Добірка наукової літератури з теми "Piecewise-smooth dynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Piecewise-smooth dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Piecewise-smooth dynamics"

1

ZHUSUBALIYEV, ZHANYBAI T., EVGENIY A. SOUKHOTERIN, and ERIK MOSEKILDE. "BORDER-COLLISION BIFURCATIONS AND CHAOTIC OSCILLATIONS IN A PIECEWISE-SMOOTH DYNAMICAL SYSTEM." International Journal of Bifurcation and Chaos 11, no. 12 (2001): 2977–3001. http://dx.doi.org/10.1142/s0218127401003991.

Повний текст джерела
Анотація:
Many problems of engineering and applied science result in the consideration of piecewise-smooth dynamical systems. Examples are relay and pulse-width control systems, impact oscillators, power converters, and various electronic circuits with piecewise-smooth characteristics. The subject of investigation in the present paper is the dynamical model of a constant voltage converter which represents a three-dimensional piecewise-smooth system of nonautonomous differential equations. A specific type of phenomena that arise in the dynamics of piecewise-smooth systems are the so-called border-collisi
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Shuangbao, Wei Zhang, and Yuxin Hao. "Melnikov-Type Method for a Class of Discontinuous Planar Systems and Applications." International Journal of Bifurcation and Chaos 24, no. 02 (2014): 1450022. http://dx.doi.org/10.1142/s0218127414500229.

Повний текст джерела
Анотація:
In this paper, we extend the well-known Melnikov method for smooth systems to a class of periodic perturbed piecewise smooth planar system. We assume that the unperturbed system is a piecewise Hamiltonian system which possesses a piecewise smooth homoclinic solution transversally crossing the switching manifold. The Melnikov-type function is explicitly derived by using the Hamiltonian function to measure the distance of the perturbed stable and unstable manifolds. Finally, we apply the obtained results to study the chaotic dynamics of a concrete piecewise smooth system.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Aloke, Soumitro Banerjee, and Daniel P. Lathrop. "Dynamics of a piecewise smooth map with singularity." Physics Letters A 337, no. 1-2 (2005): 87–92. http://dx.doi.org/10.1016/j.physleta.2005.01.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Novaes, Douglas D., and Mike R. Jeffrey. "Regularization of hidden dynamics in piecewise smooth flows." Journal of Differential Equations 259, no. 9 (2015): 4615–33. http://dx.doi.org/10.1016/j.jde.2015.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

de Simoi, Jacopo, and Dmitry Dolgopyat. "Dynamics of some piecewise smooth Fermi-Ulam models." Chaos: An Interdisciplinary Journal of Nonlinear Science 22, no. 2 (2012): 026124. http://dx.doi.org/10.1063/1.3695379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Shuangbao, Wensai Ma, Wei Zhang, and Yuxin Hao. "Melnikov Method for a Class of Planar Hybrid Piecewise-Smooth Systems." International Journal of Bifurcation and Chaos 26, no. 02 (2016): 1650030. http://dx.doi.org/10.1142/s0218127416500309.

Повний текст джерела
Анотація:
In this paper, we extend the well-known Melnikov method for smooth systems to a class of periodic perturbed planar hybrid piecewise-smooth systems. In this class, the switching manifold is a straight line which divides the plane into two zones, and the dynamics in each zone is governed by a smooth system. When a trajectory reaches the separation line, then a reset map is applied instantaneously before entering the trajectory in the other zone. We assume that the unperturbed system is a piecewise Hamiltonian system which possesses a piecewise-smooth homoclinic solution transversally crossing th
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Langer, Cameron K., and Bruce N. Miller. "Regular and chaotic dynamics of a piecewise smooth bouncer." Chaos: An Interdisciplinary Journal of Nonlinear Science 25, no. 7 (2015): 073114. http://dx.doi.org/10.1063/1.4923747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roy, Indrava, Mahashweta Patra, and Soumitro Banerjee. "Shilnikov-type dynamics in three-dimensional piecewise smooth maps." Chaos, Solitons & Fractals 133 (April 2020): 109655. http://dx.doi.org/10.1016/j.chaos.2020.109655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Denghui, Hebai Chen, and Jianhua Xie. "Smale Horseshoe in a Piecewise Smooth Map." International Journal of Bifurcation and Chaos 29, no. 04 (2019): 1950051. http://dx.doi.org/10.1142/s0218127419500512.

