Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Physical human-robot Interactions.

Дисертації з теми "Physical human-robot Interactions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-31 дисертацій для дослідження на тему "Physical human-robot Interactions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Métillon, Marceau. "Modelling, Control and Performance Analysis of Cable-Driven Parallel Cobots." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0015.

Повний текст джерела
Анотація:
Cette thèse de doctorat porte sur la modélisation, la commande et l’analyse des performances de Robots Parallèles à Câbles(RPC) collaboratifs.Une modélisation élasto-géométrique des éléments d’actionnement des RPC est proposée en vue de l’amélioration de leurs performances de positionnement. Différents modèles élasto-géométriques inverses sont analysés en simulation et testé expérimentalement puis font l’objet d’une analyse de sensibilité.Ensuite, des stratégies de contrôle permettant aux RPC d’être utilisés par des opérateurs de manière physique sont proposées.Ces stratégies sont basées sur la commande en impédance et permettent la comanipulation du RPC. Un contrôleur hybride assurant la réalisation de trajectoires et la comanipulation est présenté et approuvé expérimentalement.Enfin, un appareil de sécurité pour la détection de proximité basé sur le principe du couplage capacitif est adapté aux RPC et testé.Finalement, des expériences utilisateurs ont été menés pour juger des performances des stratégies proposées. Trois expériences menées avec des participants volontaires permettent d’évaluer la variation de la performance et de comprendre le comportement physique de l’utilisateur au cours d’interactions physiques humain-RPC
This PhD thesis addresses the modelling,control and performance analysis of collaborative Cable-Driven Parallel Robots (CDPRs). An elasto-geometric modelling of the actuation elements is proposed to improve their positioning accuracy. Different inverse elastogeometricmodels are simulated and experimentally assessed then analysed in a sensitivity analysis.Then, control strategies allowing the physical interactions of operators with CDPRs are proposed. These strategies are based on the impedance control and allow the robots comanipulation. A hybrid controller for trajectory tracking and co-manipulation is presented and experimented. A safety device for the proximity detection based on the capacitive coupling principle is fitted to CDPRs and tested. Finally, user experiments are led to determine the performance of the proposed strategies.Three experiments led with volunte erenable the performance variation evaluationand the user behaviour study during physical human-CDPR interactions
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ahmed, Muhammad Rehan. "Compliance Control of Robot Manipulator for Safe Physical Human Robot Interaction." Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-13986.

Повний текст джерела
Анотація:
Inspiration from biological systems suggests that robots should demonstrate same level of capabilities that are embedded in biological systems in performing safe and successful interaction with the humans. The major challenge in physical human robot interaction tasks in anthropic environment is the safe sharing of robot work space such that robot will not cause harm or injury to the human under any operating condition. Embedding human like adaptable compliance characteristics into robot manipulators can provide safe physical human robot interaction in constrained motion tasks. In robotics, this property can be achieved by using active, passive and semi active compliant actuation devices. Traditional methods of active and passive compliance lead to complex control systems and complex mechanical design. In this thesis we present compliant robot manipulator system with semi active compliant device having magneto rheological fluid based actuation mechanism. Human like adaptable compliance is achieved by controlling the properties of the magneto rheological fluid inside joint actuator. This method offers high operational accuracy, intrinsic safety and high absorption to impacts. Safety is assured by mechanism design rather than by conventional approach based on advance control. Control schemes for implementing adaptable compliance are implemented in parallel with the robot motion control that brings much simple interaction control strategy compared to other methods. Here we address two main issues: human robot collision safety and robot motion performance.We present existing human robot collision safety standards and evaluate the proposed actuation mechanism on the basis of static and dynamic collision tests. Static collision safety analysis is based on Yamada’s safety criterion and the adaptable compliance control scheme keeps the robot in the safe region of operation. For the dynamic collision safety analysis, Yamada’s impact force criterion and head injury criterion are employed. Experimental results validate the effectiveness of our solution. In addition, the results with head injury criterion showed the need to investigate human bio-mechanics in more details in order to acquire adequate knowledge for estimating the injury severity index for robots interacting with humans. We analyzed the robot motion performance in several physical human robot interaction tasks. Three interaction scenarios are studied to simulate human robot physical contact in direct and inadvertent contact situations. Respective control disciplines for the joint actuators are designed and implemented with much simplified adaptable compliance control scheme. The series of experimental tests in direct and inadvertent contact situations validate our solution of implementing human like adaptable compliance during robot motion and prove the safe interaction with humans in anthropic domains.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gopinathan, Sugeeth [Verfasser]. "Personalization and Adaptation in Physical Human-Robot Interaction / Sugeeth Gopinathan." Bielefeld : Universitätsbibliothek Bielefeld, 2019. http://d-nb.info/1181946336/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

She, Yu. "Compliant robotic arms for inherently safe physical human-robot interaction." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1541335591178684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Townsend, Eric Christopher. "Estimating Short-Term Human Intent for Physical Human-Robot Co-Manipulation." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6358.

Повний текст джерела
Анотація:
Robots are increasingly becoming safer and more capable. In the past, the main applications for robots have been in manufacturing, where they perform repetitive, highly accurate tasks with physical barriers that separate them from people. They have also been used in space exploration where people are not around. Due to improvements in sensors, algorithms, and design, robots are beginning to be used in other applications like materials handling, healthcare, and agriculture and will one day be ubiquitous. For this to be possible, they will need to be able to function safely in unmodelled and dynamic environments. This is especially true when working in a shared space with people. We desire for robots to interact with people in a way that is helpful and intuitive. This requires that the robots both act predictably and be able to predict short-term human intent. We create a model for predicting short-term human intent in a collaborative furniture carrying task that a robot could use to be a more responsive and intuitive teammate. For robots to perform collaborative manipulation tasks with people naturally and efficiently, understanding and predicting human intent is necessary. We completed an exploratory study recording motion and force for 21 human dyads moving an object in tandem in a variety of tasks to better understand how they move and how their movement can be predicted. Using the previous 0.75 seconds of data, the human intent can be predicted for the next 0.25 seconds. This can then be used with a robot in real applications. We also show that force data is not required to predict human intent. We show how the prediction data works in real-time, demonstrating that past motion alone can be used to predict short-term human intent. We show this with human-human dyads and a human-robot dyad. Finally, we imagine that soft robots will be common in human-robot interaction. We present work on controlling soft, pneumatically-actuated, inflatable robots. These soft robots have less inertia than traditional robots but a high power density which allows them to operate in proximity to people. They can, however, be difficult to control. We developed a neural net model to use for control of our soft robot. We have shown that we can predict human intent in a human-robot dyad which is an important goal in physical human-robot interaction and will allow robots to co-manipulate objects with humans in an intelligent way.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guled, Pavan. "Analysis of the physical interaction between Human and Robot via OpenSim software." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Знайти повний текст джерела
Анотація:
The purpose of this thesis is to analyse the Physical Human-Robot Interaction (PHRI) which is an important extension of traditional HRI work. This work of analysis helps in understanding the effects on the upper limb of the human musculoskeletal system when human user interacts with the robotic device. This is concerned for various applicational interests, like in the field of health care, industrial applications, military, sport science and many more. We developed a CAD model of an exoskeleton in SolidWorks to satisfy all the properties required. The designed upper limb exoskeleton has been implemented within the simulating software OpenSim via the platform Notepad++ using xml language. This framework has been used to simulate and analyse the effects at muscular level when the exoskeleton is coupled with the model of the upper limb of the human body for a desired elbow flexion and extension movements. Then the results i.e. force generated by muscles with and without exoskeleton contribution are plotted and compared. The results of the simulations show that, wearing the exoskeleton, the forces exerted by the muscles decrease significantly. This thesis is only the starting point of a wide range of possible future works. Aiming at the use of exact controller, optimization technique, cost estimation possibilities applying to real word model and reaching the people in need.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Briquet-Kerestedjian, Nolwenn. "Impact detection and classification for safe physical Human-Robot Interaction under uncertainties." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC038/document.

