Добірка наукової літератури з теми "Piecewise-smooth dynamics"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Piecewise-smooth dynamics".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Piecewise-smooth dynamics"
ZHUSUBALIYEV, ZHANYBAI T., EVGENIY A. SOUKHOTERIN, and ERIK MOSEKILDE. "BORDER-COLLISION BIFURCATIONS AND CHAOTIC OSCILLATIONS IN A PIECEWISE-SMOOTH DYNAMICAL SYSTEM." International Journal of Bifurcation and Chaos 11, no. 12 (December 2001): 2977–3001. http://dx.doi.org/10.1142/s0218127401003991.
Повний текст джерелаLi, Shuangbao, Wei Zhang, and Yuxin Hao. "Melnikov-Type Method for a Class of Discontinuous Planar Systems and Applications." International Journal of Bifurcation and Chaos 24, no. 02 (February 2014): 1450022. http://dx.doi.org/10.1142/s0218127414500229.
Повний текст джерелаKumar, Aloke, Soumitro Banerjee, and Daniel P. Lathrop. "Dynamics of a piecewise smooth map with singularity." Physics Letters A 337, no. 1-2 (March 2005): 87–92. http://dx.doi.org/10.1016/j.physleta.2005.01.046.
Повний текст джерелаNovaes, Douglas D., and Mike R. Jeffrey. "Regularization of hidden dynamics in piecewise smooth flows." Journal of Differential Equations 259, no. 9 (November 2015): 4615–33. http://dx.doi.org/10.1016/j.jde.2015.06.005.
Повний текст джерелаde Simoi, Jacopo, and Dmitry Dolgopyat. "Dynamics of some piecewise smooth Fermi-Ulam models." Chaos: An Interdisciplinary Journal of Nonlinear Science 22, no. 2 (June 2012): 026124. http://dx.doi.org/10.1063/1.3695379.
Повний текст джерелаLi, Shuangbao, Wensai Ma, Wei Zhang, and Yuxin Hao. "Melnikov Method for a Class of Planar Hybrid Piecewise-Smooth Systems." International Journal of Bifurcation and Chaos 26, no. 02 (February 2016): 1650030. http://dx.doi.org/10.1142/s0218127416500309.
Повний текст джерелаLanger, Cameron K., and Bruce N. Miller. "Regular and chaotic dynamics of a piecewise smooth bouncer." Chaos: An Interdisciplinary Journal of Nonlinear Science 25, no. 7 (July 2015): 073114. http://dx.doi.org/10.1063/1.4923747.
Повний текст джерелаRoy, Indrava, Mahashweta Patra, and Soumitro Banerjee. "Shilnikov-type dynamics in three-dimensional piecewise smooth maps." Chaos, Solitons & Fractals 133 (April 2020): 109655. http://dx.doi.org/10.1016/j.chaos.2020.109655.
Повний текст джерелаLi, Denghui, Hebai Chen, and Jianhua Xie. "Smale Horseshoe in a Piecewise Smooth Map." International Journal of Bifurcation and Chaos 29, no. 04 (April 2019): 1950051. http://dx.doi.org/10.1142/s0218127419500512.
Повний текст джерелаDONDE, VAIBHAV, and IAN A. HISKENS. "SHOOTING METHODS FOR LOCATING GRAZING PHENOMENA IN HYBRID SYSTEMS." International Journal of Bifurcation and Chaos 16, no. 03 (March 2006): 671–92. http://dx.doi.org/10.1142/s0218127406015040.
Повний текст джерелаДисертації з теми "Piecewise-smooth dynamics"
Geffert, Paul Matthias. "Nonequilibrium dynamics of piecewise-smooth stochastic systems." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/46783.
Повний текст джерелаHomer, Martin Edward. "Bifurcations and dynamics of piecewise smooth dynamical systems of arbitrary dimension." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299271.
Повний текст джерелаMoreno, Font Vanessa. "Unfolding piecewise-smooth dynamics in a single inductor multiple-output switching converter." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/6593.
Повний текст джерелаLa inherent naturalesa commutada d'aquests sistemes classifica la seva dinàmica dins el camp de sistemes d'estructura variable, Variable Structure Systems (VSS), els quals també es coneixen com a sistemes suaus a trams, Piecewise Smooth (PWS) systems. Atès que la teoria clàssica per a sistemes suaus no pot explicar completament el seu comportament, en els últims anys s'han dirigit molts esforços cap a la recerca de les propietats de la dinàmica no suau en diferent camps d'aplicació.
Aquesta tesi aprofundeix en la caracterització de convertidors SIMIMO, que ens permetrà provar la seva viabilitat. Es proposen dues estratègies de control basades en el conegut control PWM (Pulse Width Modulation). En la primera alternativa, el control ens permet regular un convertidor amb dues entrades i dues sortides (Two-Input Two-Output , SITITO), amb polaritats oposades. En aquest cas, les dues senyals moduladores necessàries són generades sincronitzadament i per aquest motiu, en aquesta tesi ens referirem a aquesta estratègia de control PWM com a SPC (Single Phase Control) en contraposició amb la segona alternativa, la qual serà anomenada IC (Interleaved Control), capaç de regular un número generalitzat de sortides. Aquest control està basat en l'ús de diverses senyals moduladores, tantes com a sortides, les quals s'han desfasat progressivament.
La dinàmica dels convertidors SIMIMO, al igual que els convertidors bàsics contínua - contínua, exhibeix una rica varietat de fenòmens, els quals engloben des de bifurcacions suaus, com són les bifurcacions de doblament de període (period doubling bifurcation), Saddle-Node o Hopf, fins a bifurcacions no suaus. Un cop verificada l'existència de dinàmica estable quan els paràmetres s'han seleccionatapropiadament, aquesta tesi aborda la recerca de models amb els quals analitzar la complexa dinàmica dels convertidors en un rang ampli de paràmetres. Es proposen i analitzen alguns models que s'utilitzen complementàriament: els anomenats averaged models, amb els quals es pot analitzar la dinàmica lenta, i els models discrets, capaços de detectar les inestabilitats degudes a la dinàmica ràpida. A més a més, alguns d'aquest models seran definits i analitzats. La seva utilitat s'ha provat no només en la predicció de la estabilitat, sinó també en la caracterització de bifurcacions no suaus presents en el circuit. Es demostra que senzills sistemes lineals a trams de dimensió ú proporcionen expressions analítiques per a les condicions d'estabilitat y existència de punts fixos. Per finalitzar, es desenvolupen mapes de dimensió més elevada per tal d'incrementar la precisió de les prediccions obtingudes mitjançat els averaged models i els models discrets.
L'anàlisi discreta del convertidor SITITO governat per cadascuna d'aquestes estratègies ha revelat que la dinàmica por ser modelada per un sistema lineal a trams en un rang específic de paràmetres. Fins on sabem, la bibliografia proporcionada sobre mapes PWL inclou tant mapes continus com discontinus, encara que limitats a dos trams. Per tant, aquesta tesi contribueix en el camp de la dinàmica no suau amb el desenvolupament de les propietats d'un mapa de tres trams.
Respecte al control IC, s'ha obtingut una anàlisi general de la seva estabilitat per a un convertidor SIMIMO amb un nombre genèric de càrregues. L'estudi de l'estabilitat del model discret de dimensió ú ha revelat l'existència d'un tipus de bifurcació no suau la qual ha estat classificada con una non-smooth pitchfork atesa l'aparició de nous punts fixos després de produir-se la bifurcació. Una anàlisi més detallada de models discrets de dimensions més elevades, associa aquesta bifurcació a una Neimark-Sacker.
Finalment, aquesta tesi també inclou alguns resultats experimentals obtinguts amb un prototip d'un convertidor SITITO, per tal de validar els escenaris trobats en l'anàlisi del comportament dinàmic del convertidor regulat per les dues estratègies de control.
Switching power converters are known to be appropriate solutions to supply energy to electronic devices owing to their high efficiency and low cost. Their extensive use in the last decades has motivated researches to improve their designs and to go deeply into the comprehension of their behavior which, like most power electronic devices, exhibit nonlinear dynamics. More recently, electronic equipments containing multiple loads have been arisen such as PDA, mobile phones, MP3... These applications frequently require multiple supplies with different polarities. Single-Inductor Multiple-Input Multiple-Output (SIMIMO) switching dc-dc converters are becoming as solutions to supply low power devices as LCD displays and to charge batteries due to the significant reduction of size because the use of a single inductor.
The inherent switching nature of these systems classifies their dynamics into the field of Variable Structure Systems (VSS), which are also known as Piecewise Smooth (PWS) systems. Due to the fact that their dynamics cannot be completely explained with the classical smooth theory, in the last years a lot of effort has been addressed towards the research on a theory of non-smooth dynamics motivated by different fields of application.
This dissertation deals with the dynamical characterization of SIMIMO converters, which can help us to prove their viability. Two strategies of control, both of them based on the widely used Pulse Width Modulation (PWM) control, are discussed. In the first alternative, the control is used to regulate a Two-Input Two-Output (SITITO) converter with opposite polarity. The two required modulate signals are generated synchronizely. This strategy of PWM control is called in this work Single Phase Control (SPC) in contrast to a second strategy, which is noted here as Interleaved Control (IC), capable of driving a generalized single inductor multiple-input multiple-output converters. This control is based on the use of various modulating signals, equal to the number of outputs, which are progressively time delayed.
The dynamics of the SIMIMO converters, just like of the basic dc-dc converters, presents a rich variety of nonlinear phenomena, which covers from smooth bifurcations, such as period doubling, Saddle-Node or Hopf bifurcations, to non-smooth bifurcations. After proving the existence of stable dynamics if appropriate parameters are selected, this dissertation will deal with the investigation of models to analyze the complex dynamics of the converter in a wide range of parameters. Several models are proposed and analyzed in this work. Averaged models, from which slow scale instability condition can be determined, and discrete-time models, able to prove fast scale instabilities, are used in a complementary way. Besides this, several approaches of these models will be established and validated. Their usefulness will be proved not only in the prediction of the stability, but also in the characterization of the non-smooth bifurcations presents in this converter. It will be shown that simple one-dimensional Piecewise-Linear (PWL) models provide analytical expressions for the stability and existence conditions of fixed points of the discrete-time models. Furthermore, higher dimensional maps are developed to improve the accuracy of the predictions obtained by means of one-dimensional maps and averaged models.
The discrete-time analysis of a SITITO converter driven by each of the two strategies of control has revealed that its dynamics can be modeled by a PWL with three trams in a specific range of parameters. To our best knowledge, the literature on PWL maps includes continuous and discontinuous maps but is limited to two trams. Therefore, this dissertation is a contribution in the field of non-smooth dynamics in base to the unfolding of specific dynamics of three-piece maps.
Concerning the IC control, a generalized analysis of the stability is obtained for a SIMIMO converter with a generic number of loads. The stability analysis of the one-dimensional model has revealed the existence of a type of non-smooth bifurcation, which has been classified in this dissertation as a non-smooth pitchfork owing to the appearance of two new fixed points after undergoing the bifurcation. Detailed analysis in higher dimensional maps associates this bifurcation to a Neimark-Sacker, whose existence cannot be predicted by averaged models.
This dissertation also includes some experimental results obtained with a SITITO dc-dc converter prototype, to validate some of the scenarios found in the analysis.
Zhang, Yiwei. "Applications of transfer operator methods to the dynamics of low-dimensional piecewise smooth maps." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3760.
Повний текст джерелаSvahn, Fredrik. "On the stability and control of piecewise-smooth dynamical systems with impacts and friction." Doctoral thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11079.
Повний текст джерелаRossi, Marco. "Dynamics and stability of discrete and continuous structures: flutter instability in piecewise-smooth mechanical systems and cloaking for wave propagation in Kirchhoff plates." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/322240.
Повний текст джерелаChen, Yaming. "Dynamical properties of piecewise-smooth stochastic models." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9129.
Повний текст джерелаKubin, Ingrid, and Laura Gardini. "Border Collision Bifurcations in Boom and Bust Cycles." WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3490/1/wp137.pdf.
Повний текст джерелаSeries: Department of Economics Working Paper Series
Wong, Chi Hong. "Border collision bifurcations in piecewise smooth systems." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/border-collision-bifurcations-in-piecewise-smooth-systems(1f2b9467-2c95-471b-82af-993b99d858ab).html.
Повний текст джерелаPark, Youngmin. "Infinitesimal Phase Response Curves for Piecewise Smooth Dynamical Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1370643724.
Повний текст джерелаКниги з теми "Piecewise-smooth dynamics"
Glendinning, Paul, and Mike R. Jeffrey. An Introduction to Piecewise Smooth Dynamics. Edited by Elena Bossolini, J. Tomàs Lázaro, and Josep M. Olm. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23689-2.
Повний текст джерелаLaurea, Mario di Bernardo, Alan R. Champneys, Christopher J. Budd, and Piotr Kowalczyk, eds. Piecewise-smooth Dynamical Systems. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84628-708-4.
Повний текст джерелаM, Di Bernardo, ed. Piecewise-smooth dynamical systems: Theory and applications. London: Springer Verlag, 2008.
Знайти повний текст джерелаBifurcations in piecewise-smooth continuous systems. New Jersey: World Scientific, 2010.
Знайти повний текст джерелаErik, Mosekilde, ed. Bifurcations and chaos in piecewise-smooth dynamical systems. River Edge, N.J: World Scientific, 2003.
Знайти повний текст джерелаGlendinning, Paul, Mike R. Jeffrey, J. Tomàs Lázaro, Josep M. Olm, and Elena Bossolini. An Introduction to Piecewise Smooth Dynamics. Birkhäuser, 2019.
Знайти повний текст джерелаBernardo, Mario, Chris Budd, Alan Richard Champneys, and Piotr Kowalczyk. Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, 2008.
Знайти повний текст джерелаBernardo, Mario, Chris Budd, Alan Richard Champneys, and Piotr Kowalczyk. Piecewise-smooth Dynamical Systems: Theory and Applications. Springer, 2010.
Знайти повний текст джерелаBernardo, M. di, C. J. Budd, P. Kowalczyk, and Alan Richard Champneys. Piecewise-smooth Dynamical Systems: Theory and Applications (Applied Mathematical Sciences). Springer, 2007.
Знайти повний текст джерелаThe Octagonal PETs. American Mathematical Society, 2014.
Знайти повний текст джерелаЧастини книг з теми "Piecewise-smooth dynamics"
Glendinning, Paul, and Mike R. Jeffrey. "Piecewise-smooth Flows." In An Introduction to Piecewise Smooth Dynamics, 3–53. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23689-2_1.
Повний текст джерелаGlendinning, Paul, and Mike R. Jeffrey. "Piecewise-smooth Maps." In An Introduction to Piecewise Smooth Dynamics, 55–121. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23689-2_2.
Повний текст джерелаPiltz, Sofia H. "Smoothing a Piecewise-Smooth: An Example from Plankton Population Dynamics." In Trends in Mathematics, 147–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55642-0_26.
Повний текст джерелаBrandão, P., J. Palis, and V. Pinheiro. "On the Statistical Attractors and Attracting Cantor Sets for Piecewise Smooth Maps." In New Trends in One-Dimensional Dynamics, 31–50. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16833-9_4.
Повний текст джерелаGardini, Laura, and Iryna Sushko. "Bifurcations in Smooth and Piecewise Smooth Noninvertible Maps." In Difference Equations, Discrete Dynamical Systems and Applications, 83–128. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20016-9_4.
Повний текст джерелаTeixeira, Marco Antonio, and Otávio M. L. Gomide. "Generic Singularities of 3D Piecewise Smooth Dynamical Systems." In Advances in Mathematics and Applications, 373–404. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94015-1_15.
Повний текст джерелаAvrutin, Viktor, and Iryna Sushko. "A Gallery of Bifurcation Scenarios in Piecewise Smooth 1D Maps." In Global Analysis of Dynamic Models in Economics and Finance, 369–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29503-4_14.
Повний текст джерелаMartins, Ricardo M., and Durval J. Tonon. "The Chaotic Behavior of Piecewise Smooth Dynamical Systems on Torus and Sphere." In Trends in Mathematics, 125–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55642-0_22.
Повний текст джерелаUeta, Tetsushi, Tohru Kawabe, Guanrong Chen, and Hiroshi Kawakami. "Calculation and Control of Unstable Periodic Orbits in Piecewise Smooth Dynamical Systems." In Chaos Control, 321–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44986-7_14.
Повний текст джерелаNa, Jing, Qiang Chen, and Xuemei Ren. "Adaptive Control for Manipulation Systems With Discontinuous Piecewise Parametric Friction Model." In Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics, 93–105. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813683-6.00008-8.
Повний текст джерелаТези доповідей конференцій з теми "Piecewise-smooth dynamics"
Vestroni, Fabrizio, Paolo Casini, and Oliviero Giannini. "Nonlinear Dynamics of Piecewise Smooth Systems and Damage Identification." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48901.
Повний текст джерелаSaunders, B., R. Vasconcellos, Robert Kuether, and A. Abdelkefi. "Insights on the dynamics of piecewise-smooth oscillators with continuous representations." In Proposed for presentation at the NODYCON 2021 held February 16-19, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1844047.
Повний текст джерелаGall, Walter, Ying Zhou, and Joseph Salisbury. "Synchronization of a Network With Piecewise-Linear Dynamics." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4230.
Повний текст джерелаFedonyuk, Vitaliy, and Phanindra Tallapragada. "The Stick-Slip Motion of a Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9820.
Повний текст джерелаIklódi, Zsolt, Xavier Beudaert, and Zoltan Dombovari. "On the Modelling Bases of In-Motion Dynamic Characterization of Flexible Structures Subject to Friction and Position Control Delay." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90924.
Повний текст джерелаNguyen, Kim D., and Harry Dankowicz. "Principles of Dynamics for Design Applied to a Brush-Belt Material-Transfer System." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34431.
Повний текст джерелаWiebe, R., and T. Li. "Free Dynamics of Multi-Block Rocking Assemblies." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68014.
Повний текст джерелаYang, D. C. H., and Jui-Jen Chou. "Automatic Generation of Piecewise Constant Speed Motion for Multi-Axis Machines." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0337.
Повний текст джерелаBeregi, Sándor, Dénes Takács, and David A. W. Barton. "Hysteresis Effect in the Nonlinear Stability of Towed Wheels." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67722.
Повний текст джерелаKong, Nathan J., George Council, and Aaron M. Johnson. "iLQR for Piecewise-Smooth Hybrid Dynamical Systems." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683506.
Повний текст джерела