by developing an ear-plug accelerometer for race car drivers based on a novel mechanical principle. The accelerometer is used for the measurements of head acceleration when an injurious event occurs. Main requirements for such sensor are miniaturization (2×2 mm), because the device must be placed into the driver earpiece, and its measurement accuracy (i.e. high sensitivity, low crosstalk and low nonlinearity) since the device is used for safety monitoring purpose. A micro-electro-mechanical system (MEMS)-based (bulk micromachined) piezoresistive accelerometer was selected as enabling technology for the development of the sensor. The primary accelerometer elements that can be manipulated during the design stage are: the sensing element (piezoresistors), the micromechanical structure and the measurements circuit. Each of these elements has been specifically designed in order to maximize the sensor performance and to achieve the miniaturization required for the studied application. To achieve accelerometer high sensitivity and miniaturization silicon nanowires (SiNWs) as nanometer scale piezoresistors are adopted as sensing elements. Currently this technology is at an infancy stage, but very promising through the exploitation of the “Giant piezoresistance effect” of SiNWs. This work then measures the potential of the SiNWs as nanoscale piezoresistors by calculating the major performance indexes, both electrical and mechanical, of the novel accelerometer. The results clearly demonstrate that the use of nanoscale piezoresistors boosts the sensitivity by 30 times in comparison to conventional microscale piezoresistors. A feasibility study on nanowires fabrication by both top-down and bottom-up approaches is also carried out. The micromechanical structure used for the design of the accelerometer is an optimized highly symmetric geometry chosen for its self-cancelling property. This work, for the first time, presents an optimization process of the accelerometer micromechanical structure based on a novel mechanical principle, which simultaneously increases the sensitivity and reduces the cross-sensitivity progressively. In the open literature among highly symmetric geometries no other study has to date reported enhancement of the electrical sensitivity and reduction of the cross-talk at the same time. Moreover the novel mechanical principle represents advancement in the accelerometer design and optimization methodology by studying the influence of a uniform mass moment of inertia of the accelerometer proof mass on the sensor performance. Finally, an optimal accelerometer design is proposed and an optimized measurement circuit is also specifically designed to maximize the performance of the accelerometer. The new proposed accelerometer design is capable of increasing the sensor sensitivity of all axes, in particular the Z-axis increases of almost 5 times in respect to the current state-of-art-technology in piezoresistive accelerometer. This occurs thanks to the particular newly developed approach of combination of beams, proof mass geometry and measurement circuit design, together with the use of silicon nanowires as nanoscale piezoresistors. Furthermore the cross-sensitivity is simultaneously minimized for a maximal performance. The sum of the cross-sensitivity of all axes is equal to 0.4%, well below the more than 5% of the state-of-art technology counterpart reported in the literature. Future work is finally outlined and includes the electro-mechanical characterization of the silicon nanowires and the fabrication of the proposed accelerometer prototype that embeds bottom up SiNWs as nanoscale piezoresistors.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moreira, Rodrigo Couto. "Desenvolvimento de uma plataforma virtual para modelamento matemático de piezoresistores de filmes finos semicondutores." reponame:Repositório Institucional da UNIJUI, 2015. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/3070.

Повний текст джерела
Анотація:
Este trabalho mostra o desenvolvimento de um software, rotulado aqui como SimuPi, para simular o modelamento matemático de elementos sensores piezoresistivos. O programa desenvolvido roda modelos de primeira e segunda ordem, clássicos da literatura, os quais são indispensáveis para o desenvolvimento de elementos sensores baseados no efeito piezoresistivo do silício. Foram analisadas as principais características de programas simuladores com objetivo de observar quais seriam relevantes para serem empregadas no desenvolvimento deste trabalho. Estudou-se a forma de elaboração do programa, escolhendo sua linguagem de programação e elaborando seus diagramas detalhados de requisitos e de funcionamentos. A plataforma de testes foi desenvolvida na linguagem de programação Java. O SimuPi mostrou-se condizente com a sua proposta, apresentando gráficos e resultados equivalentes aos obtidos em testes laboratoriais a partir da análise das propriedades do silício com base em modelos matemáticos. O software pode ser ampliado para projetos de elementos sensores usando outros tipos de materiais, além de melhorias gráficas e didáticas.
81 f.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Messina, Marco [Verfasser]. "Design and optimization of a novel tri-axial miniature ear-plug piezoresistive accelerometer with nanoscale piezoresistors / Marco Messina." München : GRIN Verlag, 2017. http://d-nb.info/1177259273/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hammes, Graciane. "Modelagem matemática e fabricação de estruturas piezoresistivas usando grafite." reponame:Repositório Institucional da UNIJUI, 2016. http://bibliodigital.unijui.edu.br:8080/xmlui/handle/123456789/3670.

