Добірка наукової літератури з теми "Phytoremediation enhanced by microorganism"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phytoremediation enhanced by microorganism".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Phytoremediation enhanced by microorganism"
Ptaszek, Natalia, Magdalena Pacwa-Płociniczak, Magdalena Noszczyńska, and Tomasz Płociniczak. "Comparative Study on Multiway Enhanced Bio- and Phytoremediation of Aged Petroleum-Contaminated Soil." Agronomy 10, no. 7 (July 1, 2020): 947. http://dx.doi.org/10.3390/agronomy10070947.
Повний текст джерелаANDARISTA UTOMO, ADZALIA, and SARWOKO MANGKOEDIHARDJO. "Preliminary Assessment of Mixed Plants for Phytoremediation of Chromium Contaminated Soil." Current World Environment 13, Special issue 1 (November 25, 2018): 22–24. http://dx.doi.org/10.12944/cwe.13.special-issue1.04.
Повний текст джерелаLiu, Zhongchuang, Li-ao Wang, Shimin Ding, and Hongyan Xiao. "Enhancer assisted-phytoremediation of mercury-contaminated soils by Oxalis corniculata L., and rhizosphere microorganism distribution of Oxalis corniculata L." Ecotoxicology and Environmental Safety 160 (September 2018): 171–77. http://dx.doi.org/10.1016/j.ecoenv.2018.05.041.
Повний текст джерелаZhang, Jing, Rui Yin, Xiangui Lin, Weiwei Liu, Ruirui Chen, and Xuanzhen Li. "Interactive Effect of Biosurfactant and Microorganism to Enhance Phytoremediation for Removal of Aged Polycyclic Aromatic Hydrocarbons from Contaminated Soils." JOURNAL OF HEALTH SCIENCE 56, no. 3 (2010): 257–66. http://dx.doi.org/10.1248/jhs.56.257.
Повний текст джерелаDhawi, Faten. "The Role of Plant Growth-Promoting Microorganisms (PGPMs) and Their Feasibility in Hydroponics and Vertical Farming." Metabolites 13, no. 2 (February 9, 2023): 247. http://dx.doi.org/10.3390/metabo13020247.
Повний текст джерелаZhao, Chong, Guosen Zhang, and Jinhui Jiang. "Enhanced Phytoremediation of Bisphenol A in Polluted Lake Water by Seedlings of Ceratophyllum demersum and Myriophyllum spicatum from In Vitro Culture." International Journal of Environmental Research and Public Health 18, no. 2 (January 19, 2021): 810. http://dx.doi.org/10.3390/ijerph18020810.
Повний текст джерелаJin, Zhong Min, Wei Sha, Yan Fu Zhang, Jing Zhao, and Hongyang Ji. "Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover." Canadian Journal of Microbiology 59, no. 7 (July 2013): 449–55. http://dx.doi.org/10.1139/cjm-2012-0650.
Повний текст джерелаIrawati, Wahyu, Adolf Jan Nexson Parhusip, Nida Sopiah, and Juniche Anggelique Tnunay. "The Role of Heavy Metals-Resistant Bacteria Acinetobacter sp. in Copper Phytoremediation using Eichhornia crasippes [(Mart.) Solms]." KnE Life Sciences 3, no. 5 (September 11, 2017): 208. http://dx.doi.org/10.18502/kls.v3i5.995.
Повний текст джерелаBorowik, Agata, Jadwiga Wyszkowska, and Jan Kucharski. "Microbiological Study in Petrol-Spiked Soil." Molecules 26, no. 9 (May 1, 2021): 2664. http://dx.doi.org/10.3390/molecules26092664.
Повний текст джерелаPino, Nancy J., Luisa M. Muñera, and Gustavo A. Peñuela. "Bioaugmentation with Immobilized Microorganisms to Enhance Phytoremediation of PCB-Contaminated Soil." Soil and Sediment Contamination: An International Journal 25, no. 4 (April 27, 2016): 419–30. http://dx.doi.org/10.1080/15320383.2016.1148010.
Повний текст джерелаДисертації з теми "Phytoremediation enhanced by microorganism"
Ankumah, Ramble O. "Enhanced degradation in soil of the herbicide EPTC and determination of its degradative pathway by an isolated soil microorganism /." The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu148759630735724.
Повний текст джерелаOliveira, Tânia Filipa Mota. "Cooper phytoremediation by a salt marsh plant: microorganisms' contribution to enhance it." Master's thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/77636.
Повний текст джерелаOliveira, Tânia Filipa Mota. "Cooper phytoremediation by a salt marsh plant: microorganisms' contribution to enhance it." Dissertação, 2014. https://repositorio-aberto.up.pt/handle/10216/77636.
Повний текст джерелаHeaton, Andrew Charles Peter. "Enhanced mercury processing by plants genetically engineered for mercury phytoremediation." 2002. http://purl.galileo.usg.edu/uga%5Fetd/heaton%5Fandrew%5Fc%5F200212%5Fphd.
Повний текст джерелаDirected by Bruce Lee Haines. Includes an article published in Journal of soil contamination, and articles submitted to Plant physiology, and Environmental toxicology and chemistry. Includes bibliographical references.
Wang, Haitang Jay. "Plant Growth-Promoting Rhizobacteria (PGPR) Enhanced Phytoremediation of DDT Contaminated Soil." Thesis, 2008. http://hdl.handle.net/10012/3721.
Повний текст джерелаWu, Shan Shan. "Enhanced Phytoremediation of Salt-Impacted Soils Using Plant Growth-Promoting Rhizobacteria (PGPR)." Thesis, 2009. http://hdl.handle.net/10012/4392.
Повний текст джерелаLai, Hung-Yu, and 賴鴻裕. "Phytoremediation of Soils Contaminated with Cadmium, Zinc, and Lead Enhanced by EDTA." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/86495106002009877013.
Повний текст джерела國立臺灣大學
農業化學研究所
92
Heavy metals-contaminated soils can be remediated by phytoremediation techniques. Phytoextraction accumulated toxic metals from contaminated soil into the aboveground tissue of higher plants, which were then harvested and incinerated. Some synthetic chelating agents were applied to metal-contaminated soil to increase the mobility and bioavailability of the metal in the contaminated soils and also to increase the amount of heavy metals accumulated in the upper parts of plants. Rainbow pink (Dianthus Chinensis), Vetiver grass (Vetiver zizanioides), and Indian mustard (Brassica juncea) were used in this study to test the remediation of the Cd, Zn, and Pb-contaminated soil. The objectives of this study are to assess the effect of applying EDTA on the phytoremediation of metals-contaminated soils and to assess the interactions among three metals in multiple metals-contaminated soils. Different applying methods with same amounts of EDTA are also used in this study to assess their effect on the metal concentration in the shoot of plant and on reducing the potential risk of groundwater contamination. Rainbow pink accumulated about 80 mg Cd/kg, 3700 mg Zn/kg, and 220 mg Pb/kg when it was grown in the Cd, Zn, and Pb-contaminated soil for 50 days. This plant can be used for phytoextraction of multiple metals-contaminated soils. Vetiver grass can grow well in the same concentrations of heavy metals-contaminated soil, and the growth was not affected by the toxicity of heavy metals. The concentrations of Cd and Zn in the shoots of vetiver grass were 40.7±8.28 and 1,399±132 mg/kg, respectively, and no Pb was detected. Because of the toxicity and high concentrations of multiple metals occurred in the soils, some damages were found in the growth stage of Indian mustard. The concentrations of Cd, Zn, and Pb in soil solution were significantly increased after applying 5 or 10 mmol EDTA/kg (p< 0.05). The concentrations of Cd and Pb in shoot of rainbow pink were also significantly increased after EDTA treatments (p< 0.05), but it was not significantly increased for Zn. For biological uptake of metals in contaminated soil, the EDTA treatments only significantly increased the total uptake of Pb in the shoot of rainbow pink compared with the control treatment (p< 0.001), but it was not significantly increased for Cd and Zn uptake by rainbow pink. This indicated that the EDTA treatments could be evaluated as more efficient amendment method to remove the Pb from the contaminated soil. The results indicated that the concentrations of Cd, Zn, and Pb in the soil solution of vetiver grass were also significantly increased after applying EDTA treatments (p< 0.05), especially for applying 10 mmol EDTA/kg. Even the concentrations of the three metals in soil solution changed drastically, but the concentrations of Cd and Zn in the shoot of vetiver grass only varied from 20 to 30 mg Cd/kg and from 390 to 520 mg Zn/kg, respectively. The growth of vetiver grass was not affected by the toxicity of seriously contaminated metals. The applying of different concentrations of EDTA solution only slightly decreased the biomass of vetiver grass and slightly decreased the total removal of heavy metals from the contaminated soils. Applying 2 or 5 mmol EDTA/kg significantly increased the Cd, Zn, Pb, Fe, and Mn concentration in the soil solution of single- or multiple metals-contaminated soils (p< 0.05), but it had no significantly change on the concentration of Ca and Mg. Deionized water extractable metal concentrations are also significantly increased after applying EDTA (p< 0.05). Because of the strong extraction capacity of both 0.005M DTPA (pH 5.3) and 0.05M EDTA (pH 7.0), there was no significant increase on the metal concentration of two extractions methods after applying EDTA. There was no effect of single or multiple-dose application of 4 mmol EDTA/kg on biomass and total removal of heavy metals in shoots of rainbow pink. But the multiple-dose applying EDTA decreased the Cd, Zn, and Pb concentration in soil solution or extracted solution with deionized water, and thus reduced the risk of groundwater contamination. There were some interactions among Cd, Zn, and Pb in the multiple metals- contaminated soils. The result of metals concentration and total removal in the shoots of rainbow pink showed that, without applying EDTA, adding Zn or Pb had enhancement effect on the uptake of Cd in the shoot of rainbow pink. The addition of Cd had inhibition effect on the uptake of Zn by rainbow pink. After applying EDTA, some interactions were found, and the addition of two concentrations of EDTA had greatest effect on the uptake of Pb by rainbow pink compared with the other elements. In this study, planting rainbow pink in the Cd, Zn, and Pb-contaminated soil for 50 days without adding EDTA was the most economic and efficient method to remove Cd and Zn from contaminated soil compared with other treatments. The rainbow pink can accumulate high concentration of Cd and Zn in the shoots and remove the maximum amounts of these two elements (0.26 mg Cd/plant and 11.7 mg Zn/plant), and also had less risk on the pollution of the groundwater when comparing with other treatments. The addition of EDTA significantly increased the concentration and total removal of Pb in the shoots of rainbow pink, thus to reduce the remediation time. However, the application of EDTA was potential to pollute the groundwater. The result also indicated that 5 mmol EDTA/kg was recommended because the soil used in this study is a silty clay soil.
Montenegro, Inês Paes de Faria Monteiro. "Autochthonous Bioaugmentation - a Strategy For Enhanced Phytoremediation / Bioremediation of Mixed Contamination in Saltmarshes." Master's thesis, 2015. https://repositorio-aberto.up.pt/handle/10216/86324.
Повний текст джерелаMontenegro, Inês Paes de Faria Monteiro. "Autochthonous Bioaugmentation - a Strategy For Enhanced Phytoremediation / Bioremediation of Mixed Contamination in Saltmarshes." Dissertação, 2015. https://repositorio-aberto.up.pt/handle/10216/86324.
Повний текст джерелаJung-Chi, Lu, and 呂榮吉. "A Simple Bio-Chip Utilizing Electrokinetics-Enhanced Nanocolloid Conjugation for the Rapid Identification of Microorganism." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/55042920301472101878.
Повний текст джерела崑山科技大學
電腦與通訊研究所
104
Dielectrophoresis (DEP) has been widely used to manipulate, separate, and concentrate microscale particles. Unfortunately, DEP force is difficult to be used in regard to the manipulation of nanoscale molecules/particles. For manipulation of 50 to 100-nm particles, the electrical field strength must be higher than 3 × 106 V/m, and with a low applied voltage of 10 Vp-p, the electrode gap needs to be reduced to submicrons. Our research consists of a novel and simple approach, using a several tens micrometers scale electrode (low cost and easy to fabricate) to generate a dielectrophoretic microparticle assembly to form nanogaps with a locally amplified alternating current (AC) electric field gradient, which is used to rapidly trap nanocolloids. The results show that the amplified DEP force could effectively trap 20-nm colloids in the nanogaps between the 5-μm particle aggregates. The concentration factor at the local detection region was shown to be approximately 5 orders of magnitude higher than the bulk solution. This approach was also successfully used in bead-based surface-enhanced Raman spectroscopy (SERS) for the rapid identification of bacteria from diluted blood.
Книги з теми "Phytoremediation enhanced by microorganism"
Johnson, A. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2010.
Знайти повний текст джерелаA, Johnson, and Singhal Naresh 1963-, eds. Amendment-enhanced phytoextraction of soil contaminants. Hauppauge, N.Y: Nova Science Publishers, 2009.
Знайти повний текст джерелаЧастини книг з теми "Phytoremediation enhanced by microorganism"
Rajhi, Hayfa, and Anouar Bardi. "Spinoffs of Phyoremediation and/or Microorganism Consortium in Soil, Sediment, and Water Treatments and Improvement: Study of Specific Cases and Its Socioeconomic and Environmental Advantages." In Phytoremediation, 157–82. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17988-4_9.
Повний текст джерелаSong, Jing, Yong M. Luo, and Long H. Wu. "Chelate-Enhanced Phytoremediation of Heavy Metal Contaminated Soil." In Biogeochemistry of Chelating Agents, 366–82. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0910.ch022.
Повний текст джерелаAnjum, Shahnaz, Shayista Yousuf, and Urfeya Mirza. "Recent Trends in Transgenic Plants for Enhanced Phytoremediation." In Bioremediation and Phytoremediation Technologies in Sustainable Soil Management, 241–61. Boca Raton: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003280682-14.
Повний текст джерелаSingh, Jyoti, and Ajay Veer Singh. "Microbial Strategies for Enhanced Phytoremediation of Heavy Metal-Contaminated Soils." In Environmental Pollutants and Their Bioremediation Approaches, 257–72. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22171-9.
Повний текст джерелаUzoh, Ifeyinwa Monica, Chinyere Blessing Okebalama, Charles Arizechukwu Igwe, and Olubukola Oluranti Babalola. "Management of Soil-Microorganism: Interphase for Sustainable Soil Fertility Management and Enhanced Food Security." In Food Security and Safety, 475–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-50672-8_25.
Повний текст джерелаWei, Shiqiang. "Phytoremediation of Contaminated Soils with Polycyclic Aromatic Hydrocarbons and Its Ecologically Enhanced Techniques." In Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone, 200–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05297-2_60.
Повний текст джерелаDick, W. A., R. O. Ankumah, G. McClung, and N. Abou-Assaf. "Enhanced Degradation of S-EthylN,N-Dipropylcarbamothioate in Soil and by an Isolated Soil Microorganism." In ACS Symposium Series, 98–112. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0426.ch008.
Повний текст джерела"Phytoremediation." In Natural and Enhanced Remediation Systems, 259–88. CRC Press, 2001. http://dx.doi.org/10.1201/9781420033069-10.
Повний текст джерела"Phytoremediation." In Natural and Enhanced Remediation Systems. CRC Press, 2001. http://dx.doi.org/10.1201/9781420033069.ch5.
Повний текст джерелаBertha Ehis-Eriakha, Chioma, Stephen Eromosele Akemu, Simon Obgaji Otumala, and Chinyere Augusta Ajuzieogu. "Biotechnological Potentials of Microbe Assisted Eco-Recovery of Crude Oil Impacted Environment." In Crude Oil - New Technologies and Recent Approaches [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98808.
Повний текст джерелаТези доповідей конференцій з теми "Phytoremediation enhanced by microorganism"
Minut, Mariana, Mihaela Rosca, Petronela Cozma, Mariana Diaconu, and Maria Gavrilescu. "The Beneficial Role of Some Microorganism in Soil Phytoremediation and Mitigation of Health Risk." In 2020 International Conference on e-Health and Bioengineering (EHB). IEEE, 2020. http://dx.doi.org/10.1109/ehb50910.2020.9280178.
Повний текст джерелаGao, L. D., R. J. Zheng, T. An, S. Zhang, and M. L. Pang. "Enhanced Phytoremediation of Pb-contaminated Soil with -Cyclodextrin." In 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.176.
Повний текст джерелаChen, Tao, Chengxun Sun, and Weiwei Chen. "Tween80-enhanced phytoremediation of polychlorinated biphenyls-contaminated soil." In The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0031.
Повний текст джерелаReddy, Krishna R., Gema Amaya-Santos, and Girish Kumar. "Environmental Sustainability Assessment of Soil Amendments for Enhanced Phytoremediation." In ASCE India Conference 2017. Reston, VA: American Society of Civil Engineers, 2018. http://dx.doi.org/10.1061/9780784482025.014.
Повний текст джерелаAngelova, Violina. "PHYTOREMEDIATION POTENTIAL OF ENHANCED TOBACCO IN SOIL CONTAMINATED WITH HEAVY METALS." In 2nd International Scientific Conference. Association of Economists and Managers of the Balkans, Belgrade, Serbia, 2018. http://dx.doi.org/10.31410/itema.2018.1049.
Повний текст джерелаIto, Miu, and Yuichi Sugai. "Study on Enhanced Oil Recovery Using Microorganism Generating Foam in Presence of Nanobubbles." In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205671-ms.
Повний текст джерелаChen, T., C. X. Sun, G. G. Lin, and Weiwei Chen. "Change in enzymatic activity in Tween80-enhanced phytoremediation of polychlorinated biphenyl-contaminated soil." In The 3rd International Conference on Application of Materials Science and Environmental Materials (AMSEM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141124_0026.
Повний текст джерелаZhang, Zhiming, Dibyendu Sarkar, Virinder Sidhu, and Rupali Datta. "REMOVAL OF LEAD IN RESIDENTIAL SOILS OF JERSEY CITY USING BIODEGRADABLE CHELATING AGENT-ENHANCED PHYTOREMEDIATION." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-356930.
Повний текст джерелаWang, Hong, Haibo Li, and Tieheng Sun. "Notice of Retraction: Microbe Agent Enhanced Phytoremediation of PAHs Contaminated Farmland Soil with Alfalfa (Medicago sativa L.)." In 2011 5th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2011. http://dx.doi.org/10.1109/icbbe.2011.5781342.
Повний текст джерелаAbd Rahman, Hasrizal, M. Faizal Sedaralit, Suzalina Zainal, and Julia R. de Rezende. "Modelling Reservoir Souring Mitigation Strategy Based on Dynamic Microorganisms Interactions." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211359-ms.
Повний текст джерелаЗвіти організацій з теми "Phytoremediation enhanced by microorganism"
Li, Jiangxia, Jun Zhang, Steven Larson, John Ballard, Kai Guo, Zikri Arslan, Youhua Ma, Charles Waggoner, Jeremy White, and Fengxiang Han. Electrokinetic-enhanced phytoremediation of uranium-contaminated soil using sunflower and Indian mustard. Engineer Research and Development Center (U.S.), June 2020. http://dx.doi.org/10.21079/11681/37237.
Повний текст джерела