Повний текст джерела
Анотація:
La problématique traitée dans cette thèse vise à développer une stratégie efficace de détection et de classification des impacts en présence d'incertitudes de modélisation du robot et de son environnement et en utilisant un nombre minimal de capteurs, notamment en l'absence de capteur d’effort.La première partie de la thèse porte sur la détection d'un impact pouvant avoir lieu à n'importe quel endroit du bras robotique et à n'importe quel moment de sa trajectoire. Les méthodes de détection d’impacts sont généralement basées sur un modèle dynamique du système, ce qui les rend sujettes au compromis entre sensibilité de détection et robustesse aux incertitudes de modélisation. A cet égard, une méthodologie quantitative a d'abord été mise au point pour rendre explicite la contribution des erreurs induites par les incertitudes de modèle. Cette méthodologie a été appliquée à différentes stratégies de détection, basées soit sur une estimation directe du couple extérieur, soit sur l'utilisation d'observateurs de perturbation, dans le cas d’une modélisation parfaitement rigide ou à articulations flexibles. Une comparaison du type et de la structure des erreurs qui en découlent et de leurs conséquences sur la détection d'impacts en a été déduite. Dans une deuxième étape, de nouvelles stratégies de détection d'impacts ont été conçues: les effets dynamiques des impacts sont isolés en déterminant la marge d'erreur maximale due aux incertitudes de modèle à l’aide d’une approche stochastique.Une fois l'impact détecté et afin de déclencher la réaction post-impact du robot la plus appropriée, la deuxième partie de la thèse aborde l'étape de classification. En particulier, la distinction entre un contact intentionnel (l'opérateur interagit intentionnellement avec le robot, par exemple pour reconfigurer la tâche) et un contact non-désiré (un sujet humain heurte accidentellement le robot), ainsi que la localisation du contact sur le robot, est étudiée en utilisant des techniques d'apprentissage supervisé et plus spécifiquement des réseaux de neurones feedforward. La généralisation à plusieurs sujet humains et à différentes trajectoires du robot a été étudiée
The present thesis aims to develop an efficient strategy for impact detection and classification in the presence of modeling uncertainties of the robot and its environment and using a minimum number of sensors, in particular in the absence of force/torque sensor.The first part of the thesis deals with the detection of an impact that can occur at any location along the robot arm and at any moment during the robot trajectory. Impact detection methods are commonly based on a dynamic model of the system, making them subject to the trade-off between sensitivity of detection and robustness to modeling uncertainties. In this respect, a quantitative methodology has first been developed to make explicit the contribution of the errors induced by model uncertainties. This methodology has been applied to various detection strategies, based either on a direct estimate of the external torque or using disturbance observers, in the perfectly rigid case or in the elastic-joint case. A comparison of the type and structure of the errors involved and their consequences on the impact detection has been deduced. In a second step, novel impact detection strategies have been designed: the dynamic effects of the impacts are isolated by determining the maximal error range due to modeling uncertainties using a stochastic approach.Once the impact has been detected and in order to trigger the most appropriate post-impact robot reaction, the second part of the thesis focuses on the classification step. In particular, the distinction between an intentional contact (the human operator intentionally interacts with the robot, for example to reconfigure the task) and an undesired contact (a human subject accidentally runs into the robot), as well as the localization of the contact on the robot, is investigated using supervised learning techniques and more specifically feedforward neural networks. The challenge of generalizing to several human subjects and robot trajectories has been investigated
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bussy, Antoine. "Approche cognitive pour la représentation de l’interaction proximale haptique entre un homme et un humanoïde." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20090/document.

Повний текст джерела
Анотація:
Les robots sont tout près d'arriver chez nous. Mais avant cela, ils doivent acquérir la capacité d'interagir physiquement avec les humains, de manière sûre et efficace. De telles capacités sont indispensables pour qu'il puissent vivre parmi nous, et nous assister dans diverses tâches quotidiennes, comme porter une meuble. Dans cette thèse, nous avons pour but de doter le robot humanoïde bipède HRP-2 de la capacité à effectuer des actions haptiques en commun avec l'homme. Dans un premier temps, nous étudions comment des dyades humains collaborent pour transporter un objet encombrant. De cette étude, nous extrayons un modèle global de primitives de mouvement que nous utilisons pour implémenter un comportement proactif sur le robot HRP-2, afin qu'il puisse effectuer la même tâche avec un humain. Puis nous évaluons les performances de ce schéma de contrôle proactif au cours de tests utilisateurs. Finalement, nous exposons diverses pistes d'évolution de notre travail: la stabilisation d'un humanoïde à travers l'interaction physique, la généralisation du modèle de primitives de mouvements à d'autres tâches collaboratives et l'inclusion de la vision dans des tâches collaboratives haptiques
Robots are very close to arrive in our homes. But before doing so, they must master physical interaction with humans, in a safe and efficient way. Such capacities are essential for them to live among us, and assit us in various everyday tasks, such as carrying a piece of furniture. In this thesis, we focus on endowing the biped humanoid robot HRP-2 with the capacity to perform haptic joint actions with humans. First, we study how human dyads collaborate to transport a cumbersome object. From this study, we define a global motion primitives' model that we use to implement a proactive behavior on the HRP-2 robot, so that it can perform the same task with a human. Then, we assess the performances of our proactive control scheme by perfoming user studies. Finally, we expose several potential extensions to our work: self-stabilization of a humanoid through physical interaction, generalization of the motion primitives' model to other collaboratives tasks and the addition of visionto haptic joint actions
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Reynaga, Barba Valeria. "Detecting Changes During the Manipulation of an Object Jointly Held by Humans and RobotsDetektera skillnader under manipulationen av ett objekt som gemensamt hålls av människor och robotar." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174027.

Повний текст джерела
Анотація:
In the last decades research and development in the field of robotics has grown rapidly. This growth has resulted in the emergence of service robots that need to be able to physically interact with humans for different applications. One of these applications involves robots and humans cooperating in handling an object together. In such cases, there is usually an initial arrangement of how the robot and the humans hold the object and the arrangement stays the same throughout the manipulation task. Real-world scenarios often require that the initial arrangement changes throughout the task, therefore, it is important that the robot is able to recognize these changes and act accordingly. We consider a setting where a robot holds a large flat object with one or two humans. The aim of this research project is to detect the change in the number of agents grasping the object using only force and torque information measured at the robot's wrist. The proposed solution involves defining a transition sequence of four steps that the humans should perform to go from the initial scenario to the final one. The force and torque information is used to estimate the grasping point of the agents with a Kalman filter. While the humans are going from one scenario to the other, the estimated point changes according to the step of the transition the humans are in. These changes are used to track the steps in the sequence using a hidden Markov model (HMM). Tracking the steps in the sequence means knowing how many agents are grasping the object. To evaluate the method, humans that were not involved in the training of the HMM were asked to perform two tasks: a) perform the previously defined sequence as is, and b) perform a deviation of the sequence. The results of the method show that it is possible to detect the change between one human and two humans holding the object using only force and torque information.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Giannaccini, M. E. "Safe and effective physical human-robot interaction : approaches to variable compliance via soft joints and soft grippers." Thesis, University of the West of England, Bristol, 2015. http://eprints.uwe.ac.uk/27224/.

Повний текст джерела
Анотація:
The work described in this thesis focusses on designing and building two novel physical devices in a robotic arm structure. The arm is intended for human-robot interaction in the domestic assistive robotics area. The first device aims at helping to ensure the safety of the human user. It acts as a mechanical fuse and disconnects the robotic arm link from its motor in case of collision. The device behaves in a rigid manner in normal operational times and in a compliant manner in case of potentially harmful collisions: it relies on a variable compliance. The second device is the end-effector of the robotic arm. It is a novel grasping device that aims at accommodating varying object shapes. This is achieved by the structure of the grasping device that is a soft structure with a compliant and a rigid phase. Its completely soft structure is able to mould to the object's shape in the compliant phase, while the rigid phase allows holding the object in a stable way. In this study, variable compliance is defined as a physical structure's change from a compliant to a rigid behaviour and vice versa. Due to its versatility and effectiveness, variable compliance has become the founding block of the design of the two devices in the robot arm physical structure. The novelty of the employment of variable compliance in this thesis resides in its use in both rigid and soft devices in order to help ensure both safety and adaptable grasping in one integrated physical structure, the robot arm. The safety device has been designed, modelled, produced, tested and physically embedded in the robot arm system. Compared to previous work in this field, the feature described in this thesis' work has a major advantage: its torque threshold can be actively regulated depending on the operational situation. The threshold torque is best described by an exponential curve in the mathematical model while it is best fit by a second order equation in the experimental data. The mismatch is more considerable for high values of threshold torque. However, both curves reflect that threshold torque magnitude increases by increasing the setting of the device. Testing of both the passive decoupling and active threshold torque regulation show that both are successfully obtained. The second novel feature of the robot arm is the soft grasping device inspired by hydrostatic skeletons. Its ability to passively adapts to complex shapes objects, reduces the complexity of the grasping action control. This gripper is low-cost, soft, cable-driven and it features no stiff sections. Its versatility, variable compliance and stable grasp are shown in several experiments. A model of the forward kinematics of the system is derived from observation of its bending behaviour. Variable compliance has shown to be a very relevant principle for the design and implementation of a robotic arm aimed at safely interacting with human users and that can reduce grasp control complexity by passively adapting to the object's shape.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Proietti, Tommaso. "Characterizing the reciprocal adaptation in physical human-robot interaction to address the inter-joint coordination in neurorehabilitation." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066589/document.

Повний текст джерела
Анотація:
Alors que de nombreux exosquelettes destinés à la rééducation neuromotrice ont été développés ces dernières années, ces dispositifs n'ont pas encore permis de vrai progrès dans la prise en charge des patients cérébrolésés. Une des clés pour améliorer les faibles résultats thérapeutiques obtenus serait de constamment adapter la thérapie robotisée en fonction de l'évolution du patient et de sa récupération, en adaptant l'assistance fournie par le robot pour maximiser l'engagement du patient. L'objectif de cette thèse est donc de comprendre les processus d'adaptations réciproques dans un contexte d'interaction physique Homme-Exosquelette. Dans un premier temps nous avons donc développé un nouveau type de contrôleur adaptatif qui assiste le sujet "au besoin", en modulant l'assistance fournie; et évalué différent signaux pour piloter cette adaptation afin de suivre au mieux la récupération du patient. Dans un deuxième temps, nous avons étudié l'adaptation de sujets sains à l'application de champs de forces distribués par un exosquelette sur leur bras durant la réalisation de mouvements dans l'espace. En effet, lors d'une interaction physique homme-robot, le sujet adapte aussi son comportement aux contraintes exercées par le robot. D'importantes différences inter-individuelles ont été observées, avec une adaptation à la contrainte imposée chez seulement 21% des sujets, mais avec des effets à-posteriori persistants mesurés chez 85% d'entre eux; ainsi qu'une généralisation dans l'espace de ces effets et un transfert à des contextes différents (hors du robot). Ces premiers résultats devraient permettre à terme d'améliorer la rééducation neuromotrice robotisée
While many robotic exoskeletons have been developed for stroke rehabilitation in recent years, there were not yet improvements to the traditional therapy. A key to unleash the potentiality of robotics is to adapt the assistance provided by the robot in order to maximize the subject engagement and effort, by having the robotic therapy evolving with the patient recovery. For this reason, we aim at better understanding the process of reciprocal adaptation in a context of physical Human-Robot Interaction (pHRI). We first developed a new adaptive controller, which assists the subject "as-needed", by regulating its interaction to maximize the human involvement. We further compared different signals driving this adaptation, to better following the functional recovery level of the patients. While the control is performed by the robot, the subject is also adapting his movements, and this adaptation has not yet been studied when dealing with 3D movements and exoskeletons. Therefore, we exposed human motions to distributed force fields, generated by the exoskeleton at the joint level, to produce specific inter-joint coordination and to analyse the effects of this exposition. With healthy participants, we observed important inter-individual difference, with adaptation to the fields in 21% of the participants, but post-effects and persisting retention of these in time in 85% of the subjects, together with spatial generalization, and, preliminarily, transfer of the effects outside of the exoskeleton context. This work towards understanding pHRI could provide insights on innovative ways to develop new controllers for improving stroke motor recovery with exoskeletons
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Dumora, Julie. "Contribution à l’interaction physique homme-robot : application à la comanipulation d’objets de grandes dimensions." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20030/document.

Повний текст джерела
Анотація:
La robotique collaborative a pour vocation d'assister physiquement l'opérateur dans ses tâches quotidiennes. Les deux partenaires qui composent un tel système possèdent des atouts complémentaires : physique pour le robot versus cognitif pour l'opérateur. Cette combinaison offre ainsi de nouvelles perspectives d'applications, notamment pour la réalisation de tâches non automatisables. Dans cette thèse, nous nous intéressons à une application particulière qui est l'assistance à la manipulation de pièces de grande taille lorsque la tâche à réaliser et l'environnement sont inconnus du robot. La manutention de telles pièces est une activité quotidienne dans de nombreux domaines et dont les caractéristiques en font une problématique à la fois complexe et critique. Nous proposons une stratégie d'assistance pour répondre à la problématique de contrôle simultané des points de saisie du robot et de l'opérateur liée à la manipulation de pièces de grandes dimensions, lorsque la tâche n'est pas connue du robot. Les rôles du robot et de l'opérateur dans la réalisation de la tâche sont distribués en fonction de leurs compétences relatives. Alors que l'opérateur décide du plan d'action et applique la force motrice qui permet de déplacer la pièce, le robot détecte l'intention de mouvement de l'opérateur et bloque les degrés de liberté qui ne correspondent pas au mouvement désiré. De cette façon, l'opérateur n'a pas à contrôler simultanément tous les degrés de liberté de la pièce. Les problématiques scientifiques relatives à l'interaction physique homme-robot abordées dans cette thèse se décomposent en trois grandes parties : la commande pour l'assistance, l'analyse du canal haptique et l'apprentissage lors de l'interaction. La stratégie développée s'appuie sur un formalisme unifié entre la spécification des assistances, la commande du robot et la détection d'intention. Il s'agit d'une approche modulaire qui peut être utilisée quelle que soit la commande bas niveau imposée dans le contrôleur du robot. Nous avons mis en avant son intérêt au travers de tâches différentes réalisées sur deux plateformes robotiques : un bras manipulateur et un robot humanoïde bipède
Collaborative robotics aims at physically assisting humans in their daily tasks.The system comprises two partners with complementary strengths : physical for the robot versus cognitive for the operator. This combination provides new scenarios of application such as the accomplishment of difficult-to-automate tasks. In this thesis, we are interested in assisting the human operator to manipulate bulky parts while the robot has no prior knowledge of the environment and the task. Handling such parts is a daily activity in manyareas which is a complex and critical issue. We propose a new strategy of assistances to tackle the problem of simultaneously controlling both the grasping point of the operator and that of the robot. The task responsibilities for the robot and the operator are allocated according to their relative strengths. While the operator decides the plan and applies the driving force, the robot detects the operator's intention of motion and constrains the degrees of freedom that are useless to perform the intended motion. This way, the operator does not have to control all the degrees of freedom simultaneously. The scientific issues we deal with are split into three main parts : assistive control, haptic channel analysis and learning during the interaction.The strategy is based on a unified framework of the assistances specification, robot control and intention detection. This is a modular approach that can be applied with any low-level robot control architecture. We highlight its interest through manifold tasks completed with two robotics platforms : an industrial arm manipulator and a biped humanoid robot
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mielke, Erich Allen. "Force and Motion Based Methods for Planar Human-Robot Co-manipulation of Extended Objects." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6767.

Повний текст джерела
Анотація:
As robots become more common operating in close proximity to people, new opportunities arise for physical human-robot interaction, such as co-manipulation of extended objects. Co-manipulation involves physical interaction between two partners where an object held by both is manipulated in tandem. There is a dearth of viable high degree-of-freedom co-manipulation controllers, especially for extended objects, as well as a lack of information about how human-human teams perform in high degree-of-freedom tasks. One method for creating co-manipulation controllers is to pattern them off of human data. This thesis uses this technique by exploring a previously completed experimental study. The study involved human-human dyads in leader-follower format performing co-manipulation tasks with an extended object in 6 degrees of freedom. Two important tasks performed in this experiment were lateral translation and planar rotation tasks. This thesis focuses on these two tasks because they represent planar motion. Most previous control methods are for 1 or 2 degrees-of-freedom. The study provided information about how human-human dyads perform planar tasks. Most notably, planar tasks generally adhere to minimum-jerk trajectories, and do not minimize interaction forces between users. The study also helped solve the translation versus rotation problem. From the experimental data, torque patterns were discovered at the beginning of the trial that defined intent to translate or rotate. From these patterns, a new method of planar co-manipulation control was developed, called Extended Variable Impedance Control. This is a novel 3 degree-of-freedom method that is applicable to a variety of planar co-manipulation scenarios. Additionally, the data was fed through a Recursive Neural Network. The network takes in a series of motion data and predicts the next step in the series. The predicted data was used as an intent estimate in another novel 3 degree of freedom method called Neural Network Prediction Control. This method is capable of generalizing to 6 degrees of freedom, but is limited in this thesis for comparison with the other method. An experiment, involving 16 participants, was developed to test the capabilities of both controllers for planar tasks. A dual manipulator robot with an omnidirectional base was used in the experiment. The results from the study show that both the Neural Network Prediction Control and Extended Variable Impedance Control controllers performed comparably to blindfolded human-human dyads. A survey given to participants informed us they preferred to use the Extended Variable Impedance Control. These two unique controllers are the major results of this work.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lens, Thomas [Verfasser], and Oskar von [Akademischer Betreuer] Stryk. "Physical Human-Robot Interaction with a Lightweight, Elastic Tendon Driven Robotic Arm / Thomas Lens. Betreuer: Oskar von Stryk." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2012. http://d-nb.info/1107769965/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Agravante, Don Joven. "Human-humanoid collaborative object transportation." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS224/document.

Повний текст джерела
Анотація:
Les robots humanoïdes sont les plus appropriés pour travailler en coopération avec l'homme. En effet, puisque les humains sont naturellement habitués à collaborer entre eux, un robot avec des capacités sensorielles et de locomotion semblables aux leurs, sera le plus adapté. Cette thèse vise à rendre les robot humanoïdes capables d'aider l'homme, afin de concevoir des 'humanoïdes collaboratifs'. On considère ici la tâche de transport collaboratif d'objets. D'abord, on montre comment l'utilisation simultanée de vision et de données haptiques peut améliorer la collaboration. Une stratégie combinant asservissement visuel et commande en admittance est proposée, puis validée dans un scénario de transport collaboratif homme/humanoïde.Ensuite, on présente un algorithme de génération de marche, prenant intrinsèquement en compte la collaboration physique. Cet algorithme peut être spécifié suivant que le robot guide (leader) ou soit guidé (follower) lors de la tâche. Enfin, on montre comment le transport collaboratif d'objets peut être réalisé dans le cadre d'un schéma de commande optimale pour le corps complet
Humanoid robots provide many advantages when working together with humans to perform various tasks. Since humans in general have alot of experience in physically collaborating with each other, a humanoid with a similar range of motion and sensing has the potential to do the same.This thesis is focused on enabling humanoids that can do such tasks together withhumans: collaborative humanoids. In particular, we use the example where a humanoid and a human collaboratively carry and transport objectstogether. However, there is much to be done in order to achieve this. Here, we first focus on utilizing vision and haptic information together forenabling better collaboration. More specifically the use of vision-based control together with admittance control is tested as a framework forenabling the humanoid to better collaborate by having its own notion of the task. Next, we detail how walking pattern generators can be designedtaking into account physical collaboration. For this, we create leader and follower type walking pattern generators. Finally,the task of collaboratively carrying an object together with a human is broken down and implemented within an optimization-based whole-bodycontrol framework
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bahloul, Abdelkrim. "Sur la commande des robots manipulateurs industriels en co-manipulation robotique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS511/document.

Повний текст джерела
Анотація:
Durant ce travail de thèse, nous nous sommes intéressés à la commande d'un robot manipulateur industriel, configuré pour une co-manipulation avec un opérateur humain, en vue de la manutention de charges lourdes. Dans un premier temps, nous avons présenté une vue d'ensemble des études qui ont été menées dans ce cadre. Ensuite, nous avons abordé la modélisation et l'identification des paramètres dynamiques du robot Denso VP-6242G. Nous avons utilisé le logiciel OpenSYMORO pour calculer son modèle dynamique. Après une présentation détaillée de la méthode d'identification des paramètres de robots manipulateurs, nous l'avons appliqué au cas de notre robot. Cela nous a permis d'obtenir un vecteur des paramètres qui garantit une matrice d'inertie définie positive pour n'importe quelle configuration articulaire du robot, tout en assurant une bonne qualité de reconstruction des couples pour des vitesses articulaires constantes, ou variables au cours du temps. Par la suite, nous avons détaillé les nouvelles fonctionnalités proposées pour le générateur de trajectoire en temps réel, sur lequel repose notre schéma de commande. Nous avons présenté une méthode d'estimation de la force de l'opérateur à partir des mesures de la force d'interaction entre le robot et l'opérateur, tout en tenant compte de la pénalisation de la force de l'opérateur afin d'avoir une image de cette dernière permettant de générer une trajectoire qui respecte les limites de l'espace de travail. Des tests du générateur de trajectoire simulant différents cas de figure possibles nous ont permis de vérifier l'efficacité des nouvelles fonctionnalités proposées. Le générateur permet de produire une trajectoire dans l'espace de travail tridimensionnel selon la direction de l'effort appliqué par l'opérateur, ce qui contribue à l'exigence de transparence recherchée en co-manipulation robotique. Dans la dernière partie, nous avons présenté et validé en simulation une commande en impédance dont les trajectoires de référence sont issues du générateur développé. Les résultats obtenus ont donné lieu à une bonne qualité de poursuite des trajectoires désirées. D'autre part, le respect des limites virtuelles de l'espace de travail a également été pris en compte. Cependant, les trajectoires articulaires correspondantes peuvent franchir les limites définies pour préserver l'intégrité du robot
In this thesis, we were interested in the control of industrial manipulators in co-manipulation mode with a human operator for the handling of heavy loads. First, we have presented an overview of existing studies in this framework. Then, we have addressed the modeling and the identification of dynamic parameters for the Denso VP-6242G robot. We have used the OpenSYMORO software to calculate its dynamical model. After a detailed presentation of the method for identifying the robot's parameters, we have applied it to the case of our robot. This allowed us to obtain a vector of the parameters which guarantees a positive definite inertia matrix for any configuration of the robot, as well as a good quality of reconstruction of the torques in the case of constant joint velocities or in the case of variable ones over time. To continue, we have detailed the new features that have been proposed for the online trajectory generator, for which the control scheme is based on. We have presented a method for estimating the operator's force from the measurements of the interaction force between the robot and the operator, while taking into account for the penalization of the operator's force in order to have an information of this last which allows to generate a trajectory that respects the limits of workspace. Some tests of the trajectory generator simulating different possible scenarios have allowed us to check the effectiveness of the new proposed features. The generator makes it possible to produce a trajectory in the three-dimensional workspace according to the direction of the force applied by the operator, which contributes to fulfill the requirement of transparency that is sought in a co-manipulation. In the last part, we have presented and validated, in simulation, an impedance control whose reference trajectories are delivered by the proposed generator. The obtained results have shown a good trajectory tracking. On the other hand, the satisfaction of the virtual bounds of the workspace has also been nicely taken into account. However, the corresponding articular trajectories can cross the bounds defined to preserve the integrity of the robot
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ayoubi, Younsse. "Contribution au développement d'un dispositif de sécurité intelligente pour la cobotique." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2278/document.

Повний текст джерела
Анотація:
Au cours des dernières années, nous avons assisté à un changement de paradigme, passant de la fabrication de robots rigides à des robots compliants. Ceci est dû à plusieurs raisons telles que l'amélioration de l'efficacité des robots dans la réalisation des mouvements explosifs ou cycliques. En fait, l'une des premières motivations à l'origine de ce changement est la sécurité. Parlant de la sécurité à la fois du sujet humain et du robot, tout en s'engageant dans des tâches collaboratives. Ainsi la désignation des cobots. Les cobots peuvent aider un opérateur humain expérimenté dans plusieurs domaines où la précision est essentielle, comme les applications industrielles ou les tâches médicales. Jusqu'à présent, les cobots présentent toujours des problèmes de sécurité, même avec des recommandations réglementaires telles que ISO / TS 15066 et ISO 10218-1 et 2 qui limitent leurs avantages économiques. Dans cette vue, plusieurs projets de recherche ont été lancés dans le monde entier pour améliorer la dynamique des cobots par rapport à la sécurité, ANR-SISCob (Safety Intelligent Sensor for cobots) étant l'un de ces projets. Les travaux menés au cours de cette thèse ont pour but de concevoir des dispositifs de sécurité qui sécuriseront les robots en y introduisant l’aspect de compliance. En effet, nous avons développé deux dispositifs dans lesquels l'aspect sécurité est atteint avec deux approches différentes :- Prismatic Compliant Joint (PCJ) : qui vise à la mise en œuvre dans les articulations linéaires, car peu de travaux ont traité de tels systèmes d'actionnement. Ici, la sécurité est atteinte biomimétiquement tout en faisant face à d'autres critères de sécurité liés aux propriétés mécaniques du corps humain.- Variable Stiffness Safety Oriented Mechanism (V2SOM) : Contrairement au premier dispositif d'inspiration biomimétique qui sert aux systèmes d'actionnement linéaires, le profil de sécurité du V2SOM est axé sur la sécurité selon deux critères de sécurité: force d’impact et HIC. L'aspect ‘orienté sécurité’ est dû à ce que nous appelons la capacité de découplage d'inertie de son profil de rigidité. V2SOM est actuellement dans ses dernières étapes de brevetage.Ces deux appareils seront intégrés dans un robot sériel réalisé dans notre laboratoire
In the recent years, we witnessed a paradigm shift from making stiff robots toward compliant ones. This is due to several reasons such as enhancing the efficiency of robots in making explosive or cyclic motion. In fact, one of the earliest motivations from which this change stems are safety. Speaking of safety of both the human subject and the robot alike, while engaging in a collaborative task. Thus, the designation of cobots. Cobots may assist well-experienced human operator in several domains where precision is a must, such as industrial applications or medical tasks. Until now cobots still display safety concerns, even with regulatory recommendations such as ISO/TS 15066 and ISO 10218-1 et 2 that limits their economic benefits. In this view, several research projects were launched worldwide to enhance the cobot’s dynamics vs safety, ANR-SISCob (Safety Intelligent Sensor for cobots) is one of these projects. The works conducted during this thesis aims at making safety devices that will make robots safe by introducing compliance aspect in them. Indeed, we developed two devices in which safety aspect is achieved with two different approaches: - Prismatic Compliant Joint (PCJ): is aimed at prismatic joint’s implementation, as few works have dealt with such actuation systems. Herein, safety is biomimetically attained while coping with other safety criteria related to the mechanical properties of human body. - Variable Stiffness Safety Oriented Mechanism (V2SOM): Unlike the first device that’s biomimetically inspired and serves at linear actuation systems, V2SOM’s safety profile is safety oriented according to two safety criteria Impact force and HIC, and is designed for rotary actuation. The safety oriented aspect is due to what we call inertia decoupling capacity of its stiffness profile. V2SOM is currently in its final patenting process.Both devices will be integrated in serial robot built in our lab
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Medina, Hernandez Jose Ramon [Verfasser], Sandra [Akademischer Betreuer] Hirche, and Aude [Akademischer Betreuer] Billard. "Model-based Control and Learning in Physical Human-Robot Interaction / Jose Ramon Medina Hernandez. Betreuer: Sandra Hirche. Gutachter: Aude Billard ; Sandra Hirche." München : Universitätsbibliothek der TU München, 2015. http://d-nb.info/1080592245/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Shaikh, Meher Talat. "Multi-objective Intent-based Path Planning for Robots for Static and Dynamic Environments." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8510.

Повний текст джерела
Анотація:
This dissertation models human intent for a robot navigation task, managed by a human and undertaken by a robot in a dynamic, multi-objective environment. Intent is expressed by a human through a user interface and then translated into a robot trajectory that satisfies a set of human-specified objectives and constraints. For a goal-based robot navigation task in a dynamic environment, intent includes expectations about a path in terms of objectives and constraints to be met. If the planned path drifts from the human's intent as the environment changes, a new path needs to be planned. The intent framework has four elements: (a) a mathematical representation of human intent within a multi-objective optimization problem; (b) design of an interactive graphical user interface that enables a human to communicate intent to the robot and then to subsequently monitor intent execution; (c) integration and adoption of a fast online path-planning algorithms that generate solutions/trajectories conforming to the given intent; and (d) design of metric-based triggers that provide a human the opportunity to correct or adapt a planned path to keep it aligned with intent as the environment changes. Key contributions of the dissertation are: (i) design and evaluation of different user interfaces to express intent, (ii) use of two different metrics, cosine similarity and intent threshold margin, that help quantify intent, and (iii) application of the metrics in path (re)planning to detect intent mismatches for a robot navigating in a dynamic environment. A set of user studies including both controlled laboratory experiments and Amazon Mechanical Turk studies were conducted to evaluate each of these dissertation components.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Thellman, Sam. "Social Dimensions of Robotic versus Virtual Embodiment, Presence and Influence." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-130645.

Повний текст джерела
Анотація:
Robots and virtual agents grow rapidly in behavioural sophistication and complexity. They become better learners and teachers, cooperators and communicators, workers and companions. These artefacts – whose behaviours are not always readily understood by human intuition nor comprehensibly explained in terms of mechanism – will have to interact socially. Moving beyond artificial rational systems to artificial social systems means having to engage with fundamental questions about agenthood, sociality, intelligence, and the relationship between mind and body. It also means having to revise our theories about these things in the course of continuously assessing the social sufficiency of existing artificial social agents. The present thesis presents an empirical study investigating the social influence of physical versus virtual embodiment on people's decisions in the context of a bargaining task. The results indicate that agent embodiment did not affect the social influence of the agent or the extent to which it was perceived as a social actor. However, participants' perception of the agent as a social actor did influence their decisions. This suggests that experimental results from studies comparing different robot embodiments should not be over-generalised beyond the particular task domain in which the studied interactions took place.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

ANGELONI, Fabio. "Collision Detection for Industrial Applications." Doctoral thesis, Università degli studi di Bergamo, 2017. http://hdl.handle.net/10446/77107.

Повний текст джерела
Анотація:
In the manufacturing industry, the request of complex products and the decreasing of production time have led to more and more sophisticated CNC-controlled multi-axis machines. Often their setup process is affected by different mistakes caused by the persons responsible that lead to collisions inside the working area. Those collisions often lead to damage the tool and the work piece. The thesis deals with this problem, providing new insights for a fast and robust collision detection. Imagining to start from scratch, through a dynamic analysis of the impact in a mechanical transmission, we reached to identify the sensors which provide the optimal trade-off between the quality of impact information measured, feasibility and costs. Then, we propose two new collision detection algorithms able to identify the unwanted event as fast as possible, with the goal to reduce the impact force and containing the damage. Furthermore, their performance are compared with the most successful algorithm found in literature on two different mechanical systems: a heavy automatic access gate and the laboratory’s robotic arm.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Velor, Tosan. "A Low-Cost Social Companion Robot for Children with Autism Spectrum Disorder." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41428.

Повний текст джерела
Анотація:
Robot assisted therapy is becoming increasingly popular. Research has proven it can be of benefit to persons dealing with a variety of disorders, such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and it can also provide a source of emotional support e.g. to persons living in seniors’ residences. The advancement in technology and a decrease in cost of products related to consumer electronics, computing and communication has enabled the development of more advanced social robots at a lower cost. This brings us closer to developing such tools at a price that makes them affordable to lower income individuals and families. Currently, in several cases, intensive treatment for patients with certain disorders (to the level of becoming effective) is practically not possible through the public health system due to resource limitations and a large existing backlog. Pursuing treatment through the private sector is expensive and unattainable for those with a lower income, placing them at a disadvantage. Design and effective integration of technology, such as using social robots in treatment, reduces the cost considerably, potentially making it financially accessible to lower income individuals and families in need. The Objective of the research reported in this manuscript is to design and implement a social robot that meets the low-cost criteria, while also containing the required functions to support children with ASD. The design considered contains knowledge acquired in the past through research involving the use of various types of technology for the treatment of mental and/or emotional disabilities.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Jlassi, Sarra. "Formulation et études des problèmes de commande en co-manipulation robotique." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00982969.

Повний текст джерела
Анотація:
Dans ce travail de thèse, nous abordons les problèmes de commande posés en co-manipulation robotique pour des tâches de manutention à travers un point de vue dont nous pensons qu'il n'est pas suffisamment exploité, bien qu'il a recourt à des outils classiques en robotique. Le problème de commande en co-manipulation robotique est souvent abordé par le biais des méthodes de contrôle d'impédance, où l'objectif est d'établir une relation mathématique entre la vitesse linéaire du point d'interaction homme-robot et la force d'interaction appliquée par l'opérateur humain au même point. Cette thèse aborde le problème de co-manipulation robotique pour des tâches de manutention comme un problème de commande optimale sous contrainte. Le point de vue proposé se base sur la mise en œuvre d'un Générateur de Trajectoire Temps-Réel spécifique, combiné à une boucle d'asservissement cinématique. Le générateur de trajectoire est conçu de manière à traduire les intentions de l'opérateur humain en trajectoires idéales que le robot doit suivre ? Il fonctionne comme un automate à deux états dont les transitions sont contrôlées par évènement, en comparant l'amplitude de la force d'interaction à un seuil de force ajustable, afin de permettre à l'opérateur humain de garder l'autorité sur les états de mouvement du robot. Pour assurer une interaction fluide, nous proposons de générer un profil de vitesse colinéaire à la force appliquée au point d'interaction. La boucle d'asservissement est alors utilisée afin de satisfaire les exigences de stabilité et de qualité du suivi de trajectoire tout en garantissant l'assistance une interaction homme-robot sûre. Plusieurs méthodes de synthèse sont appliquées pour concevoir des correcteurs efficaces qui assurent un bon suivi des trajectoires générées. L'ensemble est illustré à travers deux modèles de robot. Le premier est le penducobot, qui correspond à un robot sous-actionné à deux degrés de liberté et évoluant dans le plan. Le deuxième est un robot à deux bras complètement actionné.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

"Adaptive Optimal Control in Physical Human-Robot Interaction." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.53895.

Повний текст джерела
Анотація:
abstract: What if there is a way to integrate prosthetics seamlessly with the human body and robots could help improve the lives of children with disabilities? With physical human-robot interaction being seen in multiple aspects of life, including industry, medical, and social, how these robots are interacting with human becomes even more important. Therefore, how smoothly the robot can interact with a person will determine how safe and efficient this relationship will be. This thesis investigates adaptive control method that allows a robot to adapt to the human's actions based on the interaction force. Allowing the relationship to become more effortless and less strained when the robot has a different goal than the human, as seen in Game Theory, using multiple techniques that adapts the system. Few applications this could be used for include robots in physical therapy, manufacturing robots that can adapt to a changing environment, and robots teaching people something new like dancing or learning how to walk after surgery. The experience gained is the understanding of how a cost function of a system works, including the tracking error, speed of the system, the robot’s effort, and the human’s effort. Also, this two-agent system, results into a two-agent adaptive impedance model with an input for each agent of the system. This leads to a nontraditional linear quadratic regulator (LQR), that must be separated and then added together. Thus, creating a traditional LQR. This new experience can be used in the future to help build better safety protocols on manufacturing robots. In the future the knowledge learned from this research could be used to develop technologies for a robot to allow to adapt to help counteract human error.
Dissertation/Thesis
Masters Thesis Engineering 2019
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Vu, Hung Mai. "Control of an anthropomorphic manipulator involved in physical human-robot interaction." Master's thesis, 2012. http://hdl.handle.net/1822/19955.

Повний текст джерела
Анотація:
Dissertação de mestrado em Engenharia Mecânica
The objective of the dissertation is to flexibly control the end effector velocity of a redundant 7-DOF manipulator by using a differential kinematics approach, while ensuring the safety of the robotic arm from exceeding the physical limits of joints in terms of position, velocity and acceleration. The thesis also contributes with a real-time obstacle avoidance strategy for controlling anthropomorphic robotic arms in dynamic obstacle environments, taking account of sudden appearances or disappearances of mobile obstacles. A method for compensating force errors due to changes in the orientation of end effectors, independent from structures of force sensors, is developed to achieve high accuracy in force control applications. A novel method, the Virtual Elastic System, is proposed to control mobile manipulators for physical Human-Robot Interaction (pHRI) tasks in dynamic environments, which enables the combination of an Inverse Differential Kinematics for redundant robotic arms and a Dynamical Systems approach for nonholonomic mobile platforms. Experiments with a 7-DOF robotic arm, side-mounted on a nonholonomic mobile platform, are presented with the whole robot obstacle avoidance, proving the efficiency of the developed method in pHRI scenarios, more specifically, cooperative human-robot object transportation tasks in dynamic environments. Extensions of the method for other mobile manipulators with holonomic mobile platforms or higher degrees of freedom manipulators are also demonstrated through simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kuan-ChungYu and 尤冠中. "Injury Study for physical Human-Robot Interaction based on Crash Dummy." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/76326117194324504898.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Reeks, Christian. "Sensing and human pose estimation in extreme industrial environments for physical human robot interaction." Thesis, 2017. http://hdl.handle.net/10453/123281.

Повний текст джерела
Анотація:
University of Technology Sydney. Faculty of Engineering and Information Technology.
Collaborative robotic systems which physically interact with a user are gaining popularity in industry. Collaborative robots can combine the power, precision and repeatability of robots with the skill and cognitive ability of a human to complete a task with greater efficiency and reduced risk of injury. One such industrial application that would benefit from collaborative robots is abrasive blasting. Abrasive blasting produces a large reaction force on to the worker and creates enormous amounts of dust filling the workspace. While the robot can handle the reaction forces of blasting, the user’s safety must be ensured. A non-invasive vision-based human detection system would be ideal to handle this. However, there are many challenges that need to be overcome when attempting human detection in such hazardous environments. This thesis proposes a vision system for human pose estimation in hazardous environments. Four sensing technologies are evaluated during abrasive blasting and a suitable sensor is chosen. To determine the ideal placement and number of sensors, an optimisation model is developed. Sensor enclosures are fabricated and experiments conducted to validate the quality of the point cloud data. The point cloud specific to the human is identified and extracted from multiple point clouds. Marker-less and marker-based pose detection are implemented using the human point cloud. Occluded body parts are estimated by tailoring the embedded deformation algorithm to physical human robot interaction. This work is implemented on a custom assistive robotic platform. Additional methods to improve sensing and detection are discussed along with possible directions for future work.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lens, Thomas. "Physical Human-Robot Interaction with a Lightweight, Elastic Tendon Driven Robotic Arm." Phd thesis, 2012. https://tuprints.ulb.tu-darmstadt.de/3493/1/2013-07-03%20tuprints%20-%20Dissertation_ELEKTRONISCH.pdf.

Повний текст джерела
Анотація:
Humans have since long desired to be assisted by robotic systems in productive and home environments. To fulfill this need, efforts are made to increase the cognitive abilities that robots lack to autonomously interpret their environment and human intentions. But equally important, new hardware and actuation designs are required to increase the safety and sensitivity of robots that operate in the vicinity of humans. A main restriction of most current robot arm designs for physical human-robot interaction (pHRI) is the discrepancy of safety and dynamic performance in terms of, for instance, velocity and payload. This thesis therefore deals with the challenges involved in the development of fast robot arms that are safe for the operation in human-centered environments and for applications requiring close pHRI. It presents design guidelines for lightweight robot arms with elastic tendon actuation and, additionally, suitable methods for dynamic modeling and control and safety evaluation. This novel type of robotic arm aims at enabling automation of applications that combine critically high safety requirements for pHRI with high performance and flexibility demands. The BioRob-X4 robot arm is used as a robotic hardware platform for evaluation of the developed models and methods, which are tested in simulation and validated on the robot hardware. In contrast to other robot arm designs, the actuation principle of the BioRob arm is non-modular in order to enable an extreme lightweight and low-inertia design with high safety and acceleration properties. The use of tendons spanning multiple joints, however, introduces kinematic coupling and the use of extension coil springs to maintain tendon tension and to decouple link and rotor inertia introduces undesirable joint oscillations. These effects have to be modeled accurately to investigate the behavior of the actuators and the whole arm dynamics in theory, simulation, and experiment and to allow for the development and design of model-based algorithms. Therefore, detailed mathematical models for the highly compliant and kinematically coupled tendon actuators and the low inertia link structure are developed and validated against experimentally measured data. The actuation models are analyzed with respect to highly dynamic motions inherent to low inertia link designs. Associated effects such as dynamic and static tendon slackening are discussed and from these considerations, guidelines for shaping the actuator characteristic output curves are derived. State space partitioning of the manipulator is proposed for the formulation of the full robot arm dynamics model. By partitioning the model into three state spaces, the dynamics model of the robot arm can be formulated in joint space by reflecting the model states and parameters to the joint space. The presented approach is generally applicable to tendon-driven robotic arms and, furthermore, helpful in reducing the modeling complexity. The design and hardware constraints of the investigated robot arm demand for the development of specific calibration and filter methods for the joint position and velocity states. Thus, a joint position sensor calibration method and a multilevel switching observer are developed that are both in general applicable to robotic arms with high joint elasticity. Based on the inverse dynamics model and the decoupling of tendon actuators spanning multiple joints we derive a position tracking controller by using the developed state space model segmentation. The proposed observer and control methods are evaluated in simulation and on the robot hardware. A new prediction method for maximum collision and clamping forces based on the current dynamic state of the manipulator and its compliant actuators by monitoring also the potential energy stored in the springs is developed and applied successfully. A worst case safety evaluation considering the possibility of software and hardware failures is performed. In this context, the impact behavior of the elastic tendon actuators is compared to robot arms with backdrivable motors that are either stiffly or elastically coupled to the link and either coupled by tendon to the joint or placed directly in the joint. The theoretical and experimental results presented in this thesis demonstrate the feasibility of constructing fast robotic arms with very high safety properties that are suitable for pHRI and operation in close and direct vicinity of humans. The developed detailed multibody dynamics models are applicable to lightweight manipulator arms with stiff kinematic link chains that are driven by highly elastic tendon actuators.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

"Physical Human-Bicycle Interfaces for Robotic Balance Assistance." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.57413.

Повний текст джерела
Анотація:
abstract: Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated by providing active balance and steering assistance to the rider. In order to provide this assistance while maintaining free maneuverability, it is necessary to measure the position of the rider on the bicycle and to understand the rider's intent. Applying autonomy to bicycles also has the potential to address some of the challenges posed by traditional automobiles, including CO2 emissions, land use for roads and parking, pedestrian safety, high ownership cost, and difficulty traversing narrow or partially obstructed paths. The Smart Bike research platform provides a set of sensors and actuators designed to aid in understanding human-bicycle interaction and to provide active balance control to the bicycle. The platform consists of two specially outfitted bicycles, one with force and inertial measurement sensors and the other with robotic steering and a control moment gyroscope, along with the associated software for collecting useful data and running controlled experiments. Each bicycle operates as a self-contained embedded system, which can be used for untethered field testing or can be linked to a remote user interface for real-time monitoring and configuration. Testing with both systems reveals promising capability for applications in human-bicycle interaction and robotics research.
Dissertation/Thesis
Masters Thesis Software Engineering 2020
Стилі APA, Harvard, Vancouver, ISO та ін.
30

"Understanding Humans to Better Understand Robots in a Joint-Task Environment: The Study of Surprise and Trust in Human-Machine Physical Coordination." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.53847.

Повний текст джерела
Анотація:
abstract: Human-robot interaction has expanded immensely within dynamic environments. The goals of human-robot interaction are to increase productivity, efficiency and safety. In order for the integration of human-robot interaction to be seamless and effective humans must be willing to trust the capabilities of assistive robots. A major priority for human-robot interaction should be to understand how human dyads have been historically effective within a joint-task setting. This will ensure that all goals can be met in human robot settings. The aim of the present study was to examine human dyads and the effects of an unexpected interruption. Humans’ interpersonal and individual levels of trust were studied in order to draw appropriate conclusions. Seventeen undergraduate and graduate level dyads were collected from Arizona State University. Participants were broken up into either a surprise condition or a baseline condition. Participants individually took two surveys in order to have an accurate understanding of levels of dispositional and individual levels of trust. The findings showed that participant levels of interpersonal trust were average. Surprisingly, participants who participated in the surprise condition afterwards, showed moderate to high levels of dyad trust. This effect showed that participants became more reliant on their partners when interrupted by a surprising event. Future studies will take this knowledge and apply it to human-robot interaction, in order to mimic the seamless team-interaction shown in historically effective dyads, specifically human team interaction.
Dissertation/Thesis
Masters Thesis Engineering 2019
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wong, Pius Duc-min. "Methodology for creating human-centered robots : design and system integration of a compliant mobile base." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-05-5433.

Повний текст джерела
Анотація:
Robots have growing potential to enter the daily lives of people at home, at work, and in cities, for a variety of service, care, and entertainment tasks. However, several challenges currently prevent widespread production and use of such human-centered robots. The goal of this thesis was first to help overcome one of these broad challenges: the lack of basic safety in human-robot physical interactions. Whole-body compliant control algorithms had been previously simulated that could allow safer movement of complex robots, such as humanoids, but no such robots had yet been documented to actually implement these algorithms. Therefore a wheeled humanoid robot "Dreamer" was developed to implement the algorithms and explore additional concepts in human-safe robotics. The lower mobile base part of Dreamer, dubbed "Trikey," is the focus of this work. Trikey was iteratively developed, undergoing cycles of concept generation, design, modeling, fabrication, integration, testing, and refinement. Test results showed that Trikey and Dreamer safely performed movements under whole-body compliant control, which is a novel achievement. Dreamer will be a platform for future research and education in new human-friendly traits and behaviors. Finally, this thesis attempts to address a second broad challenge to advancing the field: the lack of standard design methodology for human-centered robots. Based on the experience of building Trikey and Dreamer, a set of consistent design guidelines and metrics for the field are suggested. They account for the complex nature of such systems, which must address safety, performance, user-friendliness, and the capability for intelligent behavior.
text
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії