Добірка наукової літератури з теми "Phytoremediation enhanced by microorganisms"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phytoremediation enhanced by microorganisms".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Phytoremediation enhanced by microorganisms"
ANDARISTA UTOMO, ADZALIA, and SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil." Current World Environment 13, Special issue 1 (November 25, 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Повний текст джерелаPtaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska, and Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil." Agronomy 10, no. 7 (July 1, 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Повний текст джерелаPino, Nancy J., Luisa M. Muñera, and Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil." Soil and Sediment Contamination: An International Journal 25, no. 4 (April 27, 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Повний текст джерелаZhao, Chong, Guosen Zhang, and Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture." International Journal of Environmental Research and Public Health 18, no. 2 (January 19, 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Повний текст джерелаAlarcón, Alejandro, Fred T. Davies, Robin L. Autenrieth, and David A. Zuberer. "Arbuscular Mycorrhiza and Petroleum-Degrading Microorganisms Enhance Phytoremediation of Petroleum-Contaminated Soil." International Journal of Phytoremediation 10, no. 4 (July 8, 2008): 251–63. http://dx.doi.org/10.1080/15226510802096002.
Повний текст джерелаJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao, and Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover." Canadian Journal of Microbiology 59, no. 7 (July 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Повний текст джерелаGuo, Shuyu, Bo Feng, Chunqiao Xiao, Qi Wang, and Ruan Chi. "Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil." Bioremediation Journal 25, no. 3 (February 16, 2021): 271–81. http://dx.doi.org/10.1080/10889868.2021.1884528.
Повний текст джерелаIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah, and Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]." KnE Life Sciences 3, no. 5 (September 11, 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Повний текст джерелаDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming." Metabolites 13, no. 2 (February 9, 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Повний текст джерелаIqra Tabassum, Sumaira Mazhar, and Beenish Sarfraz. "Phytoremediation of Lead Contaminated Soil Using Sorghum Plant in Association with Indigenous Microbes." Scientific Inquiry and Review 6, no. 3 (September 15, 2022): 79–93. http://dx.doi.org/10.32350/sir.63.05.
Повний текст джерелаДисертації з теми "Phytoremediation enhanced by microorganisms"
Afegbua, Seniyat Larai. "Importance of plants and microorganisms in the Phytoremediation of brownfield sites." Thesis, University of Birmingham, 2014. http://etheses.bham.ac.uk//id/eprint/5450/.
Повний текст джерелаSaunders, Aaron M. "The physiology of microorganisms in enhanced biological phosphorous removal /." [St. Lucia, Qld.], 2005. http://adt.library.uq.edu.au/public/adt-QU20060322.224547/index.html.
Повний текст джерелаWu, Shengchun. "Enhanced phytoextraction of metal contaminated soils using beneficial microorganisms." HKBU Institutional Repository, 2004. http://repository.hkbu.edu.hk/etd_ra/589.
Повний текст джерелаSengupta, Atanu. "Detection of biological species by surface enhanced Raman scattering /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8523.
Повний текст джерелаHii, Yiik Siang. "Isolation and Microencapsulation of Phosphate Solubilizing Microorganisms for Enhanced Agricultural Growth on Peat." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/82187.
Повний текст джерелаMichelini, Lucia. "Sulfonamide accumulation and effects on herbaceous and woody plants and microorganisms." Doctoral thesis, Università degli studi di Padova, 2013. http://hdl.handle.net/11577/3422567.
