Добірка наукової літератури з теми "Piezo Force Microscopy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Piezo Force Microscopy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Piezo Force Microscopy"

1

Xiao, Bailong. "Levering Mechanically Activated Piezo Channels for Potential Pharmacological Intervention." Annual Review of Pharmacology and Toxicology 60, no. 1 (January 6, 2020): 195–218. http://dx.doi.org/10.1146/annurev-pharmtox-010919-023703.

Повний текст джерела
Анотація:
The mechanically activated Piezo channels, including Piezo1 and Piezo2 in mammals, function as key mechanotransducers for converting mechanical force into electrochemical signals. This review highlights key evidence for the potential of Piezo channel drug discovery. First, both mouse and human genetic studies have unequivocally demonstrated the prominent role of Piezo channels in various mammalian physiologies and pathophysiologies, validating their potential as novel therapeutic targets. Second, the cryo-electron microscopy structure of the 2,547-residue mouse Piezo1 trimer has been determined, providing a solid foundation for studying its structure-function relationship and drug action mechanisms and conducting virtual drug screening. Third, Piezo1 chemical activators, named Yoda1 and Jedi1/2, have been identified through high-throughput screening assays, demonstrating the drugability of Piezo channels. However, the pharmacology of Piezo channels is in its infancy. By establishing an integrated drug discovery platform, we may hopefully discover and develop a fleet of Jedi masters for battling Piezo-related human diseases.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Moreland, John. "Tunneling stabilized magnetic-force microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 51 (August 1, 1993): 1034–35. http://dx.doi.org/10.1017/s0424820100151003.

Повний текст джерела
Анотація:
Magnetic force microscopy (MFM) can be done by making a simple change in conventional scanning tunneling microscopy (STM) where the usual rigid STM tip is replaced with a flexible magnetic tip. STM images acquired this way show both the topography and the magnetic forces acting on the flexible tip. The z-motion of the STM piezo tube scanner flexes the tip to balance the magnetic force so that the end of the tip remains a fixed tunneling distance from the sample surface. We present a review of some “tunneling-stabilized” MFM (TSMFM) images showing magnetic bit tracks on a hard disk, Bloch wall domains in garnet films, and flux patterns in high-Tc superconductor films. The image resolution of TSMFM is routinely 0.1 μm using Au coated magnetic tips cut from Ni or Fe films. Recent results show that a TSMFM resolution of less than 40 nm is possible with micromachined cantilevers coated with a very thin Au-Fe bilayer.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fried, G., K. Balss, and P. W. Bohn. "Imaging Electrochemical Controlled Chemical Gradients Using Pulsed Force Mode Atomic Force Microscopy." Microscopy and Microanalysis 6, S2 (August 2000): 726–27. http://dx.doi.org/10.1017/s1431927600036126.

Повний текст джерела
Анотація:
The electrochemical formation of gradients in self assembled monolayers has been demonstrated recently [1]. The capacity to image these gradients provides useful information on the physical chemistry of electrochemical striping.Imaging chemical gradients requires the ability to sense the chemical moiety on the top of the self-assembled monolayer. This has been accomplished by derivatizing an atomic force microscope (AFM) tip with molecules selected to have specific interactions with the sample in a technique known as chemical force microscopy [2]. Typical tapping mode AFM is then used to image the sample; the tip is oscillated vertically above the sample and the tip-sample interaction modulates the amplitude of the tip.The sample adhesion, sample stiffness, and sample topography all influence the oscillation amplitude of the tip. Pulsed Force Mode (PFM) [3] is an extension for atomic force microscopes. The PFM electronics introduces a sinusoidal modulation to the z-piezo of the AFM with an amplitude between 10 to 500 nm at a user selectable frequency between 100 Hz and 2 kHz.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wei, Yaocheng, Xuejun Zheng, Liang Chu, and Hui Dong. "Piezo-Phototronic Enhancement of Vertical Structure Photodetectors Based on 2D CsPbBr3 Nanosheets." Journal of Nanoelectronics and Optoelectronics 17, no. 5 (May 1, 2022): 769–74. http://dx.doi.org/10.1166/jno.2022.3250.

Повний текст джерела
Анотація:
Two-dimensional (2D) CsPbBr3 have received great interest in flexible photoelectric devices due to their excellent carrier mobility and tunable optical bandgap. However, it is unknown if the piezo-phototronic effects of a vertically structured 2D CsPbBr3 photodetector affect its photoelectric performance. Herein, we fabricated a vertical structure device based on 2D CsPbBr3 by using conductive atomic force microscopy and then probed its photoelectric performances under different forces. The photocurrent and on/off ratio under 450 nm laser illumination rise by up to 2.1 and 5.3 times, respectively, when the applied force is 30 nN as compared with that under 10 nN. To investigate the mechanism underlying the enhancement of photoelectric performance, piezoelectric force microscopy measurement and density functional theory calculation were used to estimate the vertical piezoelectric coefficient of 2D CsPbBr3, which were found to be 7.3 pm/V and 3.8 pm/V, respectively. The enhancement of performances can be attributed to the piezo-phototronic effect of 2D CsPbBr3, which increases the separation of photogenerated holes at the interface. These findings propose a comprehensive strategy for enhancing photoelectric performance through piezo-phototronic effects in piezoelectric-based photoelectric devices with vertical structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Graça, Sergio, Rogerio Colaço, and Rui Vilar. "Using Atomic Force Microscopy to Retrieve Nanomechanical Surface Properties of Materials." Materials Science Forum 514-516 (May 2006): 1598–602. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.1598.

Повний текст джерела
Анотація:
When atomic force microscopy is used to retrieve nanomechanical surface properties of materials, unsuspected measurement and instrumentation errors may occur. In this work, some error sources are investigated and operating and correction procedures are proposed in order to maximize the accuracy of the measurements. Experiments were performed on sapphire, Ni, Co and Ni-30%Co samples. A triangular pyramidal diamond tip was used to perform indentation and scratch tests, as well as for surface visualization. It was found that nonlinearities of the z-piezo scanner, in particular the creep of the z-piezo, and errors in the determination of the real dimensions of tested areas, are critical parameters to be considered. However, it was observed that there is a critical load application rate, above which the influence of the creep of the z-piezo can be neglected. Also, it was observed that deconvolution of the tip geometry from the image of the tested area is essential to obtain accurate values of the dimensions of indentations and scratches. The application of these procedures enables minimizing the errors in nanomechanical property measurements using atomic force microscopy techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Miller, Nathaniel C., Haley M. Grimm, W. Seth Horne, and Geoffrey R. Hutchison. "Accurate electromechanical characterization of soft molecular monolayers using piezo force microscopy." Nanoscale Advances 1, no. 12 (2019): 4834–43. http://dx.doi.org/10.1039/c9na00638a.

Повний текст джерела
Анотація:
We report a new methodology for the electromechanical characterization of organic monolayers based on the implementation of dual AC resonance tracking piezo force microscopy (DART-PFM) combined with a sweep of an applied DC field under a fixed AC field.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Calahorra, Yonatan, Michael Smith, Anuja Datta, Hadas Benisty, and Sohini Kar-Narayan. "Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique." Nanoscale 9, no. 48 (2017): 19290–97. http://dx.doi.org/10.1039/c7nr06714c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sasaki, Michiko, and Masahiro Goto. "Piezoelectric effect of crystal nanodomains on the friction force." Journal of Vacuum Science & Technology B 40, no. 5 (September 2022): 052803. http://dx.doi.org/10.1116/6.0001881.

Повний текст джерела
Анотація:
Reduction and control of the friction force are important from the viewpoint of energy conservation, and novel approaches for achieving this are desirable. The friction force of the boron-doped zinc oxide (B-ZnO) coating on a stainless-steel type-440C substrate was moderated by controlling the B-ZnO crystal nanodomains' piezoelectric effect. The nanoscale and macroscale friction forces, as well as the B-ZnO coating's piezoelectric effect, were measured using lateral force microscopy, friction and wear meter, and piezo response microscopy devices, respectively. The distribution of the friction force's magnitude agreed well with that of the piezoelectric effect. The present study suggests that the friction force can be moderated by controlling the piezoelectric effect in the coating's nanodomains, which constitutes one method for controlling the friction force.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Guitao, Xi Chen, Weihe Xu, Wei-Dong Yao, and Yong Shi. "Piezoelectric property of PZT nanofibers characterized by resonant piezo-force microscopy." AIP Advances 12, no. 3 (March 1, 2022): 035203. http://dx.doi.org/10.1063/5.0081109.

