Дисертації з теми "Piecewise-smooth dynamics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-19 дисертацій для дослідження на тему "Piecewise-smooth dynamics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Geffert, Paul Matthias. "Nonequilibrium dynamics of piecewise-smooth stochastic systems." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/46783.
Повний текст джерелаHomer, Martin Edward. "Bifurcations and dynamics of piecewise smooth dynamical systems of arbitrary dimension." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299271.
Повний текст джерелаMoreno, Font Vanessa. "Unfolding piecewise-smooth dynamics in a single inductor multiple-output switching converter." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/6593.
Повний текст джерелаLa inherent naturalesa commutada d'aquests sistemes classifica la seva dinàmica dins el camp de sistemes d'estructura variable, Variable Structure Systems (VSS), els quals també es coneixen com a sistemes suaus a trams, Piecewise Smooth (PWS) systems. Atès que la teoria clàssica per a sistemes suaus no pot explicar completament el seu comportament, en els últims anys s'han dirigit molts esforços cap a la recerca de les propietats de la dinàmica no suau en diferent camps d'aplicació.
Aquesta tesi aprofundeix en la caracterització de convertidors SIMIMO, que ens permetrà provar la seva viabilitat. Es proposen dues estratègies de control basades en el conegut control PWM (Pulse Width Modulation). En la primera alternativa, el control ens permet regular un convertidor amb dues entrades i dues sortides (Two-Input Two-Output , SITITO), amb polaritats oposades. En aquest cas, les dues senyals moduladores necessàries són generades sincronitzadament i per aquest motiu, en aquesta tesi ens referirem a aquesta estratègia de control PWM com a SPC (Single Phase Control) en contraposició amb la segona alternativa, la qual serà anomenada IC (Interleaved Control), capaç de regular un número generalitzat de sortides. Aquest control està basat en l'ús de diverses senyals moduladores, tantes com a sortides, les quals s'han desfasat progressivament.
La dinàmica dels convertidors SIMIMO, al igual que els convertidors bàsics contínua - contínua, exhibeix una rica varietat de fenòmens, els quals engloben des de bifurcacions suaus, com són les bifurcacions de doblament de període (period doubling bifurcation), Saddle-Node o Hopf, fins a bifurcacions no suaus. Un cop verificada l'existència de dinàmica estable quan els paràmetres s'han seleccionatapropiadament, aquesta tesi aborda la recerca de models amb els quals analitzar la complexa dinàmica dels convertidors en un rang ampli de paràmetres. Es proposen i analitzen alguns models que s'utilitzen complementàriament: els anomenats averaged models, amb els quals es pot analitzar la dinàmica lenta, i els models discrets, capaços de detectar les inestabilitats degudes a la dinàmica ràpida. A més a més, alguns d'aquest models seran definits i analitzats. La seva utilitat s'ha provat no només en la predicció de la estabilitat, sinó també en la caracterització de bifurcacions no suaus presents en el circuit. Es demostra que senzills sistemes lineals a trams de dimensió ú proporcionen expressions analítiques per a les condicions d'estabilitat y existència de punts fixos. Per finalitzar, es desenvolupen mapes de dimensió més elevada per tal d'incrementar la precisió de les prediccions obtingudes mitjançat els averaged models i els models discrets.
L'anàlisi discreta del convertidor SITITO governat per cadascuna d'aquestes estratègies ha revelat que la dinàmica por ser modelada per un sistema lineal a trams en un rang específic de paràmetres. Fins on sabem, la bibliografia proporcionada sobre mapes PWL inclou tant mapes continus com discontinus, encara que limitats a dos trams. Per tant, aquesta tesi contribueix en el camp de la dinàmica no suau amb el desenvolupament de les propietats d'un mapa de tres trams.
Respecte al control IC, s'ha obtingut una anàlisi general de la seva estabilitat per a un convertidor SIMIMO amb un nombre genèric de càrregues. L'estudi de l'estabilitat del model discret de dimensió ú ha revelat l'existència d'un tipus de bifurcació no suau la qual ha estat classificada con una non-smooth pitchfork atesa l'aparició de nous punts fixos després de produir-se la bifurcació. Una anàlisi més detallada de models discrets de dimensions més elevades, associa aquesta bifurcació a una Neimark-Sacker.