Повний текст джерелаUna delle vie principali attraverso cui i farmaci possono entrare nell'ambiente consiste nell’ampio uso che se ne fa in zootecnia. Infatti, in Europa questi principi attivi sono venduti nell’ordine di centinaia di tonnellate annue per singola nazione, per il solo utilizzo in ambito veterinario. In seguito alla somministrazione, fino al 90% della dose utilizzata di farmaco può essere escreta inalterata e, in seguito all'utilizzo del letame come ammendante organico, suolo e acque possono risultare contaminate. Il presente studio si concentra sugli effetti e sull’accumulo in piante legnose ed erbacee di sulfamidici, un gruppo di agenti antimicrobici (d'ora in poi chiamati antibiotici) frequentemente rilevati negli ecosistemi agrari, la cui persistenza rappresenta un serio rischio per gli organismi viventi ad essi connessi. La tesi è articolata in 7 capitoli. Nella prima parte (capitolo 1) è descritta la situazione generale relativa alla presenza di antibiotici negli ambienti agrari e al loro impatto sulla crescita e lo sviluppo di organismi viventi ad essi esposti. Successivamente, dal capitolo 2 al capitolo 6, sono presentate varie prove sperimentali, alcune effettuate in laboratorio ed altre in serra. In particolare, il capitolo 2 si occupa della risposta di piante di Salix fragilis L. all’antibiotico sulfadimetossina, aggiunto alla soluzione nutritiva in concentrazioni da 155 a 620 mg l-1, nonché del potenziale accumulo nei tessuti vegetali. Lo studio mostra la tendenza di questa specie legnosa di assorbire e accumulare la molecola attiva a livello di apparato radicale. Il capitolo 3 ripercorre il disegno sperimentale adottato nella prova descritta nel capitolo 2, con la differenza che, in questo caso, le piante di Salix fragilis L. sono state esposte a dosi di sulfadimetossina che approssimano quelle registrate in alcuni ambientali agrari, ovvero da 0.01 a 10 mg l-1. Lo studio ha mostrato che non appaiono effetti negativi sulla crescita delle piante di salice fino alla dose di 1 mg l-1. Tuttavia, aumentando il livello del principio attivo sono state evidenziate delle importanti alterazioni sull’architettura radicale. I capitoli 4 e 5 considerano, rispettivamente, gli effetti e l'accumulo di un altro sulfamidico in piante di Salix fragilis L. e Zea mays L., coltivate in un terreno arricchito con 10 mg e 200 kg-1 di sulfadiazina e il suo impatto sulle comunità microbiche e sulle attività enzimatiche associate al suolo e alla radice delle due specie vegetali. L'ultimo studio, presentato nel capitolo 6, si concentra sugli effetti indotti da circa 10 mg l-1 di sulfadimetossina e sulfametazina sulla struttura e sulla funzionalità di radici di Hordeum vulgare L. I risultati provano che i sulfamidici causano importanti effetti sulla morfologia dell'apparato radicale e sull’integrità delle membrane delle cellule radicali. Concludendo, si è evidenziato (capitolo 7) che il Salix fragilis L. accumula e tollera meglio di Zea mays L. e Hordeum vulgare L. le molecole attive testate, mentre le specie erbacee sembrano essere più vulnerabili a questi inquinanti, di cui ne viene sconsigliato l’eventuale utilizzo nel campo del fitorimedio. Inoltre, in capitolo 7 rimarca le conseguenze negative sulla diversità funzionale e strutturale delle comunità microbiche del suolo.
Van, Zwieten Lukas. "Enhanced biodegradation of phenoxyacetate and triazine herbicides by plant-microbial rhizoplane associations and adapted soil microorganisms." Thesis, The University of Sydney, 1995. https://hdl.handle.net/2123/26900.
Повний текст джерелаCabrera, Motta José Alfonso. "Isolation, characterization and interactions of soil microorganisms involved in the enhanced biodegradation of non-fumigant organophosphate nematicides." Göttingen Cuvillier, 2009. http://d-nb.info/996598324/04.
Повний текст джерелаWillis, Robert M. "ncreased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty Alcohols." DigitalCommons@USU, 2013. http://digitalcommons.usu.edu/etd/1530.
Повний текст джерелаWillis, Robert M. "Increased Production and Extraction Efficiency of Triacylglycerides from Microorganisms and an Enhanced Understanding of the Pathways Involved in the Production of Triacylglycerides and Fatty Alcohols." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1530.
Повний текст джерелаКниги з теми "Phytoremediation enhanced by microorganisms"
Johnson, A. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Знайти повний текст джерелаA, Johnson, and Singhal Naresh 1963-, eds. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаSmith, Geoffrey B. Development of a laser-based detection system for water-borne pathogens. Las Cruces, N.M: New Mexico Water Resources Research Institute, New Mexico State University, 2004.
Знайти повний текст джерелаNational Aeronautics and Space Administration (NASA) Staff. Enhanced Characterization of Microorganisms in the Spacecraft Environment. Independently Published, 2018.