Повний текст джерела
Анотація:
Nano-piezoelectric materials have drawn tremendous research interest. However, characterization of their piezoelectric properties, especially measuring the piezoelectric strain coefficients, remains a challenge. Normally, researchers use an AFM-based method to directly measure nano-materials’ piezoelectric strain coefficients. But, the extremely small piezoelectric deformation, the influence from the parasitic electrostatic force, and the environmental noise make the measurement results questionable. In this paper, a resonant piezo-force microscopy method was used to accurately measure the piezoelectric deformation from 1D piezoelectric nanofibers. During the experiment, the AFM tip was brought into contact with the piezoelectric sample and set to work at close to its first resonant frequency. A lock-in amplifier was used to pick up the sample’s deformation signal at the testing frequency. By using this technique, the piezoelectric strain constant d33 of the Lead Zirconate Titanate (PZT) nanofiber with a diameter of 76 nm was measured. The result showed that d33 of this PZT nanofiber was around 387 pm/V. Meanwhile, by tracking the piezoelectric deformation phase image, domain structures inside PZT nanofibers were identified.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mangamma, G., B. Ramachandran, T. N. Sairam, M. S. R. Rao, S. Dash, and A. K. Tyagi. "Imaging of Nanometric Ferroelectric Domains in BaTiO3 Using Atomic Force Acoustic Microscopy and Piezo Force Microscopy." Journal of Advanced Microscopy Research 6, no. 1 (February 1, 2011): 29–34. http://dx.doi.org/10.1166/jamr.2011.1056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Piezo Force Microscopy"

1

Leang, Kam K. "Iterative learning control of hysteresis in piezo-based nano-positioners : theory and application in atomic force microscopes /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/7127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Neuman, Jan. "Application of Scanning Probe Microscopy for the Study of Ultrathin Films and Nanostructures." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-234264.

Повний текст джерела
Анотація:
Dizertační práce je obecně zaměřena na problematiku mikroskopie atomárních sil (AFM), a to jak vývoje částí těchto mikroskopů, tak i jejich obecnému využití v oblasti výzkumu povrchů, ultratenkých vrstev a nanostruktur. Na Ústavu fyzikálního inženýrství jsou vyvíjena zařízení umožňující aplikovat uvedenou mikroskopickou metodu. V těchto mikroskopech jsou využívány piezoelektrické motory pro zajištění pohybu vzorku a ladicích zrcátek v optickém detekčním systému. Práce se v části věnované vývoji AFM zabývá studiem parametrů řídicích pulzů za účelem optimalizace funkce těchto komponent. Měřením vlivu tvaru pulzů a opakovací frekvence byl jejich pohyb optimalizován z hlediska stability a rychlosti posuvu. V části věnované výzkumu povrchů byly experimentálně zkoumány morfologické změny ultratenkých vrstev zlata na povrchu oxidu křemičitého za zvýšených teplot. Bylo zjištěno, že vhodná povrchová modifikace způsobuje vznik preferenčních trhlin ve vrstvě zlata. Řízeným rozdělením polykrystalické vrstvy na oddělené oblasti je možné významně ovlivnit proces tvorby ostrůvků zlata vznikajících při žíhání. S využitím metod elektronové litografie je možná příprava uspořádaných polí zlatých ostrůvků o velikostech 50 – 400 nm. Dále bylo ukázáno, že zvýšením teploty žíhání na 1000 °C dochází k postupnému zanořování ostrůvků zlata do povrchu. Tento jev je pravděpodobně způsoben přesunem oxidu křemičitého z oblasti pod zlatým ostrůvkem do těsného okolí vzniklého kráteru, kde tvoří tzv. límec. V těchto studiích vedle metody AFM byla s výhodou používána rovněž elektronová mikroskopie (SEM).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mahajan, Amit. "Ferroelectric : CNTs structures fabrication for advanced functional nano devices." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/14148.