Повний текст джерела
Анотація:
Este trabalho descreve o efeito piezoresistivo no grafite, uma forma alotrópica de carbono e sugere sua aplicação em dispositivos sensores em substituição a outros materiais cujos processos de fabricação são mais complexos quando comparados ao utilizado neste trabalho. Foram projetados e montados elementos sensores de grafite visando a sua caracterização mecânica, elétrica e térmica. Os resultados obtidos apresentam concordância com os apresentados pela literatura indicando que os modelos matemáticos utilizados para caracterização e análise do material são adequados para o processo de dispositivos sensores piezoresistivos.
109 f.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rasia, Luiz Antônio. "Estudo e aplicação das propriedades elétricas, térmicas e mecânicas de materiais amorfos piezoresistivos em transdutores de pressão." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-29062009-170433/.

Повний текст джерела
Анотація:
Neste trabalho é apresentado o estudo teórico-experimental a respeito das propriedades piezoresistivas de dois tipos de materiais com estrutura amorfa. O primeiro material estudado é o carbono semelhante ao diamante e o segundo é o óxido de estanho dopado com índio. O estudo compreende o levantamento bibliográfico sobre os materiais, projeto teórico e prático de estruturas individuais de testes e piezoresistores configurados em ponte completa, além da realização das caracterizações elétricas, mecânicas e térmicas de acordo com um arranjo experimental proposto. As caracterizações experimentais foram implementadas usando a técnica de flexão de uma viga engastada e a teoria das pequenas deflexões. Os diferentes materiais caracterizados e analisados apresentaram o efeito piezoresistivo e um sinal de sensibilidade mecânica condizente com as características esperadas para estes filmes. Ambos os filmes respondem as variações da temperatura de forma linear e apresentam uma direção de dependência com a temperatura. Os filmes de carbono amorfo hidrogenado livre de dopantes apresentam curvas de corrente e tensão características indicando um mecânismo de condução elétrica complexo devido a sua diversidade de microestruturas e relacionado aos parâmetros de processos de deposição. Os filmes com nitrogênio são mais estáveis termicamente com coeficientes da ordem de - 4900 ppm/ºC. Os resultados encontrados indicam a existência de dois tipos de portadores de cargas responsáveis pela mobilidade média, resistividade e efeito piezoresistivo. Os filmes de óxido de estanho dopado com índio livre e com 5 % e 10 % de oxigênio no plasma apresentam características de diminuição da resistência elétrica com o esforço mecânico e exibem efeitos de piezoresistividade na faixa de - 12 a - 23. Amostras destes filmes com oxigênio apresentaram um fator de sensibilidade mecânica muito baixa e são menos estáveis termicamente que as amostras livres de oxigênio. Os filmes estudados podem ser usados em aplicações envolvendo extensiometria ou mesmo em sensores de pressão piezoresistivos após adequação do processo de deposição e de recozimentos térmicos.
This tesis presents the piezoresistivity theoretical and experimental study for two materials with amorphous structure. The first material is the Diamond Like Carbon and the other is the Indium Tin Oxide. The work includes the bibliographic study, theoretical and practical design of structures for testing individual and piezoresistors configured in bridge, in addition to the completion of the characterizations electrical, mechanical and thermal according to a proposed experimental arrangement. The experimental characterizations have been implemented using the technique of cantilever and the theory of small deflections. The different materials analyzed showed the piezoresistive effect with some order of magnitude and a sign of sensitivity to mechanical stress of tension consistent with the characteristics expected for these types of films. Both films respond to changes in temperature in a very linear and have a direction of dependency with the temperature according to the literature. The films of free doping have curves of current and voltage characteristics for this type of material indicating a mechanism of electric conduction very complex because of its diversity of microstructures and processes related to the parameters of the deposition and films with nitrogen are more thermally stable with coefficients of order of - 4900 ppm/ºC. The results indicate the existence of two types of charge carriers responsible for the average mobility and hence the resistivity and the piezoresistive effect. The films of indium tin oxide free and with some oxygen content in plasma presents characteristics of decreased electrical resistance to mechanical stress and exhibit effects of piezoresistive in the range of - 12 to - 23. Samples of these films with oxygen showed a factor of very low mechanical sensitivity and are less stables to thermal effect the samples free of oxygen. The films studied can be used in certain applications such strain gauges or even in piezoresistive pressure sensors, after adequate process of deposition and thermal annealing.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Falletta, E. "¿RE-DISCOVERING¿ AN OLD MATERIAL, POLYANILINE, FOR MODERN APPLICATIONS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/229552.