Повний текст джерела
Анотація:
We investigate the chaotic dynamics of a two-dimensional piecewise smooth map. The map represents the normal form of a discrete time representation of impact oscillators near grazing states. It is proved that, in certain region of the parameter space, the nonwandering set of the map is contained in a bounded region and that, restricted to the nonwandering set, the map is topologically conjugate to the two-sided shift map on two symbols.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

DONDE, VAIBHAV, and IAN A. HISKENS. "SHOOTING METHODS FOR LOCATING GRAZING PHENOMENA IN HYBRID SYSTEMS." International Journal of Bifurcation and Chaos 16, no. 03 (2006): 671–92. http://dx.doi.org/10.1142/s0218127406015040.

Повний текст джерела
Анотація:
Hybrid systems are typified by strong coupling between continuous dynamics and discrete events. For such piecewise smooth systems, event triggering generally has a significant influence over subsequent system behavior. Therefore, it is important to identify situations where a small change in parameter values alters the event triggering pattern. The bounding case, which separates regions of (generally) quite different dynamic behaviors, is referred to as grazing. At a grazing point, the system trajectory makes tangential contact with an event triggering hypersurface. The paper formulates condit
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Piecewise-smooth dynamics"

1

Geffert, Paul Matthias. "Nonequilibrium dynamics of piecewise-smooth stochastic systems." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/46783.

Повний текст джерела
Анотація:
Piecewise-smooth stochastic systems have attracted a lot of interest in the last decades in engineering science and mathematics. Many investigations have focused only on one-dimensional problems. This thesis deals with simple two-dimensional piecewise-smooth stochastic systems in the absence of detailed balance. We investigate the simplest example of such a system, which is a pure dry friction model subjected to coloured Gaussian noise. The nite correlation time of the noise establishes an additional dimension in the phase space and gives rise to a non-vanishing probability current. Our invest
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Homer, Martin Edward. "Bifurcations and dynamics of piecewise smooth dynamical systems of arbitrary dimension." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moreno, Font Vanessa. "Unfolding piecewise-smooth dynamics in a single inductor multiple-output switching converter." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/6593.

Повний текст джерела
Анотація:
Els convertidors commutats de potència són solucions apropiades per subministrar energia a dispositius electrònics per la seva elevada eficiència i reduït cost. El seu ús extensiu en les últimes dècades ha motivat els investigadors a millorar els seus dissenys i aprofundir en la comprensió del seu comportament el qual, com la majoria de dispositius electrònics de potència, presenta dinàmiques no lineals. Recentment, han aparegut equipaments electrònics que disposen de múltiples càrregues com són els PDA, telèfons mòbils, MP3... Freqüentment, aquestes aplicacions necessiten múltiples alimentaci
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Yiwei. "Applications of transfer operator methods to the dynamics of low-dimensional piecewise smooth maps." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/3760.

Повний текст джерела
Анотація:
This thesis primarily concentrates on stochastic and spectral properties of the transfer operator generated by piecewise expanding maps (PWEs) and piecewise isometries (PWIs). We also consider the applications of the transfer operator in thermodynamic formalism. The original motivation stems from studies of one-dimensional PWEs. In particular, any one dimensional mixing PWE admits a unique absolutely continuous invariant probability measure (ACIP) and this ACIP has a bounded variation density. The methodology used to prove the existence of this ACIP is based on a so-called functional analytic
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Svahn, Fredrik. "On the stability and control of piecewise-smooth dynamical systems with impacts and friction." Doctoral thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rossi, Marco. "Dynamics and stability of discrete and continuous structures: flutter instability in piecewise-smooth mechanical systems and cloaking for wave propagation in Kirchhoff plates." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/322240.