Знайти повний текст джерелаPlant Growth Promoting Microorganisms: Microbial Resources for Enhanced Agricultural Productivity. Nova Science Publishers, Incorporated, 2019.
Знайти повний текст джерелаRaj, Niranjan S., and A. C. Udayashankar. Plant Growth Promoting Microorganisms: Microbial Resources for Enhanced Agricultural Productivity. Nova Science Publishers, Incorporated, 2019.
Знайти повний текст джерелаЧастини книг з теми "Phytoremediation enhanced by microorganisms"
Tabinda, Amtul Bari, Ajwa Tahir, Maryam Dogar, Abdullah Yasar, Rizwan Rasheed, and Mahnoor. "Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil." In Phytoremediation, 231–59. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17988-4_12.
Повний текст джерелаKaur, Charanjeet, Babli Bhandari, Alok Srivastava, and Vijai Pal Singh. "Rhizobacteria Versus Chelating Agents: Tool for Phytoremediation." In Microorganisms for Sustainability, 249–66. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_9.
Повний текст джерелаMajumder, Anrini, and Sumita Jha. "Hairy Roots: A Promising Tool for Phytoremediation." In Microorganisms in Environmental Management, 607–29. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2229-3_27.
Повний текст джерелаCrowley, David E., Sam Alvey, and Eric S. Gilbert. "Rhizosphere Ecology of Xenobiotic-Degrading Microorganisms." In Phytoremediation of Soil and Water Contaminants, 20–36. Washington, DC: American Chemical Society, 1997. http://dx.doi.org/10.1021/bk-1997-0664.ch002.
Повний текст джерелаPoonam and Narendra Kumar. "Natural and Artificial Soil Amendments for the Efficient Phytoremediation of Contaminated Soil." In Microorganisms for Sustainability, 1–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9664-0_1.
Повний текст джерелаAnand, Sangeeta, Sushil Kumar Bharti, Sanjeev Kumar, S. C. Barman, and Narendra Kumar. "Phytoremediation of Heavy Metals and Pesticides Present in Water Using Aquatic Macrophytes." In Microorganisms for Sustainability, 89–119. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9664-0_4.
Повний текст джерелаGhosh, Dipita, B. S. Manisha Singh, Manish Kumar, Subodh Kumar Maiti, and Nabin Kumar Dhal. "Role of Endophytic Microorganisms in Phosphate Solubilization and Phytoremediation of Degraded Soils." In Microorganisms for Sustainability, 387–400. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5029-2_16.
Повний текст джерелаAkhundova, Elmira, and Yamen Atakishiyeva. "Interaction Between Plants and Biosurfactant Producing Microorganisms in Petroleum Contaminated Absheron Soils." In Phytoremediation for Green Energy, 115–22. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7887-0_7.
Повний текст джерелаDeb, Vishal Kumar, Ahmad Rabbani, Shashi Upadhyay, Priyam Bharti, Hitesh Sharma, Devendra Singh Rawat, and Gaurav Saxena. "Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives." In Microorganisms for Sustainability, 161–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2679-4_6.
Повний текст джерелаProchazka, Marek. "SERS Investigations of Cells, Viruses and Microorganisms." In Surface-Enhanced Raman Spectroscopy, 127–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23992-7_6.
Повний текст джерелаТези доповідей конференцій з теми "Phytoremediation enhanced by microorganisms"
Gao, L. D., R. J. Zheng, T. An, S. Zhang, and M. L. Pang. "Enhanced Phytoremediation of Pb-contaminated Soil with -Cyclodextrin." In 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.176.
Повний текст джерелаChen, Tao, Chengxun Sun, and Weiwei Chen. "Tween80-enhanced phytoremediation of polychlorinated biphenyls-contaminated soil." In The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0031.
Повний текст джерелаCulha, Mustafa, P. M. Champion, and L. D. Ziegler. "Surface-Enhanced Raman Scattering of Microorganisms." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482861.
Повний текст джерелаReddy, Krishna R., Gema Amaya-Santos, and Girish Kumar. "Environmental Sustainability Assessment of Soil Amendments for Enhanced Phytoremediation." In ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482025.014.
Повний текст джерелаJadhav, Madhavi Vitthal. "Enhanced Coal bed Methane Recovery Using Microorganisms." In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/105117-ms.
Повний текст джерелаAngelova, Violina. "PHYTOREMEDIATION POTENTIAL OF ENHANCED TOBACCO IN SOIL CONTAMINATED WITH HEAVY METALS." In 2nd International Scientific Conference. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2018. http://dx.doi.org/10.31410/itema.2018.1049.
Повний текст джерелаPremuzic, E. T., and M. Lin. "Prospects for Thermophilic Microorganisms in Microbial Enhanced Oil Recovery (MEOR)." In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers, 1991. http://dx.doi.org/10.2118/21015-ms.
Повний текст джерелаOsmolovskaya, N. G., V. Yu Samuta, M. V. Bogomazova, O. N. Kuzina, and V. V. Kurilenko. "PHYTOREMEDIATION POTENTIAL OF SOME ORNAMENTAL PLANTS IN RELATION TO URBAN SOILS POLLUTION WITH HEAVY METALS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1103-1105.
Повний текст джерелаChen, T., C. X. Sun, G. G. Lin, and Weiwei Chen. "Change in enzymatic activity in Tween80-enhanced phytoremediation of polychlorinated biphenyl-contaminated soil." In The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0026.
Повний текст джерелаAl-Harbawee, W. E. Q., D. I. Bashmakov, and A. S. Lukatkin. "ASSESSMENT OF PHYTOREMEDIATION POTENTIAL OF HERBACEOUS PLANTS FROM CENTRAL RUSSIA FOR INDUSTRIAL WASTEWATER CONTAINING HEAVY METALS." In The All-Russian Scientific Conference with International Participation and Schools of Young Scientists "Mechanisms of resistance of plants and microorganisms to unfavorable environmental". SIPPB SB RAS, 2018. http://dx.doi.org/10.31255/978-5-94797-319-8-1021-1024.
Повний текст джерелаЗвіти організацій з теми "Phytoremediation enhanced by microorganisms"
Li, Jiangxia, Jun Zhang, Steven Larson, John Ballard, Kai Guo, Zikri Arslan, Youhua Ma, Charles Waggoner, Jeremy White, and Fengxiang Han. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Engineer Research and Development Center (U.S.), June 2020. http://dx.doi.org/10.21079/11681/37237.
Повний текст джерелаM.J. McInerney, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, and D. Nagle. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/834168.
Повний текст джерелаM.J. McInerney, K.E. Duncan, N. Youssef, T. Fincher, S.K. Maudgalya, M.J. Folmsbee, R. Knapp, Randy R. Simpson, N.Ravi, and D. Nagle. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery. Office of Scientific and Technical Information (OSTI), August 2005. http://dx.doi.org/10.2172/860919.
Повний текст джерелаM.J. McInerney, R.M. Knapp, Jr D.P. Nagle, Kathleen Duncan, N. Youssef, M.J. Folmsbee, and S. Maudgakya. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822122.
Повний текст джерелаNegri, M. Cristina. Microorganisms Associated with Hydrocarbon Contaminated Sites and Reservoirs for Microbially Enhanced Oil Recovery (MEOR). Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1118140.
Повний текст джерелаWeinberg, Zwi G., Richard E. Muck, Nathan Gollop, Gilad Ashbell, Paul J. Weimer, and Limin Kung, Jr. effect of lactic acid bacteria silage inoculants on the ruminal ecosystem, fiber digestibility and animal performance. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7587222.bard.
Повний текст джерелаFreeman, Stanley, Russell Rodriguez, Adel Al-Abed, Roni Cohen, David Ezra, and Regina Redman. Use of fungal endophytes to increase cucurbit plant performance by conferring abiotic and biotic stress tolerance. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7613893.bard.
Повний текст джерелаWilson, Charles, and Edo Chalutz. Biological Control of Postharvest Diseases of Citrus and Deciduous Fruit. United States Department of Agriculture, September 1991. http://dx.doi.org/10.32747/1991.7603518.bard.
Повний текст джерелаLitaor, Iggy, James Ippolito, Iris Zohar, and Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Повний текст джерела