Повний текст джерела
Анотація:
The chemical industry of the forthcoming years will be shaped by a number of emerging global megatrends strictly related to the growth and aging of the world population (nine billion people in 2050). This will result in demand of innovative materials able to solve new needs in different fields: health, communication, energy, environmental sustainability, etc. In this diversified context, conducting organic polymers (COPs) are expected to play an important role thanks to their polyhedric properties. Among them, polyaniline is one of the more investigated COPs owing to its peculiar properties which make it a potential substitute of conventional materials in different fields (electronics, fenestration, textile industry, sensors and many others). However, to date many aspects related to its synthesis and application are still open. Scope of the present work is to provide alternative eco-friendly methods to the traditional synthetic routes towards PANI-based materials and enlarge their present applications in view of the novel requirements. This study has been organized in three main sections. In the first section a new green protocol will be present to prepare PANI/metal oxides nanocomposites, innovative materials in the field of EMI shielding. For the first time the double role of magnetic nanoparticles, as catalysts of the reaction and magnetic fillers of the final products, will be illustrated. Conducting/magnetic materials are particularly tempting for their ability to reduce the electromagnetic interferences (EMI) originated by the increasing use of electronic devices and telecommunication equipment. Preliminary results in terms of their microwave absorbing properties will be shown. The possibility to improve the health and quality of life for millions of people worldwide is, in fact, the overall goal of tissue engineering. Nanostructured PANI in form of fibers or wires could find application as novel conductive scaffolds in neuronal or cardiac stimulations. In the second section, the possibility to produce highly pure polyaniline nanofibers by electrospinning technique will be showed. These materials, characterized by high values of conductivity and cytocompatibility, could represent an alternative to traditional solutions for cardiac and neuronal stimulation. Regarding the third section of the work, the amazing piezoresistive properties of PANI, especially in form of film, will be for the first time herein presented. Herein, the extraordinary high GF values of PANI-based films (more than 10 times higher than those of commercial piezoresistors) will be reported. The mechanical monitoring in large and small scale (buildings/touch-technology) needs of highly sensitive stress/strains sensors and PANI-based materials are particularly promising in this sector. All these characteristics contribute to make PANI and its composites innovative materials which could offer new solutions for many challenges of the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Jung Chul. "Fabrication, characterization, and application of multifunctional." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22697.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2007.
Committee Chair: King, William; Committee Member: Allen, Mark; Committee Member: Brand, Oliver; Committee Member: Glezer, Ari; Committee Member: Joshi, Yogendra.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Corten, Cathrin Carolin. "Synthese und Charakterisierung dünner Hydrogelschichten mit modulierbaren Eigenschaften." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1209463829168-95283.

Повний текст джерела
Анотація:
Im Mittelpunkt dieser Arbeit stand die Darstellung sensitiver Blockcopolymere und deren Gele, die als Ausgangsmaterialien in Sensor- und Aktorsystemen einsetzbar sind. Die Vereinigung verschiedener Ansprechparameter stellt erhöhte Anforderung an die Synthese. Geringe Ansprechzeiten lassen sich mit einer Gelgröße im µm-Bereich erreichen. Hydrogele dieser Größenordnungen können durch nachträgliche Vernetzung funktioneller linearer Polymere ermöglicht werden. Die Makroinitiatormethode ermöglichte den Aufbau verschiedener linearer photovernetzbarer Blockcopolymere. Zum Einen wurde das temperatursensitive P(n-BuAc)-block-P(PNIPAAm-co-DMIAAm) erhalten, des Weiteren gelang die Darstellung der multi-sensitiven Blockcopolymere P2VP-block-P(NIPAAm-co-DMIAAm) und P4VP-block-P(NIPAAm-co-DMIAAm). Die Blockcopolymere wurden mit variierenden Blocklängen und Verhältnissen sowie mit unterschiedlichem Vernetzergehalt dargestellt. Die Charakterisierung der Blockcopolymere erfolgte mittels 1H-NMR-Spektroskopie, GPC-Messungen (Zusammensetzung) und DSC-Messungen (thermische Eigenschaften). Das Löslichkeitsverhalten in wässrigen Medien wurde durch Dynamische Lichtstreuung bestimmt. Die Beschreibung des Quellverhaltens der vernetzten Schichten erfolgte durch vornehmlich durch optische Methoden (SPR/OWS, WAMS, Ellipsometrie). Die Veränderung des E-Moduls in Abhängigkeit äußerer Parameter konnte mittels AFM untersucht werden. Die Reaktion der Schichten wurde gegenüber Temperatur, pH-Wert und Salzkonzentrationen getestet. Die charakterisierten Filme konnten im Anschluss als sensitive Schichten in piezoresistiven Sensorsystemen verwendetet werden.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Piezoresistor"

1

Doll, Joseph C., and Beth L. Pruitt. Piezoresistor Design and Applications. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Doll, Joseph C., and Beth L. Pruitt. Piezoresistor Design and Applications. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Doll, Joseph C., and Beth L. Pruitt. Piezoresistor Design and Applications. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Doll, Joseph C., and Beth L. Pruitt. Piezoresistor Design and Applications. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Piezoresistor Design and Applications. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Piezoresistor"

1

Doll, Joseph C., and Beth L. Pruitt. "Introduction." In Piezoresistor Design and Applications, 1–20. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Doll, Joseph C., and Beth L. Pruitt. "Piezoresistance Fundamentals." In Piezoresistor Design and Applications, 21–49. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Doll, Joseph C., and Beth L. Pruitt. "Sensitivity, Noise and Resolution." In Piezoresistor Design and Applications, 51–83. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Doll, Joseph C., and Beth L. Pruitt. "Fabrication and Process Modeling." In Piezoresistor Design and Applications, 85–125. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Doll, Joseph C., and Beth L. Pruitt. "Temperature Effects." In Piezoresistor Design and Applications, 127–48. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Doll, Joseph C., and Beth L. Pruitt. "Design Optimization." In Piezoresistor Design and Applications, 149–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Doll, Joseph C., and Beth L. Pruitt. "Alternative Materials and Transduction Methods." In Piezoresistor Design and Applications, 171–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8517-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Jiachou, Lining Sun, Weibin Rong, and Xinxin Li. "A Vertical Sidewall Surface Piezoresistor Technology Based on DRIE and Its Typical Application in Micro xy-Stages." In Intelligent Robotics and Applications, 170–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88518-4_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Toriyama, Toshiyuki, Yasutada Tanimoto, and Susumu Sugiyama. "Single Crystalline Silicon Nano Wire Piezoresistors for Mechanical Sensors." In Transducers ’01 Eurosensors XV, 974–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rasia, Luiz Antonio, Patricia Carolina Pedrali, Humber Furlan, and Mariana Amorim Fraga. "Design and Characterization of Graphite Piezoresistors in Paper for Applications in Sensor Devices." In Communications in Computer and Information Science, 577–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31019-6_48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Piezoresistor"

1

Davenport, Andrew A., Paul Lim, and Beth Pruitt. "Noise Studies in Implanted Piezoresistors." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81590.

Повний текст джерела
Анотація:
Noise in piezoresistors can be divided into two types: Johnson or white noise and 1/f noise. Johnson noise is uniform across all frequencies and depends on the resistance and temperature. 1/f noise is a conductance fluctuation that has been shown to be related to piezoresistor fabrication parameters such as anneal temperature and surface effects. This study presents a collection of controlled piezoresistor fabrication runs with associated noise data and design rules and operation conditions for noise reduction in piezoresistors.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pruitt, Beth, Aaron Partridge, Michael Bartsch, Yiching Liang, Thomas Kenny, Stuart Wenzel, and Carl Reynolds. "Design of Piezoresistive Cantilevers for Low Force Electrical Contact Measurements." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1090.