Повний текст джерела
Анотація:
The first part of this Thesis deals with the analysis of piecewise-smooth mechanical systems and the definition of special stability criteria in presence of non-conservative follower forces. To illustrate the peculiar stability properties of this kind of dynamical system, a reference 2 d.o.f. structure has been considered, composed of a rigid bar, with one and constrained to slide, without friction, along a curved profile, whereas the other and is subject to a follower force. In particular, the curved constraint is assumed to be composed of two circular profiles, with different and opposite
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, Yaming. "Dynamical properties of piecewise-smooth stochastic models." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9129.

Повний текст джерела
Анотація:
Piecewise-smooth stochastic systems are widely used in engineering science. However, the theory of these systems is only in its infancy. In this thesis, we take as an example the Brownian motion with dry friction to illustrate dynamical properties of these systems with respect to three interesting topics: (i) weak-noise approximations, (ii) first-passage time (FPT) problems and (iii) functionals of stochastic processes. Firstly, we investigate the validity and accuracy of weak-noise approximations for piecewise-smooth stochastic differential equations (SDEs), taking as an illustrative example
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kubin, Ingrid, and Laura Gardini. "Border Collision Bifurcations in Boom and Bust Cycles." WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3490/1/wp137.pdf.

Повний текст джерела
Анотація:
Boom and bust cycles are widely documented in the literature on industry dynamics. Rigidities and delays in capacity adjustment in combination with bounded rational behavior have been identified as central driving forces. We construct a model that features only these two elements and we show that this is indeed sufficient to reproduce some stylized facts of a boom and bust cycle. The bifurcation diagrams summarizing the dynamic behavior reveal complex cycles and in particular also abrupt changes in the nature of these cycles. We apply new insights from the mathematical theory of piecewise smo
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wong, Chi Hong. "Border collision bifurcations in piecewise smooth systems." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/border-collision-bifurcations-in-piecewise-smooth-systems(1f2b9467-2c95-471b-82af-993b99d858ab).html.

Повний текст джерела
Анотація:
Piecewise smooth maps appear as models of various physical, economical and other systems. In such maps bifurcations can occur when a fixed point or periodic orbit crosses or collides with the border between two regions of smooth behaviour as a system parameter is varied. These bifurcations have little analogue in standard bifurcation theory for smooth maps and are often more complex. They are now known as "border collision bifurcations". The classification of border collision bifurcations is only available for one-dimensional maps. For two and higher dimensional piecewise smooth maps the study
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Park, Youngmin. "Infinitesimal Phase Response Curves for Piecewise Smooth Dynamical Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1370643724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Piecewise-smooth dynamics"

1

Glendinning, Paul, and Mike R. Jeffrey. An Introduction to Piecewise Smooth Dynamics. Edited by Elena Bossolini, J. Tomàs Lázaro, and Josep M. Olm. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23689-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laurea, Mario di Bernardo, Alan R. Champneys, Christopher J. Budd, and Piotr Kowalczyk, eds. Piecewise-smooth Dynamical Systems. Springer London, 2008. http://dx.doi.org/10.1007/978-1-84628-708-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

M, Di Bernardo, ed. Piecewise-smooth dynamical systems: Theory and applications. Springer Verlag, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bifurcations in piecewise-smooth continuous systems. World Scientific, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Erik, Mosekilde, ed. Bifurcations and chaos in piecewise-smooth dynamical systems. World Scientific, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Glendinning, Paul, Mike R. Jeffrey, J. Tomàs Lázaro, Josep M. Olm, and Elena Bossolini. An Introduction to Piecewise Smooth Dynamics. Birkhäuser, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bernardo, Mario, Chris Budd, Alan Richard Champneys, and Piotr Kowalczyk. Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bernardo, Mario, Chris Budd, Alan Richard Champneys, and Piotr Kowalczyk. Piecewise-smooth Dynamical Systems: Theory and Applications. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bernardo, M. di, C. J. Budd, P. Kowalczyk, and Alan Richard Champneys. Piecewise-smooth Dynamical Systems: Theory and Applications (Applied Mathematical Sciences). Springer, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

The Octagonal PETs. American Mathematical Society, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Piecewise-smooth dynamics"

1

Glendinning, Paul, and Mike R. Jeffrey. "Piecewise-smooth Flows." In An Introduction to Piecewise Smooth Dynamics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23689-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glendinning, Paul, and Mike R. Jeffrey. "Piecewise-smooth Maps." In An Introduction to Piecewise Smooth Dynamics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23689-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Piltz, Sofia H. "Smoothing a Piecewise-Smooth: An Example from Plankton Population Dynamics." In Trends in Mathematics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55642-0_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brandão, P., J. Palis, and V. Pinheiro. "On the Statistical Attractors and Attracting Cantor Sets for Piecewise Smooth Maps." In New Trends in One-Dimensional Dynamics. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16833-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gardini, Laura, and Iryna Sushko. "Bifurcations in Smooth and Piecewise Smooth Noninvertible Maps." In Difference Equations, Discrete Dynamical Systems and Applications. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20016-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Teixeira, Marco Antonio, and Otávio M. L. Gomide. "Generic Singularities of 3D Piecewise Smooth Dynamical Systems." In Advances in Mathematics and Applications. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94015-1_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Avrutin, Viktor, and Iryna Sushko. "A Gallery of Bifurcation Scenarios in Piecewise Smooth 1D Maps." In Global Analysis of Dynamic Models in Economics and Finance. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29503-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martins, Ricardo M., and Durval J. Tonon. "The Chaotic Behavior of Piecewise Smooth Dynamical Systems on Torus and Sphere." In Trends in Mathematics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55642-0_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ueta, Tetsushi, Tohru Kawabe, Guanrong Chen, and Hiroshi Kawakami. "Calculation and Control of Unstable Periodic Orbits in Piecewise Smooth Dynamical Systems." In Chaos Control. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44986-7_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Na, Jing, Qiang Chen, and Xuemei Ren. "Adaptive Control for Manipulation Systems With Discontinuous Piecewise Parametric Friction Model." In Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813683-6.00008-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Piecewise-smooth dynamics"

1

Vestroni, Fabrizio, Paolo Casini, and Oliviero Giannini. "Nonlinear Dynamics of Piecewise Smooth Systems and Damage Identification." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48901.

Повний текст джерела
Анотація:
This paper addresses the study of the nonlinear dynamics of non-smooth systems representative of beams with breathing cracks. The aim is to use the nonlinear characteristics of the system response to identify the damage in cracked structures that behave similarly to bilinear systems and hence exhibit nonlinear phenomena in the dynamic response even for low damage levels. The idea is supported by the study of a piecewise smooth 2-DOF model where a wide variety of nonlinear phenomena has been evidenced, which include among others the bifurcations of super-abundant modes and a number of resonance
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saunders, B., R. Vasconcellos, Robert Kuether, and A. Abdelkefi. "Insights on the dynamics of piecewise-smooth oscillators with continuous representations." In Proposed for presentation at the NODYCON 2021 held February 16-19, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1844047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gall, Walter, Ying Zhou, and Joseph Salisbury. "Synchronization of a Network With Piecewise-Linear Dynamics." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4230.

Повний текст джерела
Анотація:
We consider two and three phase-oscillators as in the Kuramoto model of coupled oscillators, replacing the sine wave interaction with a sawtooth wave. We show that for the case of non-uniform input-symmetric coupling strengths, the non-smooth, piecewise-linear dynamics synchronizes when the coupling strengths are large enough to overcome the differences in the natural frequencies of the oscillators. Stability is analyzed separately in the regions where the dynamics is linearized. These regions are separated by the switching boundaries where the vector field is discontinuous.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fedonyuk, Vitaliy, and Phanindra Tallapragada. "The Stick-Slip Motion of a Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9820.

Повний текст джерела
Анотація:
The Chaplygin sleigh is a canonical problem of mechanical systems with nonholonomic constraints, which arises due to the role of friction. The motion of the cart has often been studied under the assumption that the magnitude of friction is as high as necessary to prevent slipping. We relax this assumption by setting a maximum finite value to the friction. The Chaplygin sleigh is then under a piecewise smooth nonholonomic constraint and transitions between ‘slip’ and ‘stick’ modes. We investigate these transitions and the resulting non smooth dynamics of the system. Further more the piecewise s
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Iklódi, Zsolt, Xavier Beudaert, and Zoltan Dombovari. "On the Modelling Bases of In-Motion Dynamic Characterization of Flexible Structures Subject to Friction and Position Control Delay." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90924.

Повний текст джерела
Анотація:
Abstract This article presents a characterisation technique of in-motion machine dynamics based on the principles of numerical continuation. A linear two degree of freedom mechanical model is considered, representing e.g. a flexible moving column of a machine tool, and is subjected to a non-smooth friction and a delayed feedback drive control force, resulting in a model governed by a system of piecewise-smooth delay differential equations. By applying harmonic forcing to the system, periodic solutions can be found, through the continuation of which, an accurate vibratory characterisation of in
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nguyen, Kim D., and Harry Dankowicz. "Principles of Dynamics for Design Applied to a Brush-Belt Material-Transfer System." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34431.

Повний текст джерела
Анотація:
This paper considers the performance characteristics of a brush-based material-transfer system, and the frictional interactions that result from the presence of particulate contaminants. The analysis of the dynamics of spherical objects transported through a cartridge by the brush is applied to isotropic and anisotropic belt designs. Experimental measurements of the load on individual objects, obtained using an instrumented cantilever, are compared with the predictions from a heuristic model, as well as preliminary observations from a qualitative bifurcation analysis of a piecewise-smooth dyna
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wiebe, R., and T. Li. "Free Dynamics of Multi-Block Rocking Assemblies." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68014.

Повний текст джерела
Анотація:
Rocking systems are increasingly being investigated for use as base-isolators in structural engineering applications. Unfortunately these systems present complicated, piecewise defined, kinematic relationships between their generalized coordinates (usually the joint opening angles). This makes it difficult to obtain the governing equations, even for the dynamics between rocking/impact events. This paper seeks to address this through a systematic formulation of the governing equations of rocking post-tensioned assemblies with any number of blocks under base motion. The results are limited to th
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, D. C. H., and Jui-Jen Chou. "Automatic Generation of Piecewise Constant Speed Motion for Multi-Axis Machines." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0337.

Повний текст джерела
Анотація:
Abstract This paper presents a general theory on the generation of smooth motion profiles for the coordinated motion of multi-axis manipulators with orthogonal regional structures. Motion with constant speed is important and required in many manufacturing processes, such as milling, welding, finishing and painting. In this paper, a piecewise constant speed profile is constructed by a sequence of Hermite cuves to form a composite Hermite curve in parametric domain. Due to the continuity of acceleration in the proposed speed profile, it generates relatively better product quality than traditiona
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Beregi, Sándor, Dénes Takács, and David A. W. Barton. "Hysteresis Effect in the Nonlinear Stability of Towed Wheels." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67722.

Повний текст джерела
Анотація:
In this paper the dynamics of towed elastic wheels are studied with the help of the brush tyre model. To calculate the lateral deformation of the contact patch centre-line distributed time-delay is taken into account for the rolling parts, whereas parabolic limits are used to determine the deformation in case of side-slip. After linear stability analysis of the rectilinear motion the limit cycles of the non-smooth time-delayed system are calculated with the method of numerical collocation. With the help of bifurcation diagrams it is demonstrated how the periodic orbits develop from the linear
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kong, Nathan J., George Council, and Aaron M. Johnson. "iLQR for Piecewise-Smooth Hybrid Dynamical Systems." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!