Finalment, aquesta tesi també inclou alguns resultats experimentals obtinguts amb un prototip d'un convertidor SITITO, per tal de validar els escenaris trobats en l'anàlisi del comportament dinàmic del convertidor regulat per les dues estratègies de control.
Switching power converters are known to be appropriate solutions to supply energy to electronic devices owing to their high efficiency and low cost. Their extensive use in the last decades has motivated researches to improve their designs and to go deeply into the comprehension of their behavior which, like most power electronic devices, exhibit nonlinear dynamics. More recently, electronic equipments containing multiple loads have been arisen such as PDA, mobile phones, MP3... These applications frequently require multiple supplies with different polarities. Single-Inductor Multiple-Input Multiple-Output (SIMIMO) switching dc-dc converters are becoming as solutions to supply low power devices as LCD displays and to charge batteries due to the significant reduction of size because the use of a single inductor.
The inherent switching nature of these systems classifies their dynamics into the field of Variable Structure Systems (VSS), which are also known as Piecewise Smooth (PWS) systems. Due to the fact that their dynamics cannot be completely explained with the classical smooth theory, in the last years a lot of effort has been addressed towards the research on a theory of non-smooth dynamics motivated by different fields of application.
This dissertation deals with the dynamical characterization of SIMIMO converters, which can help us to prove their viability. Two strategies of control, both of them based on the widely used Pulse Width Modulation (PWM) control, are discussed. In the first alternative, the control is used to regulate a Two-Input Two-Output (SITITO) converter with opposite polarity. The two required modulate signals are generated synchronizely. This strategy of PWM control is called in this work Single Phase Control (SPC) in contrast to a second strategy, which is noted here as Interleaved Control (IC), capable of driving a generalized single inductor multiple-input multiple-output converters. This control is based on the use of various modulating signals, equal to the number of outputs, which are progressively time delayed.
The dynamics of the SIMIMO converters, just like of the basic dc-dc converters, presents a rich variety of nonlinear phenomena, which covers from smooth bifurcations, such as period doubling, Saddle-Node or Hopf bifurcations, to non-smooth bifurcations. After proving the existence of stable dynamics if appropriate parameters are selected, this dissertation will deal with the investigation of models to analyze the complex dynamics of the converter in a wide range of parameters. Several models are proposed and analyzed in this work. Averaged models, from which slow scale instability condition can be determined, and discrete-time models, able to prove fast scale instabilities, are used in a complementary way. Besides this, several approaches of these models will be established and validated. Their usefulness will be proved not only in the prediction of the stability, but also in the characterization of the non-smooth bifurcations presents in this converter. It will be shown that simple one-dimensional Piecewise-Linear (PWL) models provide analytical expressions for the stability and existence conditions of fixed points of the discrete-time models. Furthermore, higher dimensional maps are developed to improve the accuracy of the predictions obtained by means of one-dimensional maps and averaged models.
The discrete-time analysis of a SITITO converter driven by each of the two strategies of control has revealed that its dynamics can be modeled by a PWL with three trams in a specific range of parameters. To our best knowledge, the literature on PWL maps includes continuous and discontinuous maps but is limited to two trams. Therefore, this dissertation is a contribution in the field of non-smooth dynamics in base to the unfolding of specific dynamics of three-piece maps.
Concerning the IC control, a generalized analysis of the stability is obtained for a SIMIMO converter with a generic number of loads. The stability analysis of the one-dimensional model has revealed the existence of a type of non-smooth bifurcation, which has been classified in this dissertation as a non-smooth pitchfork owing to the appearance of two new fixed points after undergoing the bifurcation. Detailed analysis in higher dimensional maps associates this bifurcation to a Neimark-Sacker, whose existence cannot be predicted by averaged models.
This dissertation also includes some experimental results obtained with a SITITO dc-dc converter prototype, to validate some of the scenarios found in the analysis.
Zhang, Yiwei. "Applications of transfer operator methods to the dynamics of low-dimensional piecewise smooth maps." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3760.
Повний текст джерелаSvahn, Fredrik. "On the stability and control of piecewise-smooth dynamical systems with impacts and friction." Doctoral thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11079.
Повний текст джерелаRossi, Marco. "Dynamics and stability of discrete and continuous structures: flutter instability in piecewise-smooth mechanical systems and cloaking for wave propagation in Kirchhoff plates." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/322240.
Повний текст джерелаChen, Yaming. "Dynamical properties of piecewise-smooth stochastic models." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9129.
Повний текст джерелаKubin, Ingrid, and Laura Gardini. "Border Collision Bifurcations in Boom and Bust Cycles." WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3490/1/wp137.pdf.
Повний текст джерелаSeries: Department of Economics Working Paper Series
Wong, Chi Hong. "Border collision bifurcations in piecewise smooth systems." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/border-collision-bifurcations-in-piecewise-smooth-systems(1f2b9467-2c95-471b-82af-993b99d858ab).html.
Повний текст джерелаPark, Youngmin. "Infinitesimal Phase Response Curves for Piecewise Smooth Dynamical Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1370643724.
Повний текст джерелаBrandon, Quentin. "Numerical method of bifurcation analysis for piecewise-smooth nonlinear dynamical systems." Toulouse, INSA, 2009. http://eprint.insa-toulouse.fr/archive/00000312/.
Повний текст джерелаIn the field of dynamical system analysis, piecewise-smooth models have grown in popularity due to there greater flexibility and accuracy in representing some hybrid systems in applications such as electronics or mechanics. Hybrid dynamical systems have two sets of variables, one which evolve in a continuous space, and the other in a discrete one. Most analytical methods require the orbit to be smooth during objective intervals, so that some special treatments are inevitable to study the existence and stability of solutions in hybrid dynamical systems. Based on a piecewise-smooth model, where the orbit of the system is broken down into locally smooth pieces, and a hybrid bifurcation analysis method, using a Poincare map with sections ruled by the switching conditions of the system, we review the analysis process in details. Then we apply it to various extensions of the Alpazur oscillator, originally a nonsmooth 2-dimension switching oscillator. The original Alpazur oscillator, as a simple nonlinear switching system, was a perfect candidate to prove the efficiency of the approach. Each of its extensions shows a new scenario and how it can be handled, in order to illustrate the generality of the model. Finally, and in order to show more of the implementation we used for our own computer-based analysis tool, some of the most relevant numerical methods we used are introduced. It is noteworthy that the emphasis has been put on autonomous systems because the treatment of non-autonomous ones only requires a simplification (no time variation). This study brings a strong and general framework for the bifurcation analysis of nonlinear hybrid dynamical systems, illustrated by some results. Among them, some interesting local and global properties of the Alpazur Oscillator are revealed, such as the presence of a cascade of cusps in the bifurcation diagram. Our work resulted in the implementation of an analysis tool, implemented in C++, using the numerical methods that we chose for this particular purpose, such as the numerical approximation of the second derivative elements in the Jacobian matrix
Kowalczyk, Piotr. "Analytical and numerical investigations of sliding bifurcations in n dimensional piecewise smooth dynamical systems." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271797.
Повний текст джерелаJi, Hongjun. "Systèmes dynamiques coopératifs appliqués en biologie." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS514.
Повний текст джерелаThis thesis work consists of new applications of the theory of cooperative dynamical systems to the study of models in Biology. A first model of compartmentalized dynamics coupling hemodynamics and cerebral energy metabolism. It has been proposed to study a natural extension of this model comprising two distinct intracellular compartments, one representing a neuron and the other an astrocyte in addition to the extracellular compartment (also called interstitial) and the capillary compartment. We began by observing that this system (even an extension of this system to N neurons and A astrocytes) is a cooperative system. It was then possible to apply the techniques developed by Hal L. Smith and demonstrate (in all dimensions) that the single stationary point is asymptotically stable. In the following, we have considered a variant of the reduced system of dimension 2 in which we consider a piecewise differentiable dynamic that has a jump when the variable x or the variable y exceeds a certain threshold. This piecewise system allows the introduction of an autoregulation induced by a feedback of the extracellular or capillary Lactate concentrations on the Capillary Blood Flow. New dynamical phenomena are uncovered and we discuss existence and nature of two equilibrium points, attractive segment, boundary equilibrium and periodic orbits depending of the Capillary Blood Flow. In the last chapter, we consider, in contrast with the preceding chapters, a forced dynamical system. This dynamical system models a population whose environment varies periodically over time. We apply our theorem to the example of a population dynamics of insects (for example mosquitoes) with a juvenile stage exposed to a quadratic competition and an adult stage. These dynamics are subject to a seasonal periodic forcing. In particular, in temperate countries, mosquitoes are very rare in winter and grow explosively after the first rainy episodes of the hot season
Tsujii, Marcos. "Bifurcações em sistemas dinâmicos suaves por partes." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/7501.
Повний текст джерелаApproved for entry into archive by Cláudia Bueno (claudiamoura18@gmail.com) on 2017-07-07T19:52:00Z (GMT) No. of bitstreams: 2 Dissertação - Marcos Tsujii - 2015.pdf: 919903 bytes, checksum: e6e6bb36b7e9700b446e1807f1854651 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-07-07T19:52:00Z (GMT). No. of bitstreams: 2 Dissertação - Marcos Tsujii - 2015.pdf: 919903 bytes, checksum: e6e6bb36b7e9700b446e1807f1854651 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-03-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we will study the dynamics in smooth vector elds, in vector elds near the boundary and in piecewise-smooth vector elds and each of their most popular types of bifurcations up to now.
Neste trabalho, estudaremos a dinâmica em campos de vetores suaves, em campos de vetores em variedades com bordo e em campos de vetores suaves por partes e cada um dos seus respectivos tipos de bifurcações mais conhecidos.
Беляев, А. В., та A. V. Belyaev. "Анализ стохастических моделей живых систем с дискретным временем : магистерская диссертация". Master's thesis, б. и, 2020. http://hdl.handle.net/10995/87578.
Повний текст джерелаThe work contains study of three models of biological systems with discrete time. In the first chapter a one-dimensional model of neural activity defined by a piecewise-smooth map is considered. It is shown that in the case of a one-dimensional model, the presence of a random disturbance leads to a spike generation. Two mechanisms of spike generation caused by the presence of a random disturbance in one of the parameters are investigated. It is illustrated that the coexistence of two attractors is not the only reason of spiking. To predict the level of noise intensity needed to generate spikes, the confidence-domain method is used, which is based on the stochastic sensitivity function. The main characteristics of interspike intervals depending on the intensity of the noise are also described. The second chapter is devoted to the application of the method of the stochastic sensitivity function to attractors of a piecewise-smooth one-dimensional map, which describes the population dynamics. The first stage of the study is a parametric analysis of the possible regimes of the deterministic model: determining the zones of existence of stable equilibria and chaotic attractors. The theory of critical points is used to determine the parametric boundaries of a chaotic attractor. In the case where the system is affected by a random noise, based on the stochastic sensitivity function, a description of the spread of random states around equilibrium and a chaotic attractor is given. A comparative analysis of the influence of parametric and additive noise on the attractors is carried out. Using the technique of confidence intervals, the probabilistic mechanisms of extinction of a population under the influence of noise are studied. Changes in the parametric boundaries of the existence of population under the influence of random disturbance are analyzed. In the third chapter the possible dynamic modes of the Lotka-Volterra model in determi\-nistic and stochastic cases are analyzed. Depending on the two parameters of the system, bifurcation diagram is constructed. Parametric zones of the existence of stable equilibria, cycles, closed invariant curves, and also chaotic attractors are studied. The bifurcations of the period doubling, Neimark--Sacker and the crisis are described. The complex shape of the basins of attraction is demonstrated. In addition to the deterministic system, the stochastic system is studied in detail, which describes the influence of external random disturbance. In the case of chaos, an algorithm for finding critical lines describing the boundary of a chaotic attractor is given. Based on the stochastic sensitivity function, confidence bands and ellipses are constructed to describe the spread of random states around a deterministic attractor.
Ruiz, Jeidy Johana Jimenez. "Equações diferenciais de Liénard definidas em zonas." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/5638.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-03T11:43:02Z (GMT) No. of bitstreams: 2 Dissertação - Jeidy Johana Jimenez Ruiz - 2016.pdf: 946402 bytes, checksum: 0a36384eddfdcc5620d74725a24dd86a (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5)
Made available in DSpace on 2016-06-03T11:43:02Z (GMT). No. of bitstreams: 2 Dissertação - Jeidy Johana Jimenez Ruiz - 2016.pdf: 946402 bytes, checksum: 0a36384eddfdcc5620d74725a24dd86a (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) Previous issue date: 2016-03-04
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
The study under existence and uniqueness of limit cycles of equations systems differential is a very active research topic in the qualitative theory of dynamical systems. In this theme we study this topic in discontinuous dynamic systems. Let’s make this in Liénard differentials equation systems, allowing a line of discontinuity. Furthermore, we present the known method of Averaging firstly in your classic version, that is, for class fields at least C2, we study also to generalized version, to piecewise- smooth dynamical systems. As a result, we use this tool to determine the number of limit cycles that can bifurcate of a planar center, inside the equation Liénard differentials equation class.
O estudo sobre existência e unicidade de ciclos limites de sistemas de equações diferenciais é um tópico de grande interesse na teoria qualitativa de sistemas dinâmicos. Nesta dissertação, estudamos este tópico em sistemas dinâmicos descontínuos. Vamos fazer esta análise em sistemas de equações diferenciais de Liénard, permitindo uma linha de descontinuidade. Além disso, vamos apresentar o conhecido método Averaging de primeira ordem, em primeiro lugar na sua versão clássica, isto é, para campos de classe pelo menos C2, depois apresentaremos também a versão generalizada, para sistemas diferenciais definidos por partes. Como resultado, fazemos uso desta ferramenta para determinar o número de ciclos limites que podem bifurcar de um centro planar, dentro da classe de equações diferenciais de Liénard.
Perez, Otávio Henrique [UNESP]. "Bifurcações genéricas e relações de equivalência em campos de vetores suaves por partes." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/148944.
Повний текст джерелаApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T17:45:41Z (GMT) No. of bitstreams: 1 perez_oh_me_sjrp.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5)
Made available in DSpace on 2017-03-09T17:45:41Z (GMT). No. of bitstreams: 1 perez_oh_me_sjrp.pdf: 2570606 bytes, checksum: dd0f73a1627a83d453f101ef3a973d23 (MD5) Previous issue date: 2017-02-23
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Neste trabalho iremos abordar aspectos qualitativos e geométricos a respeito de campos de vetores suaves por partes. Nosso foco será estudar bifurcações locais e globais de codimensão um e dois e também algumas relações de equivalência para campos vetoriais suaves por partes definidos no plano. Classificaremos e caracterizaremos bifurcações genéricas por meio do retrato de fase e do diagrama de bifurcação dos campos envolvidos. Também faremos uma breve introdução sobre Sistemas Slow-Fast.
In this work we study qualitative and geometric aspects of piecewise smooth vector fields. Our focus is to study local and global bifurcations of codimension one and two and some equivalence relations for piecewise smooth vector fields defined on the plane. We will classify and characterize generic bifurcations using the phase portrait and the bifurcation diagram of the vector fields involved. We also incorporate a brief introduction about Slow-Fast Systems.
FAPESP: 2014/18707-6
"Unfolding piecewise-smooth dynamics in a single inductor multiple-output switching converter." Universitat Politècnica de Catalunya, 2009. http://www.tesisenxarxa.net/TDX-1224109-100335/.
Повний текст джерелаIvan, Lucian. "Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR)." Thesis, 2011. http://hdl.handle.net/1807/29759.
Повний текст джерела