Повний текст джерела
Анотація:
Abstract Micromachined piezoresistive cantilevers were fabricated to measure contact resistance and force for low force and small area electrical contacts. The intended application is the evaluation of contact tip geometries and metal films manufactured using standard semiconductor processing techniques. Prototype cantilevers are evaluated for force sensitivity, range, and noise as well as for feasibility of 4 wire contact resistance measurements at the end of the cantilever. The piezoresistors have a gage factor of about 35 and noise of about 1mV/Hz at 1Hz (the lowest frequency of intended measurements). Initial measurements of one cantilever design tested indicate sensitivity of 0.24mV/μN and force resolution of about 0.41mN for a piezoresistor drive voltage of about 9V and 100X gain on the bridge output. Force measurements are noise limited at the 5 Hz sampling rates used. 4-wire contact resistance measurements were made synchronously with piezoresistor bridge output voltage measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gridchin, Victor A., Alexander V. Gridchin, and Valentina Yu Bunzina. "Analytical model of nanoscale piezoresistor." In 2008 Third International Forum on Strategic Technologies (IFOST). IEEE, 2008. http://dx.doi.org/10.1109/ifost.2008.4602841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gridchin, Victor A., and Michail A. Chebanov. "Features of micron-sized mesa-piezoresistor." In 2010 11th International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM 2010). IEEE, 2010. http://dx.doi.org/10.1109/edm.2010.5568638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Naeli, K., and O. Brand. "Cantilever sensor with stress-concentrating piezoresistor design." In 2005 IEEE Sensors. IEEE, 2005. http://dx.doi.org/10.1109/icsens.2005.1597768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kale, Nitin S., Sudip Nag, R. Pinto, and V. Ramgopal Rao. "Photoplastic NEMS with an Encapsulated Polysilicon Piezoresistor." In 2008 8th IEEE Conference on Nanotechnology (NANO). IEEE, 2008. http://dx.doi.org/10.1109/nano.2008.140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barlian, A. A., N. Harjee, V. Mukundan, T. H. Fung, S. J. Park, and B. L. Pruitt. "Sidewall epitaxial piezoresistor process for in-plane sensing applications." In 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. IEEE, 2008. http://dx.doi.org/10.1109/memsys.2008.4443660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chang, Heng-Chung, Hsieh-Shen Hsieh, Sung-Cheng Lo, Chih-Fan Hu, and Weileun Fang. "Piezoresistive pressure sensor with Ladder shape design of piezoresistor." In 2012 IEEE Sensors. IEEE, 2012. http://dx.doi.org/10.1109/icsens.2012.6411323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lin, Chun-Te, Chih-Tang Peng, Ji-Cheng Lin, and Kuo-Ning Chiang. "Analysis and Validation of Sensing Sensitivity of a Piezoresistive Pressure Sensor." In ASME 2003 International Electronic Packaging Technical Conference and Exhibition. ASMEDC, 2003. http://dx.doi.org/10.1115/ipack2003-35053.

Повний текст джерела
Анотація:
In this study, a packaged silicon based piezoresistive pressure sensor is designed, fabricated, and studied. A finite element method (FEM) is adopted for designing and optimizing the sensor performance. Thermal as well as pressure loading on the sensor is applied to make a comparison between experimental and simulation results. Furthermore, a method that transfers the simulation stress data into output voltage is proposed in this study, and the results indicate that the experimental result coincides with the simulation data. In order to achieve better sensor performance, a parametric analysis is performed to evaluate the system output sensitivity of the pressure sensor. The design parameters of the pressure sensor include membrane size/shape and the location of piezoresistor. The findings depict that proper selection of the membrane geometry and piezoresistor location can enhance the sensor sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, S. M., C. Chang, and T. I. Yin. "On the Temperature Compensation of Parallel Piezoresistive Microcantilevers in Biosensors." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34454.

Повний текст джерела
Анотація:
Microcantilever with embedded piezoresistor has been applied to in-situ surface stress measurement of biochemical reaction, where parallel microcantilever design by using an active cantilever for biosensing and another reference cantilever for noise cancellation has previously been proposed. This paper shows that the measurement is sensitive to the temperature effect induced by the piezoresistor. The temperature difference between the two cantilevers can reach 40°C at 10V operation because of their difference thermal capacitance. For the microcantilever of 125×65×0.75 μm, the offset voltage of the parallel microcantilever is 1.65 mV and the temperature drift is 0.01 mV/°C. An improved parallel microcantilever design is developed using the stripe pattern design on the immobilized layer and the signal conditioning circuit for temperature compensation in biosensors. Analyses and experiments show that the performance of a CMOS sensor chip can be significantly improved.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії