Добірка наукової літератури з теми "Physical human-robot Interactions"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Physical human-robot Interactions".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Physical human-robot Interactions"
Lai, Yujun, Gavin Paul, Yunduan Cui, and Takamitsu Matsubara. "User intent estimation during robot learning using physical human robot interaction primitives." Autonomous Robots 46, no. 2 (January 15, 2022): 421–36. http://dx.doi.org/10.1007/s10514-021-10030-9.
Повний текст джерелаShiomi, Masahiro, Hidenobu Sumioka, and Hiroshi Ishiguro. "Special Issue on Human-Robot Interaction in Close Distance." Journal of Robotics and Mechatronics 32, no. 1 (February 20, 2020): 7. http://dx.doi.org/10.20965/jrm.2020.p0007.
Повний текст джерелаPark, Eunil, and Jaeryoung Lee. "I am a warm robot: the effects of temperature in physical human–robot interaction." Robotica 32, no. 1 (August 2, 2013): 133–42. http://dx.doi.org/10.1017/s026357471300074x.
Повний текст джерелаLosey, Dylan P., Andrea Bajcsy, Marcia K. O’Malley, and Anca D. Dragan. "Physical interaction as communication: Learning robot objectives online from human corrections." International Journal of Robotics Research 41, no. 1 (October 25, 2021): 20–44. http://dx.doi.org/10.1177/02783649211050958.
Повний текст джерелаIkemoto, Shuhei, Takashi Minato, and Hiroshi Ishiguro. "Analysis of Physical Human–Robot Interaction for Motor Learning with Physical Help." Applied Bionics and Biomechanics 5, no. 4 (2008): 213–23. http://dx.doi.org/10.1155/2008/360304.
Повний текст джерелаWang, Nana, Yi Zeng, and Jie Geng. "A Brief Review on Safety Strategies of Physical Human-robot Interaction." ITM Web of Conferences 25 (2019): 01015. http://dx.doi.org/10.1051/itmconf/20192501015.
Повний текст джерелаAvelino, João, Tiago Paulino, Carlos Cardoso, Ricardo Nunes, Plinio Moreno, and Alexandre Bernardino. "Towards natural handshakes for social robots: human-aware hand grasps using tactile sensors." Paladyn, Journal of Behavioral Robotics 9, no. 1 (August 1, 2018): 221–34. http://dx.doi.org/10.1515/pjbr-2018-0017.
Повний текст джерелаKAMBAROV, Ikrom, Matthias BROSSOG, Jorg FRANKE, David KUNZ, and Jamshid INOYATKHODJAEV. "From Human to Robot Interaction towards Human to Robot Communication in Assembly Systems." Eurasia Proceedings of Science Technology Engineering and Mathematics 23 (October 16, 2023): 241–52. http://dx.doi.org/10.55549/epstem.1365802.
Повний текст джерелаDing, Zhangchi, Masoud Baghbahari, and Aman Behal. "A Passivity-Based Framework for Safe Physical Human–Robot Interaction." Robotics 12, no. 4 (August 14, 2023): 116. http://dx.doi.org/10.3390/robotics12040116.
Повний текст джерелаNiiyama, Ryuma, Masahiro Ikeda, and Young Ah Seong. "Inflatable Humanoid Cybernetic Avatar for Physical Human–Robot Interaction." International Journal of Automation Technology 17, no. 3 (May 5, 2023): 277–83. http://dx.doi.org/10.20965/ijat.2023.p0277.
Повний текст джерелаДисертації з теми "Physical human-robot Interactions"
Métillon, Marceau. "Modelling, Control and Performance Analysis of Cable-Driven Parallel Cobots." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0015.
Повний текст джерелаThis PhD thesis addresses the modelling,control and performance analysis of collaborative Cable-Driven Parallel Robots (CDPRs). An elasto-geometric modelling of the actuation elements is proposed to improve their positioning accuracy. Different inverse elastogeometricmodels are simulated and experimentally assessed then analysed in a sensitivity analysis.Then, control strategies allowing the physical interactions of operators with CDPRs are proposed. These strategies are based on the impedance control and allow the robots comanipulation. A hybrid controller for trajectory tracking and co-manipulation is presented and experimented. A safety device for the proximity detection based on the capacitive coupling principle is fitted to CDPRs and tested. Finally, user experiments are led to determine the performance of the proposed strategies.Three experiments led with volunte erenable the performance variation evaluationand the user behaviour study during physical human-CDPR interactions
Ahmed, Muhammad Rehan. "Compliance Control of Robot Manipulator for Safe Physical Human Robot Interaction." Doctoral thesis, Örebro universitet, Akademin för naturvetenskap och teknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-13986.
Повний текст джерелаGopinathan, Sugeeth [Verfasser]. "Personalization and Adaptation in Physical Human-Robot Interaction / Sugeeth Gopinathan." Bielefeld : Universitätsbibliothek Bielefeld, 2019. http://d-nb.info/1181946336/34.
Повний текст джерелаShe, Yu. "Compliant robotic arms for inherently safe physical human-robot interaction." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1541335591178684.
Повний текст джерелаTownsend, Eric Christopher. "Estimating Short-Term Human Intent for Physical Human-Robot Co-Manipulation." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6358.
Повний текст джерелаGuled, Pavan. "Analysis of the physical interaction between Human and Robot via OpenSim software." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Знайти повний текст джерелаBriquet-Kerestedjian, Nolwenn. "Impact detection and classification for safe physical Human-Robot Interaction under uncertainties." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC038/document.
Повний текст джерелаThe present thesis aims to develop an efficient strategy for impact detection and classification in the presence of modeling uncertainties of the robot and its environment and using a minimum number of sensors, in particular in the absence of force/torque sensor.The first part of the thesis deals with the detection of an impact that can occur at any location along the robot arm and at any moment during the robot trajectory. Impact detection methods are commonly based on a dynamic model of the system, making them subject to the trade-off between sensitivity of detection and robustness to modeling uncertainties. In this respect, a quantitative methodology has first been developed to make explicit the contribution of the errors induced by model uncertainties. This methodology has been applied to various detection strategies, based either on a direct estimate of the external torque or using disturbance observers, in the perfectly rigid case or in the elastic-joint case. A comparison of the type and structure of the errors involved and their consequences on the impact detection has been deduced. In a second step, novel impact detection strategies have been designed: the dynamic effects of the impacts are isolated by determining the maximal error range due to modeling uncertainties using a stochastic approach.Once the impact has been detected and in order to trigger the most appropriate post-impact robot reaction, the second part of the thesis focuses on the classification step. In particular, the distinction between an intentional contact (the human operator intentionally interacts with the robot, for example to reconfigure the task) and an undesired contact (a human subject accidentally runs into the robot), as well as the localization of the contact on the robot, is investigated using supervised learning techniques and more specifically feedforward neural networks. The challenge of generalizing to several human subjects and robot trajectories has been investigated
Bussy, Antoine. "Approche cognitive pour la représentation de l’interaction proximale haptique entre un homme et un humanoïde." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20090/document.
Повний текст джерелаRobots are very close to arrive in our homes. But before doing so, they must master physical interaction with humans, in a safe and efficient way. Such capacities are essential for them to live among us, and assit us in various everyday tasks, such as carrying a piece of furniture. In this thesis, we focus on endowing the biped humanoid robot HRP-2 with the capacity to perform haptic joint actions with humans. First, we study how human dyads collaborate to transport a cumbersome object. From this study, we define a global motion primitives' model that we use to implement a proactive behavior on the HRP-2 robot, so that it can perform the same task with a human. Then, we assess the performances of our proactive control scheme by perfoming user studies. Finally, we expose several potential extensions to our work: self-stabilization of a humanoid through physical interaction, generalization of the motion primitives' model to other collaboratives tasks and the addition of visionto haptic joint actions
Reynaga, Barba Valeria. "Detecting Changes During the Manipulation of an Object Jointly Held by Humans and RobotsDetektera skillnader under manipulationen av ett objekt som gemensamt hålls av människor och robotar." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-174027.
Повний текст джерелаGiannaccini, M. E. "Safe and effective physical human-robot interaction : approaches to variable compliance via soft joints and soft grippers." Thesis, University of the West of England, Bristol, 2015. http://eprints.uwe.ac.uk/27224/.
Повний текст джерелаКниги з теми "Physical human-robot Interactions"
Metta, Giorgio. Humans and humanoids. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0047.
Повний текст джерелаVerschure, Paul F. M. J. A chronology of Distributed Adaptive Control. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0036.
Повний текст джерелаЧастини книг з теми "Physical human-robot Interactions"
Sarantopoulos, Iason, Dimitrios Papageorgiou, and Zoe Doulgeri. "Task-Based Variation of Active Compliance of Arm/Hand Robots in Physical Human Robot Interactions." In Towards Autonomous Robotic Systems, 236–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22416-9_28.
Повний текст джерелаHaddadin, Sami. "Physical Human-Robot Interaction." In Encyclopedia of Robotics, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-41610-1_26-1.
Повний текст джерелаNatale, Ciro. "Physical Human-Robot Interaction." In Encyclopedia of Systems and Control, 1–9. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-5102-9_100033-1.
Повний текст джерелаNatale, Ciro. "Physical Human-Robot Interaction." In Encyclopedia of Systems and Control, 1716–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_100033.
Повний текст джерелаHaddadin, Sami, and Elizabeth Croft. "Physical Human–Robot Interaction." In Springer Handbook of Robotics, 1835–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_69.
Повний текст джерелаD’Onofrio, Grazia, Annamaria Petito, Antonella Calvio, Giusi Antonia Toto, and Pierpaolo Limone. "Robot Assistive Therapy Strategies for Children with Autism." In Psychology, Learning, Technology, 103–16. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15845-2_7.
Повний текст джерелаPrassler, Prof Dr Erwin, Dr Andreas Stopp, Martin Hägele, Ioannis Iossifidis, Dr Gisbert Lawitzky, Dr Gerhard Grunwald, and Prof Dr Ing Rüdiger Dillmann. "4 Co-existence: Physical Interaction and Coordinated Motion." In Advances in Human-Robot Interaction, 161–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-31509-4_14.
Повний текст джерелаReed, Kyle B. "Cooperative Physical Human-Human and Human-Robot Interaction." In Springer Series on Touch and Haptic Systems, 105–27. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2754-3_7.
Повний текст джерелаBicchi, Antonio, Michael A. Peshkin, and J. Edward Colgate. "Safety for Physical Human–Robot Interaction." In Springer Handbook of Robotics, 1335–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-30301-5_58.
Повний текст джерелаHaddadin, Sami, and Elizabeth Croft. "Erratum to: Physical Human–Robot Interaction." In Springer Handbook of Robotics, E1. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32552-1_81.
Повний текст джерелаТези доповідей конференцій з теми "Physical human-robot Interactions"
Chen, Kuo, Yizhai Zhang, and Jingang Yi. "An Integrated Physical-Learning Model of Physical Human-Robot Interactions: A Bikebot Riding Example." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6007.
Повний текст джерелаOng, Kai Wei, Gerald Seet, Siang Kok Sim, William Teoh, Kean Hee Lim, Ai Nee Yow, and Soon Chiang Low. "A Testbed for Human-Robot Interactions." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57171.
Повний текст джерелаMohan, Mayumi, and Katherine J. Kuchenbecker. "A Design Tool for Therapeutic Social-Physical Human-Robot Interactions." In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2019. http://dx.doi.org/10.1109/hri.2019.8673202.
Повний текст джерелаAlbini, Alessandro, Simone Denei, and Giorgio Cannata. "Human hand recognition from robotic skin measurements in human-robot physical interactions." In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206300.
Повний текст джерелаMohan, Mayumi, Rochelle Mendonca, and Michelle J. Johnson. "Towards quantifying dynamic human-human physical interactions for robot assisted stroke therapy." In 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017. http://dx.doi.org/10.1109/icorr.2017.8009365.
Повний текст джерелаEsteveny, Laure, Laurent Barbe, and Bernard Bayle. "A novel actuation technology for safe physical human-robot interactions." In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014. http://dx.doi.org/10.1109/icra.2014.6907596.
Повний текст джерелаShe, Yu, Zhaoyuan Gu, Siyang Song, Hai-Jun Su, and Junmin Wang. "A Continuously Tunable Stiffness Arm With Cable-Driven Mechanisms for Safe Physical Human-Robot Interaction." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22035.
Повний текст джерелаEsteveny, Laure, Laurent Barbé, and Bernard Bayle. "A New Indirect Actuation Principle for Safe Physical Human-Robot Interactions." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12948.
Повний текст джерелаCarter, Elizabeth J., Michael N. Mistry, G. Peter K. Carr, Brooke A. Kelly, and Jessica K. Hodgins. "Playing catch with robots: Incorporating social gestures into physical interactions." In 2014 RO-MAN: The 23rd IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 2014. http://dx.doi.org/10.1109/roman.2014.6926258.
Повний текст джерелаRodriguez, Sebastian, Harsh Deep, Drshika Asher, James Schaffer, and Alex Kirlik. "Validating Trust in Human-Robot Interaction through Virtual Reality: Comparing Embodied and "Behind-the-Screen" Interactions." In AHFE 2023 Hawaii Edition. AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1004408.
Повний текст джерела