Добірка наукової літератури з теми "Physiological motion detection"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Physiological motion detection".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Physiological motion detection"
Wang, Liting, Xiaoqing Ding, and Chi Fang. "Face live detection method based on physiological motion analysis." Tsinghua Science and Technology 14, no. 6 (December 2009): 685–90. http://dx.doi.org/10.1016/s1007-0214(09)70135-x.
Повний текст джерелаKrause, Bryan M., and Geoffrey M. Ghose. "Micropools of reliable area MT neurons explain rapid motion detection." Journal of Neurophysiology 120, no. 5 (November 1, 2018): 2396–409. http://dx.doi.org/10.1152/jn.00845.2017.
Повний текст джерелаZhang, Long, Xuezhi Yang, and Jing Shen. "Frequency Variability Feature for Life Signs Detection and Localization in Natural Disasters." Remote Sensing 13, no. 4 (February 21, 2021): 796. http://dx.doi.org/10.3390/rs13040796.
Повний текст джерелаHan, Mianzhe, Yuki Todo, and Zheng Tang. "An Artificial Visual System for Three Dimensional Motion Direction Detection." Electronics 11, no. 24 (December 13, 2022): 4161. http://dx.doi.org/10.3390/electronics11244161.
Повний текст джерелаLuo, Linbo, Yuanjing Li, Haiyan Yin, Shangwei Xie, Ruimin Hu, and Wentong Cai. "Crowd-Level Abnormal Behavior Detection via Multi-Scale Motion Consistency Learning." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (June 26, 2023): 8984–92. http://dx.doi.org/10.1609/aaai.v37i7.26079.
Повний текст джерелаLiu, Hairen, and Wei Zhang. "Data Analysis of Athletes’ Physiological Indexes in Training and Competition Based on Wireless Sensor Network." Journal of Sensors 2021 (September 18, 2021): 1–11. http://dx.doi.org/10.1155/2021/5923893.
Повний текст джерелаGüttler, Jörg, Dany Bassily, Christos Georgoulas, Thomas Linner, and Thomas Bock. "Unobtrusive Tremor Detection While Gesture Controlling a Robotic Arm." Journal of Robotics and Mechatronics 27, no. 1 (February 20, 2015): 103–4. http://dx.doi.org/10.20965/jrm.2015.p0103.
Повний текст джерелаDOUKAS, CHARALAMPOS, and ILIAS MAGLOGIANNIS. "ADVANCED CLASSIFICATION AND RULES-BASED EVALUATION OF MOTION, VISUAL AND BIOSIGNAL DATA FOR PATIENT FALL INCIDENT DETECTION." International Journal on Artificial Intelligence Tools 19, no. 02 (April 2010): 175–91. http://dx.doi.org/10.1142/s0218213010000108.
Повний текст джерелаVolpes, Gabriele, Simone Valenti, Giuseppe Genova, Chiara Barà, Antonino Parisi, Luca Faes, Alessandro Busacca, and Riccardo Pernice. "Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements." Biosensors 14, no. 4 (April 20, 2024): 205. http://dx.doi.org/10.3390/bios14040205.
Повний текст джерелаDharmansyah, Dhika. "LITERATURE REVIEW: DESIGN OF INTERNET OF HEALTH THINGS (IOHT) MODEL FOR FALL RISK DETECTION IN ELDERLY AT HOME." Journal of Nursing Culture and Technology 1, no. 1 (May 1, 2024): 30–36. https://doi.org/10.70049/jnctech.v1i1.8.
Повний текст джерелаДисертації з теми "Physiological motion detection"
Serieyssol, Alizée. "Correction des mouvements physiologiques sans appareillage externe en TEP : applications aux acquisitions à faible statistique pour la radioembolisation hépatique et la cardiologie." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0355.
Повний текст джерелаPositron emission tomography (PET) is an essential imaging modality for diagnosis and therapeutic follow-up in oncology. Physiological motion can degrade image quality and affect the diagnostic accuracy and quantification of PET images. This research program focuses on the detection of physiological motion (respiration and cardiac beating) without the use of an external device for very specific clinical applications. Methods to compensate for these movements will be developed to reconstruct an image corrected for these effects. Two clinical applications have been identified to evaluate the implemented methods. The first concerns hepatic radioembolization based on 90Y PET imaging, which requires the development of methods to detect and correct for respiratory motion for data with very low counting statistics. The second is 18F-FDG cardiac PET imaging, involving the development of a method for the dual detection of respiratory and cardiac movements, as well as methods for compensating for these two physiological movements. The results obtained with the proposed detection methods are compared with those obtained with external devices: a bellow (46-265679G-1, GE HealthCare) for the respiratory signals and an electrocardiogram (ECG) for the cardiac signal. Two correction methods are proposed for hepatic radioembolization and their impact on post-treatment dosimetry was evaluated in comparison with results obtained without the use of correction methods. The first method developed consists in keeping only the quiescent phase of the respiratory cycle, while the second uses all the statistics, proposing a rigid registration between all the respiration phases. Two other methods have been implemented for cardiology, based on the estimation of 3D deformation vectors obtained from cardiac and respiratory triggers calculated with the proposed detection method. The first method estimates these deformation vectors through a rigid registration between the images of each respiratory cycle, while the second method uses the different volumes of the heart. In this method, 3D deformation vectors are calculated by identifying the end diastolic and end systolic volumes. The efficacity of these methods is evaluated by comparing the images obtained using these methods with the non-motion-corrected images, as well as with the image reconstructed with the correction method used in clinical routine on PET/CT cameras (Q.Static algorithm, General Electric HealthCare). The obtained results demonstrate a real improvement in terms of image quality, with better results for cardiological images than those obtained with the correction method used in clinical routine. Dosimetric results obtained with both correction methods for Yttrium-90 data show an increase of the tumor dose
Wu, Ping-Hsun, and 吳秉勳. "Design of Phase- and Self-Injection-Locked Radar and Its Application in Detection of Physiological Motions." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/05261518445379753062.
Повний текст джерела國立臺灣大學
電信工程學研究所
101
The phase- and self-injection-locked radar is presented in this dissertation for robust detection of physiological motions with high sensitivity. The innovative method injects the Doppler phase-modulated echo signal back into a phase-locked oscillator and obtains the baseband signal by directly sampling the voltage-controlled oscillator tuning voltage controlled by the phase-locked loop without any demodulation circuits. Phase noise analysis indicates that the proposed radar has the advantages of both the phase-locked oscillators and self-injection-locked oscillators to achieve superior signal-to-noise ratio gain against the low-frequency phase noise in the bandwidth containing the physiological motion information. Consequently, the proposed radar can serve for long-range detections with less transmitted power. In addition, this dissertation addresses the dc offset and the null point problems, which are two major challenging issues for conventional Doppler radar designs, in regard to reliable detection. The dc offset caused by clutter reflections and circuit imperfections is eliminated simply using a dual-tuning voltage-controlled oscillator without sophisticated clutter cancellation techniques. Analysis based on the classic injection locking equation shows that the dc offset can be removed without sensitivity degradation. Path-diversity transmission that switches between orthogonal self-injection-locked loops is employed to eliminate null points and reduce average transmitted power. Several prototype circuits are designed to justify the theory and design equations. Experiments confirm successful detection of physiological motions from a distance of 4 meters with −22 dBm average transmitted power.
Книги з теми "Physiological motion detection"
Kautz, Dirk. Micro-iontophoretic studies on the physiological mechanism of auditory motion-direction: Detection in the inferior colliculus of the barn owl (Tyto alba). [s.l.]: [s.n.], 1997.
Знайти повний текст джерелаOffice, General Accounting. Air pollution: Improvements needed in detecting and preventing violations : report to the chairman, Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, House of Representatives. Washington, D.C: GAO, 1990.
Знайти повний текст джерелаЧастини книг з теми "Physiological motion detection"
Okawai, Hiroaki, and Mitsuru Takashima. "Physiological Detection of Satisfaction for Services by Body Motion Wave Revealing Unconscious Responses Reflecting Activities of Autonomic Nervous Systems." In Serviceology for Smart Service System, 279–86. Tokyo: Springer Japan, 2017. http://dx.doi.org/10.1007/978-4-431-56074-6_31.
Повний текст джерелаHemlathadhevi, A., Anu Disney D., Nishant Behar, Lalit Mohan Pant, C. M. Naveen Kumar, and Madiha Tahreem. "Framework Towards Detection of Stress Level Through Classifying Physiological Signals Using Blockchain Technology." In Advances in Computational Intelligence and Robotics, 403–16. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-7367-5.ch027.
Повний текст джерелаGaggioli Andrea, Pioggia Giovanni, Tartarisco Gennaro, Baldus Giovanni, Ferro Marcello, Cipresso Pietro, Serino Silvia, et al. "A System for Automatic Detection of Momentary Stress in Naturalistic Settings." In Studies in Health Technology and Informatics. IOS Press, 2012. https://doi.org/10.3233/978-1-61499-121-2-182.
Повний текст джерелаHIRAHARA, Makoto, and Takashi NAGANO. "A NEURAL NETWORK FOR VISUAL MOTION DETECTION THAT CAN EXPLAIN PSYCHOPHYSICAL AND PHYSIOLOGICAL PHENOMENA." In Artificial Neural Networks, 1393–96. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-89178-5.50096-8.
Повний текст джерелаS.M, Revathi, Srinivasan R, Balamurugan C.R, and Kareemullah H. "Driver Stress Detection Based on IOT Motion Sensor Using Wearable Glove." In Applications of Artificial Intelligence and Machine Learning in Healthcare. Technoarete Publishing, 2022. http://dx.doi.org/10.36647/aaimlh/2022.01.b1.ch002.
Повний текст джерелаAbadi, Richard V. "Perception with Unstable Fixation." In Advances in Understanding Mechanisms and Treatment of Infantile Forms of Nystagmus, 23–32. Oxford University PressNew York, NY, 2008. http://dx.doi.org/10.1093/oso/9780195342185.003.0003.
Повний текст джерелаSenthilkumar, Laushya, Joana M. Warnecke, Julian Bollmann, and Thomas M. Deserno. "Robust In-Vehicle Signal Quality Assessment Using Multimodal Signal Fusion." In Studies in Health Technology and Informatics. IOS Press, 2024. http://dx.doi.org/10.3233/shti240576.
Повний текст джерелаNEGRINI Alberto, NEGRINI Stefano, and SANTAMBROGIO Giorgio C. "Data Variability in the Analysis of Spinal Deformity: a Study Performed by means of the AUSCAN System." In Studies in Health Technology and Informatics. IOS Press, 1995. https://doi.org/10.3233/978-1-60750-859-5-101.
Повний текст джерелаRajamohana S. P., Dharani A., Anushree P., Santhiya B., and Umamaheswari K. "Machine Learning Techniques for Healthcare Applications." In Advances in Social Networking and Online Communities, 236–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7522-1.ch012.
Повний текст джерелаRajamohana S. P., Dharani A., Anushree P., Santhiya B., and Umamaheswari K. "Machine Learning Techniques for Healthcare Applications." In Research Anthology on Medical Informatics in Breast and Cervical Cancer, 386–402. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-7136-4.ch021.
Повний текст джерелаТези доповідей конференцій з теми "Physiological motion detection"
Uddin, Md Taufeeq, and Shaun Canavan. "Synthesizing Physiological and Motion Data for Stress and Meditation Detection." In 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). IEEE, 2019. http://dx.doi.org/10.1109/aciiw.2019.8925245.
Повний текст джерелаPerdana, Rizky Naufal, Budhi Irawan, Casi Setianingsih, Dian Rezky Wulandari, Ivan Satrio Pamungkas, Fajri Nurfauzan, Adinda Ophelia Putri Sakinah, and Muhammad Raihan Ramadhan. "Design of Smartdoor for Live Face Detection Based on Image Processing Using Physiological Motion Detection." In 2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). IEEE, 2022. http://dx.doi.org/10.1109/ismode56940.2022.10180411.
Повний текст джерелаPeng, Zheng, Ilde Lorato, Xi Long, Rong-Hao Liang, Deedee Kommers, Peter Andriessen, Ward Cottaar, Sander Stuijk, and Carola van Pul. "Body Motion Detection in Neonates Based on Motion Artifacts in Physiological Signals from a Clinical Patient Monitor." In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630133.
Повний текст джерелаGupta, Sanskriti, and Rekha Vig. "Detection and Correction of Head Motion and Physiological Artifacts in BOLD fMRI: A Study." In 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, 2019. http://dx.doi.org/10.1109/confluence.2019.8776963.
Повний текст джерелаMa, Zheren, Brandon C. Li, Zeyu Yan, Dongmei Chen, and Wei Li. "Wearable Sleepiness Detection Based on Characterization of Physiological Dynamics." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9849.
Повний текст джерелаRay, Arkaprova, Iman Habibagahi, and Aydin Babakhani. "Fully Wireless and Batteryless Localization and Physiological Motion Detection System for Point-of-care Biomedical Applications." In 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2022. http://dx.doi.org/10.1109/biocas54905.2022.9948647.
Повний текст джерелаGalaup, Clement, Lama Séoud, and Patrice Renaud. "Multimodal HCI: a review of computational tools and their relevance to the detection of sexual presence." In Intelligent Human Systems Integration (IHSI 2024) Integrating People and Intelligent Systems. AHFE International, 2024. http://dx.doi.org/10.54941/ahfe1004477.
Повний текст джерелаPungu Mwange, Marie-Anne, Fabien Rogister, and Luka Rukonic. "Measuring driving simulator adaptation using EDA." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001489.
Повний текст джерелаSilva, Leonardo, Rafael Lima, Giovani Lucafo, Italo Sandoval, Pedro Garcia Freitas, and Otávio A. B. Penatti. "Photoplethysmography Signal Quality Assessment using Attentive-CNN Models." In Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2024. http://dx.doi.org/10.5753/sbcas.2024.2206.
Повний текст джерелаKretzschmar, Florian, Matthias Beggiato, and Alois Pichler. "Detection of Discomfort in Autonomous Driving via Stochastic Approximation." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002437.
Повний текст джерела