Повний текст джерела
Анотація:
Doutoramento em Ciência e Engenharia de Materiais
This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.
Este trabalho é sobre a combinação de óxidos ferroelétricos funcionais com nanotubos de carbono (CNTs) para aplicações na microeletrónica, como por exemplo em potenciais memórias ferroelétricas não voláteis (Non Volatile Ferroelectric Random Access Memories (NV-FeRAM)) de estrutura tridimensional (3D). A eletrónica miniaturizada é nos dias de hoje omnipresente. A necessidade de reduzir o tamanho dos componentes eletrónicos tem sido estimulada por necessidades de maior desempenho em dispositivos de menores dimensões e a custos cada vez mais baixos. Mas esta tendência de miniaturização da eletrónica desafia consideravelmente os processos de fabrico, os materiais a serem utilizados nas montagens das placas e a fiabilidade, entre outros aspetos. Dispositivos semicondutores e tecnologia de circuitos integrados, juntamente com a embalagem eletrónica associada, constituem a espinha dorsal dos sistemas eletrónicos miniaturizados de alto desempenho. No entanto, à medida que o tamanho diminui e a funcionalização aumenta, a redução das dimensões destes dipositivos é cada vez mais difícil; é bem conhecido que abaixo de um tamanho limite o desempenho do dispositivo deteriora-se. Assim, a miniaturização da eletrónica à base de silício tem limitações. É precisamente neste contexto que desde 2011 o Road Map for Semiconductor Industry (ITRS) sugere tecnologias alternativas às atualmente em uso, designadas por Mais de Moore (More than Moore); sendo uma delas com base em carbono (CNTs e grafeno) [1]. Os CNTs com o seu desempenho único e tridimensionalidade à escala nanométrica, foram considerados como elementos muito promissores para a eletrónica miniaturizada [2]. Nanotubos de carbono possuem uma geometria tubular e um conjunto único de propriedades, incluindo o transporte balístico de eletrões e uma capacidade enorme de transportar a corrente elétrica, o que os tornou de grande interesse para o futuro da microeletrónica [2]. Na verdade, os CNTs podem ter um papel fundamental na miniaturização das memórias ferroelétricas não voláteis (NV-FeRAM). A mudança de uma construção tradicional bidimensional (2D) (ou seja, a duas dimensões, como são os filmes finos) para uma construção tridimensional 3D, com base num arranjo tridimensional de estruturas unidimensionais (1D), como são as estruturas nanotubulares, resultará num desempenho melhorado com deteção de sinal elétrico optimizada, devido à grande contribuição do elétrodo inferior. Uma maneira de conseguir esta configuração 3D é usando nanotubos de carbono. Os materiais ferroelétricos (FE) são polarizados espontaneamente e possuem constantes dielétricas altas e as suas propriedades piroelétricas, piezoelétricas e eletroópticas tornam-nos materiais funcionais importantes na eletrónica, sendo uma das suas aplicações chave em memórias eletrónicas. No entanto, combinar os nanotubos de carbono com óxidos FE funcionais é um desafio. Começa logo com a compatibilidade entre os materiais e o seu processamento, já que as temperaturas de cristalização do FE e as temperaturas de oxidação dos CNTs se sobrepõem. Neste caso, o processamento a baixa temperatura dos óxidos FE é absolutamente fundamental. Dentro deste contexto, neste trabalho foi realizado um estudo sistemático sobre a fabricação e caracterização estruturas combinadas de CNTs – FE, usando métodos de baixa temperatura e de baixo custo. Os FE em estudo foram compostos de titanato zirconato de chumbo (Pb1-xZrxTiO3, PZT), titanato de bário (BaTiO3, BT) e ferrite de bismuto (BiFeO3, BFO). Os diversos aspetos relacionados com a síntese e fabricação, como efeito sobre a estabilidade térmica dos nanotubos de carbono multiparede (multiwall CNTs, MWCNTs), formação da fase FE na presença de MWCNTs e interfaces entre CNTs / FE foram abordados neste trabalho. A resposta ferroelétrica medida localmente através de microscopia de ponta de prova piezoelétrica (Piezoresponse Force Microscopy (PFM)), evidenciou claramente que, mesmo para baixas temperaturas de processamento óxidos FE sobre CNTs mantém a sua natureza ferroelétrica. O trabalho começou pela identificação do comportamento de decomposição térmica em diferentes condições dos nanotubos utilizados neste trabalho. Verificou-se que os MWCNTs purificados são estáveis até 420 ºC no ar, já que não ocorre perda de peso sob condições não isotérmicas, mas foram observadas, por espectroscopia Raman e microscopia eletrónica de transmissão (TEM), alterações na morfologia dos tubos para condições isotérmicas a 400 ºC. Em atmosfera rica em oxigénio os MWCNTs começam a oxidar-se a 200 ºC. No entanto, em atmosfera rica em árgon e sob uma taxa de aquecimento elevada os MWCNTs permanecem estáveis até 1300 ºC com uma sublimação mínima. A energia de ativação para a decomposição destes MWCNTs em ar foi calculada situar-se entre 80 e 108 kJ / mol. Estes resultados são relevantes para a fabricação de estruturas MWCNTs - FE. De facto, demonstramos que o PZT pode ser depositado por sol-gel a baixas temperaturas sobre MWCNTs. E, particularmente interessante foi provar que a presença de MWCNTs diminui a temperatura e tempo para a formação de PZT, em cerca de ~ 100 ºC comensuráveis com uma diminuição na energia de ativação de 68 ± 15 kJ / mol a 27 ± 2 kJ / mol. Como consequência, foi obtido PZT monofásico a 575 ºC para as estruturas MWCNTs – PZT, enquanto que para PZT (na ausência de MWCNTs) a presença da fase de pirocloro era ainda notória a 650 ºC e onde a fase de PZT foi formada por nucleação homogénea. A natureza piezoelétrica das estruturas de MWCNTs - PZT sintetizadas a 500 ºC por 1 h foi provada por PFM. Na continuação deste trabalho foi desenvolvida uma metodologia de baixo custo para revestimento de MWCNTs usando uma combinação entre o processamento sol – gel e o processamento hidrotermal. Neste caso o FE usado como prova de conceito foi o BT. BT é uma perovesquita sem chumbo bem conhecida e utilizada em muitas aplicações microeletrónicas. No entanto, a síntese por reação no estado sólido é normalmente realizada entre 1100 - 1300 ºC o que coloca seriamente em risco a combinação com MWCNTs. Neste âmbito, também se ilustrou claramente a ineficácia da síntese hidrotérmica convencional, devido à formação de carbonatos, nomeadamente BaCO3. As estruturas MWCNTs - BT aqui preparadas são ferroelétricas e exibem resposta electromecânica (15 pm / V). Considera-se que estes resultados têm impacto elevado, uma vez que esta estratégia também pode ser estendida a outros compostos de materiais com elevadas temperaturas de cristalização. Além disso, foi também verificado no decurso deste trabalho que a cobertura de MWCNTs com FE pode ser optimizada, neste caso com funcionalização não covalente dos tubos, ou seja, por exemplo com sodium dodecyl sulfate (SDS).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mori, Thiago José de Almeida. "Materiais e técnicas para nanoestruturas magnetoelétricas compósitas." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/3928.

Повний текст джерела
Анотація:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Hybrid nanostructures which integrate two or more technologically interesting physical properties are fundamental for developing new generations of electronic devices. Exhibiting at least two coupled ferroic orders, multiferroics are an outstanding class of multifunctional materials. Compounds which present coupling between ferromagnetism and ferroelectricity are specially interesting. Although natural multiferroics are rarely found, the possibility of obtaining strain-mediated magnetoelectric coupling in composite structures, by integrating magnetostrictive and piezoelectric layers, paves the way to control electric properties by applying magnetic field or to the electric control of magnetism. Nevertheless, most scientific efforts have been on monophasic compounds or bulk composites. Considering the incorporation of magnetoelectric nanostructures in devices, expanding the scope of the magnetoelectric effect and targetting it to different kinds of applications is needed. Besides new characterization techniques, seeking new alternative materials to the lead-based piezoelectrics or oxide-based magnetostrictives is necessary. Recently, a few works using semiconductors such as ZnO and AlN, or amorphous magnetic alloys such as those based on Co, Fe and Ni, have been reported. In spite of not presenting remarkable piezoelectric and magnetostrictive effects, the features of such materials are promising for high frequency applications, for instance. Considering these issues, four independent surveys are presented. Firstly, the origin of the coupling, latest advances and current scenario of the field are reviewed. Then magnetostriction measurements in thin films are addressed by employing a direct technique based on the cantilever-capacitance method. The goals are to study magnetoelastic properties of some materials whose magnetostriction are not found very often in literature, and to check the reliability of this technique for investigating thin films. In this sense, measurements of some amorphous magnetic alloys mainly based on Co, Fe and Ni are performed. Most samples presents larger magnetoelastic response for magnetic field applied along the magnetization easy axis, as opposed to the theoretically expected. Two investigations on aluminum nitride thin films are reported. Firstly, the growth of AlN films onto several different substrates and buffer layers is studied. Films grown onto glass and polyimide show excellent structural properties for eletromechanical systems and flexible electronics applications. Samples with low residual stress on silicon substrates, suitable for incorporating in existing technologies, are obtained. Secondly, bilayers composed by AlN and ferromagnetic films are investigated. In addition to the structural and morphological properties of the AlN films which are checked, the magnetic characterization of the structures also contributes to design multilayers for exploring the magnetoelectric effect. Finally, problems involving electric fields in scanning probe microscopies are adressed. Surface images of AlN piezoelectric films are systematically acquired. Among other major observations, the possibility of getting reliable piezoresponse images of strongly polarized areas as well as of visualizing ferroelastic domains, is demonstrated. Furthermore, a new microscopy for investigating a sample s ferro and piezoelectric properties is proposed, exploring the direct piezoelectric effect. By utilizing acoustic excitation and electrical detection, the potency of this technique is illustrated with measurements on quartz and AlN surfaces.
Nanoestruturas híbridas, integrando duas ou mais propriedades físicas de grande interesse tecnológico, são fundamentais para o desenvolvimento de novas gerações de dispositivos eletrônicos. Uma classe interessante de materiais multifuncionais são os multiferróicos, que exibem pelo menos duas ordens ferróicas acopladas. Dentre eles, os que apresentam acoplamento entre ferromagnetismo e ferroeletricidade despertam interesse especial. Apesar de serem raros de ocorrer naturalmente, a possibilidade de gerar efeito magnetoelétrico em estruturas compósitas, intermediado pela deformação elástica entre camadas magnetostrictivas e piezoelétricas, abre caminho para que seja possível controlar propriedades elétricas aplicando-se campo magnético, ou propriedades magnéticas aplicando-se campo elétrico. Todavia, a maior parte das pesquisas atuais ainda envolve compostos monofásicos ou compósitos em forma massiva. Tendo em vista a incorporação de nanoestruturas magnetoelétricas em dispositivos, é fundamental ampliar a abrangência do efeito magnetoelétrico e direcioná-lo para diferentes tipos de aplicações. Para isto, além de novas técnicas de caracterização, é necessário buscar-se materiais alternativos aos tradicionais piezoelétricos baseados em chumbo e magnetostrictivos baseados em óxidos. Recentemente tem-se encontrado trabalhos pontuais onde são utilizados piezoelétricos semicondutores como ZnO e AlN, e ligas magnéticas amorfas como as baseadas em Co, Fe e Ni. Mesmo sem apresentar efeitos piezoelétrico e magnetostrictivo com magnitudes notáveis, as características destes materiais são promissoras para aplicações envolvendo altas frequências, por exemplo. Neste necessário, são apresentados quatro estudos independentes entre si. Primeiramente, é realizada uma revisão sobre a origem do acoplamento, os últimos avanços e o panorama atual das pesquisas na área. Em seguida, através de uma técnica direta baseada no método do cantiléver-capacitância, aborda-se o problema das medidas de magnetostricção em amostras na forma de filmes finos. Os objetivos são estudar as propriedades magnetoelásticas em alguns materiais que não são frequentemente abordados pela literatura, e avaliar a potencialidade da técnica para a análise de filmes finos. Para isto, são realizadas medidas principalmente em ligas ferromagnéticas amorfas baseadas em Co, Fe e Ni. Para a maioria das amostras analisadas, a resposta magnetoelástica é maior quando o campo magnético é aplicado na direção do eixo de fácil magnetização, de forma contrária à esperada teoricamente. São apresentadas duas investigações envolvendo filmes finos de nitreto de alumínio. Primeiro é estudado o crescimento de filmes de AlN sobre vários substratos e camadas semente. Filmes crescidos sobre vidro e poliimida apresentam excelentes propriedades estruturais para aplicações em sistemas eletromecânicos e eletrônica flexível. Amostras obtidas com baixos valores de tensão residual, sobre substratos de silício, são interessantes para incorporação em tecnologias existentes. Segundo, são investigadas bicamadas de AlN com filmes ferromagnéticos. Além das propriedades estruturais e morfológicas dos filmes de AlN, a análise das características magnéticas das estruturas contribui para o design de multicamadas que exploram o efeito magnetoelétrico. Finalmente, são abordados problemas em medidas de microscopias de varredura por sonda envolvendo campos elétricos. Imagens da superfície de filmes piezoelétricos de AlN foram coletadas sistematicamente. Entre outras observações importantes, demonstra-se que é possível adquirir imagens confiáveis de piezo-resposta em regiões fortemente polarizadas, e visualizar a formação de domínios ferroelásticos. Também é proposta uma nova técnica de microscopia, para investigar as propriedades ferro e piezoelétricas de uma amostra, explorando o efeito piezoelétrico direto. Utilizando excitação acústica e detecção elétrica, o potencial da nova técnica é demonstrado com imagens de superfícies cristalinas de quartzo e AlN.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ruzicka, Frank Joseph. "Exploration of voltage controlled manganite phase transitions as probed with magnetic force microscopy." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-1188.

Повний текст джерела
Анотація:
Low-temperature magnetic force microscopy was used to study the phase diagram of a La1/3Pr1/3Ca1/3MnO3 thin film grown on a (110) NdGaO3 (NGO) substrate by pulsed laser deposition. Traditionally, one can observe the phase change at the nanoscale level as the sample is cooled from room temperature through the transition temperature to liquid nitrogen temperatures, but in this case a fixed voltage ranging from 0 V to 31 V was applied before each cooling cycle. From in and ex situ transport measurements, it is observed that the temperature of the peak of the transition increases with applied field; however, the MFM images show that the magnetic transition begins at a lower temperature with the same increase in field. Thus, this dissertation shows that a new voltage control exists for the phase transition in certain manganites.
text
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Piezo Force Microscopy"

1

Huey, Bryan D., and Ramesh Nath. "High-Speed Piezo Force Microscopy: Novel Observations of Ferroelectric Domain Poling, Nucleation, and Growth." In Scanning Probe Microscopy of Functional Materials, 329–44. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7167-8_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, B., No Jin Park, S. J. Kim, and Suk Kyoung Hong. "Textures of Ferroelectric BLT Films for Semiconductor Memories by Electron Backscatter Diffraction and Piezo-Response Force Microscope." In Solid State Phenomena, 459–64. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-09-4.459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Piezo Force Microscopy"

1

Kiracofe, Daniel R., and Arvind Raman. "Unifying Theory of Quantitative Atomic Force Microscopy Using Piezo Excitation in Liquids." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47730.

Повний текст джерела
Анотація:
Base-excitation of microcantilevers using a dither piezoelectric element, also known as acoustic excitation, is one of the most popular methods for dynamic atomic force microscopy (AFM) because it is inexpensive, easy to use and does not require special cantilevers. However, in liquid environments there are problems using this method for quantitative force spectroscopy. The problems arise due spurious peaks in the driving spectrum (also known as “forest of peaks”) caused by piezo and fluid cell resonances, as well as a large base motion, which make it very hard to quantify the exciting forces. Although some groups have tried to overcome these limitations, it is has generally been accepted that acoustic excitation is unsuitable for quantitative force spectroscopy in liquids. In this work the authors show that a thorough understanding of the excitation forces and base motions reveals a method by which quantitative analysis is in fact possible with acoustic excitation in liquid environments, thus opening this popular method for quantitative dynamic AFM in liquids. This method is validated by experiments using a scanning laser Doppler vibrometer, which can measure the actual base motion. Finally, the method is demonstrated by performing force spectroscopy on solvation shells of octamethylcyclotetrasiloxane (OMCTS) molecules on mica.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nath, R., N. Polomoff, J. Bosse, Y. H. Chu, R. Ramesh, and B. D. Huey. "High Speed Piezo Force Microscopy: Nanoscale and nanosecond direct observations of domain switching." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Hyun Ju, Keun Lee, Yong Cheol Shin, Gun Hwan Kim, Cheol Seong Hwang, and Jae Wan Hong. "Combined piezo-force microscopy and conductive atomic-force microscopy for investigating leakage current conduction and local domain structure of PbTiO3 thin films." In 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. IEEE, 2007. http://dx.doi.org/10.1109/isaf.2007.4393267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shibayama, S., L. Xu, X. Tian, S. Migita, and A. Toriumi. "Depolarization Process in Ferroelectric HfO2 Probed by Piezo-response Force Microscopy (PFM)." In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.o-4-04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mangeot, Charles. "Reduced hysteresis model and temperature dependency of multilayer piezo actuators." In 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM). IEEE, 2017. http://dx.doi.org/10.1109/isaf.2017.8000212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zabek, D., C. R. Bowen, and J. Taylor. "Electrical capacitance with meshed electrodes for piezo- and pyro-electric energy harvesting applications." In 2015 Joint IEEE International Symposium on the Applications of Ferroelectrics (ISAF), International Symposium on Integrated Functionalities (ISIF) and Piezoelectric Force Microscopy Workshop (PFM). IEEE, 2015. http://dx.doi.org/10.1109/isaf.2015.7172674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kumar, Ajeet, K. C. James Raju, and A. R. James. "Enhanced piezo response in mechanically activated and microwave sintered PLZT 8/60/40 ceramics." In 2016 Joint IEEE International Symposium on the Applications of Ferroelectrics, European Conference on Application of Polar Dielectrics, and Piezoelectric Force Microscopy Workshop (ISAF/ECAPD/PFM). IEEE, 2016. http://dx.doi.org/10.1109/isaf.2016.7578073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shibayama, Shigehisa, Lun Xu, Shinji Migita, and Akira Toriumi. "Study of wake-up and fatigue properties in doped and undoped ferroelectric HfO2 in conjunction with piezo-response force microscopy analysis." In 2016 IEEE Symposium on VLSI Technology. IEEE, 2016. http://dx.doi.org/10.1109/vlsit.2016.7573415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sborikas, Martynas, Bert Fischer, and Michael Wegener. "Piezo- and ferroelectric P(VDF-TrFE) films with inkjet-printed PEDOT:PSS electrodes: Preparation parameters and property evaluation." In 2014 Joint IEEE International Symposium on the Applications of Ferroelectrics, International Workshop on Acoustic Transduction Materials and Devices & Workshop on Piezoresponse Force Microscopy (ISAF/IWATMD/PFM). IEEE, 2014. http://dx.doi.org/10.1109/isaf.2014.6923005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Faegh, Samira, and Nader Jalili. "A Comprehensive Modeling of Piezoresistive Microcantilever Sensors Used in Piezoactive Materials Characterization." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47985.

Повний текст джерела
Анотація:
Micro-Cantilever Sensors (MCS) have caught a widespread attention during past couple of years for offering label free biodetection. Amongst many current MCS-based measurement platforms, piezoresistive MCS offer a great advantage over other types of MCS especially when compared with optical measurements where sample preparation and laser alignment and adjustment are serious limitations. In order to address the uncertainties and nonlinearities inherent in nanoscale, a comprehensive modeling of the system is required. In almost all of the studies targeting piezoresistive MCS, the system is modeled as a simple lumped-parameters system which does not describe all phenomena and dynamics of the system. In the first part of this study, a comprehensive distributed-parameters modeling is proposed for the piezoresistive MCS. A new method of excitation is developed and modeled through cantilever tip instead of the commonly used techniques such as base excitation or excitation through piezo-layers deposited over cantilever surface. In the second part of this study, a comprehensive distributed-parameters modeling is proposed for the piezoresistive MCS-based force microscopy in contact with a piezoelectric sample. The output voltage of the piezoresistive layer is determined and utilized as a function of cantilever deflection through a piezoresistive modeling framework. Extensive numerical simulations are performed to demonstrate the effectiveness of the modeling framework presented here.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії