Добірка наукової літератури з теми "Physcomitrella paten"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Physcomitrella paten".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Physcomitrella paten"

1

Zhou, Xun, Guan Nan Guo, Le Qi Wang, Su Lan Bai, Chun Li Li, Rong Yu, and Yan Hong Li. "Paenibacillus physcomitrellae sp. nov., isolated from the moss Physcomitrella patens." International Journal of Systematic and Evolutionary Microbiology 65, Pt_10 (October 1, 2015): 3400–3406. http://dx.doi.org/10.1099/ijsem.0.000428.

Повний текст джерела
Анотація:
A Gram-stain-positive, facultatively anaerobic and rod-shaped bacterium, designated strain XBT, was isolated from Physcomitrella patens growing in Beijing, China. The isolate was identified as a member of the genus Paenibacillus based on phenotypic characteristics and phylogenetic inferences. The novel strain was spore-forming, motile, catalase-negative and weakly oxidase-positive. Optimal growth of strain XBT occurred at 28°C and pH 7.0–7.5. The major polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unidentified components, including one phospholipid, two aminophospholipids, three glycolipids, one aminolipid and one lipid. The predominant isoprenoid quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acid components (>5 %) were anteiso-C15 : 0 (51.2 %), anteiso-C17 : 0 (20.6 %), iso-C16 : 0 (8.3 %) and C16 : 0 (6.7 %). The G+C content of the genomic DNA was 53.3 mol%. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain XBT fell within the evolutionary distances encompassed by the genus Paenibacillus; its closest phylogenetic neighbour was Paenibacillus yonginensis DCY84T (96.6 %). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain XBT is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus physcomitrellae sp. nov., is proposed. The type strain is XBT ( = CGMCC 1.15044T = DSM 29851T).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reski, Ralf, and David J. Cove. "Physcomitrella patens." Current Biology 14, no. 7 (April 2004): R261—R262. http://dx.doi.org/10.1016/j.cub.2004.03.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gorina, S. S., and Y. Y. Toporkova. "OXYLIPINS. DYNAMICS GENE EXPRESSION OF THE LIPOXYGENASE CASCADE OF MOSS PHYSCOMITRELLA PATENS DURING INFECTION." ÈKOBIOTEH 3, no. 2 (2020): 157–65. http://dx.doi.org/10.31163/2618-964x-2020-3-2-157-165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cove, David. "The Moss, Physcomitrella patens." Journal of Plant Growth Regulation 19, no. 3 (September 1, 2000): 275–83. http://dx.doi.org/10.1007/s003440000031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sha, Wei, Li Wu, and Xiao Hong Song. "In Silicon Cloning and Bioinformatics Analysis of an Eukaryotic Initiation Factor 4E Gene from Grimmia pilifera." Applied Mechanics and Materials 138-139 (November 2011): 1132–38. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.1132.

Повний текст джерела
Анотація:
GH425 gene comes from the Grimmia pilifera drought stress of cDNA library.In this experiment,we have got the full sequence of GH425NO.1 by E-cloning which using GH425 as gene probe,in Physcomitrella patens DNA Datebase.Through using ORFfinder to find out the longest ORF and design primer for it,then, validated the Physcomitrella patens by PT-PCR,and we have obtained corresponding band and proved that the result of silicon cloning is correct and the fragment is contained in Grimmia pilifera P.Beauv.Now,we know the sequence encodes Eukaryotic initiation factor 4E by Blastx,and analysis it with Bioinformatics.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schaefer, D. "Gene targeting in Physcomitrella patens." Current Opinion in Plant Biology 4, no. 2 (April 1, 2001): 143–50. http://dx.doi.org/10.1016/s1369-5266(00)00150-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cove, D. J., P. F. Perroud, A. J. Charron, S. F. McDaniel, A. Khandelwal, and R. S. Quatrano. "Culturing the Moss Physcomitrella patens." Cold Spring Harbor Protocols 2009, no. 2 (February 1, 2009): pdb.prot5136. http://dx.doi.org/10.1101/pdb.prot5136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bricker, Terry M., Adam J. Bell, Lan Tran, Laurie K. Frankel, and Steven M. Theg. "Photoheterotrophic growth of Physcomitrella patens." Planta 239, no. 3 (November 27, 2013): 605–13. http://dx.doi.org/10.1007/s00425-013-2000-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sarnighausen, Eric, Virginie Wurtz, Dimitri Heintz, Alain Van Dorsselaer, and Ralf Reski. "Mapping of the Physcomitrella patens proteome." Phytochemistry 65, no. 11 (June 2004): 1589–607. http://dx.doi.org/10.1016/j.phytochem.2004.04.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arazi, Tzahi. "MicroRNAs in the moss Physcomitrella patens." Plant Molecular Biology 80, no. 1 (March 4, 2011): 55–65. http://dx.doi.org/10.1007/s11103-011-9761-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Physcomitrella paten"

1

Mittmann, Franz. "Molekularbiologische Untersuchungen zum Phytochromsystem der Moose Physcomitrella patens und Ceratodon purpureus." [S.l.] : [s.n.], 2002. http://www.diss.fu-berlin.de/2003/94/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cast, Delphine. "Régulation de la croissance : Implication des protéines ribosomales S6Kinases chez la mousse Physcomitrella patens." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4095.

Повний текст джерела
Анотація:
Les plantes ont développé une forte capacité d'adaptation aux facteurs environnementaux comme les conditions nutritives. Les voies de signalisation qui perçoivent les signaux environnementaux et les intègrent au niveau du développement de la plante sont encore mal connues. La voie de signalisation TOR–S6Kinase qui est conservée au sein des eucaryotes, a été principalement étudié chez les animaux et la levure chez lesquels elle régule la croissance en réponse aux facteurs de l'environnement via le niveau de traduction, la synthèse des ribosomes et le cycle de division cellulaire. Chez l'angiosperme Arabidopsis thaliana, deux gènes codent pour des protéines S6Kinases mais les travaux publiés ne montrent pas une implication de ces deux gènes dans le développement de la plante. Notre travail a consisté à mettre en évidence l'implication des protéines S6Kinases chez les plantes en utilisant comme modèle la mousse Physcomitrella patens. Nous avons développé des conditions expérimentales pour étudier le développement du protonéma de mousse qui est constitué de deux types cellulaires, le chloronéma et le caulonéma. Par exemple, nous avons caractérisé un marqueur moléculaire du caulonéma, un type cellulaire induit en condition de carence. Nous avons identifié 3 gènes codants pour les protéines S6Kinases chez Physcomitrella patens puis, nous avons réalisé les trois simples mutants par transgénèse ciblée. Nos résultats indiquent que le gène PpS6K1 permet de réguler le développement du protonéma en fonction des conditions environnementales en jouant principalement sur le rythme de division des chloronémas en fonction des nutriments
Plants have developed a strong capacity to adapt to environmental cues like nutritive conditions. However, the signalling pathways involved in the perception of environmental signals and their integration into plant development are still poorly understood. The TOR-S6kinase signalling pathway is conserved in all eukaryotes but has been mainly studied in yeast and animals where it is known to regulate growth in response to the environment via translation, ribosome synthesis and the cell cycle. In the angiosperm Arabidopsis thaliana, two genes encode S6 kinases but their functions during development are not known.The objective of this work was to characterise the function of S6 kinases in plants using the moss Physcomitrella patens as a model system. We have developed new methods to study the development of moss protonema, a filamentous tissue made of only two cell types: chloronema and caulonema. For example, we have characterized a molecular marker of caulonema, the cell type induced by starvation. We have characterized the three genes encoding P. patens S6 kinases and used gene targeting to generate knock-out mutants for each of them. Our results indicate that PpS6K1 regulates protonema development in response to nutrient conditions, mainly through the rate of chloronema cells proliferation. In the other hand, PpS6K2 is involved in the inhibition of the chloronema to caulonema transition and in nutrient sensing. PpS6K3 seems to be involved in the development of the gametophore and the sporophyte. Thus, our results show that the three S6Ks are involved at different levels in the regulation of growth and development in the moss P patens
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Russell, Angela Julia. "Morphogenesis in the moss Physcomitrella patens." Thesis, University of Leeds, 1993. http://etheses.whiterose.ac.uk/1535/.

Повний текст джерела
Анотація:
A method was developed for recording the development of moss protonema using time-lapse video microscopy. This has provided a detailed record of the time-course of development from spore germination to the production of gametophores. Detailed records of the growth of primary and secondary chloronema, the transition of primary chloronema to caulonema, and the development of side-branches were obtained. Filaments were found to undergo the transition to caulonema earlier than previously thought. The majority of caulonemas ide-branches were found to begin as chloronema and switch to caulonema after one or two cell cycles. The early cell divisions of bud formation were found to follow a distinct pattern, which was upset by high concentrations of cytokinin and lanthanum. The response of caulonema apical cells to polarotropic light was recorded and compared to the gravitropic response. The time-lapse studies provided the basis for the further development of the quantitative analysis of protonemal branching patterns to include second and third side-branches of a sub-apical cell, and transitional caulonema. Analysing side-branch patterns should allow the detection of developmental mechanisms underlying the determination of side-branch fate. The potential of this method for assessing the effect of hormone treatments and for analysing more precisely mutant phenotypes was explored. An analysis of bud spacing was carried out to determine if the formation of a bud on a filament was inhibitory to other buds forming on the same filament. It was found, to the contrary, that buds tended to form in clusters. The hypothesis that the primary mode of action of cytokinin is an enhanced influx of calcium ions into the cell was investigated. Classical electrophysiology was used in order to detect any change in membrane potential suggestive of ionic fluxes in response to cytokinin treatment. No definitive changes in membrane potential were detected in response to cytokinin. This appeared to rule out the involvement of voltage-regulated channels in cytokinin action. The effects of some inhibitors used in studies of calcium on the moss protonemal system were examined. It is suggested that the concentrations commonly used had toxic effects that were not specific to calcium channels. The ionophore A23187 was used to characterise the protonemal response to a sustained influx of calcium. Some mutant strains were found to have a differential response to the ionophore. This may mean that they have mutations affecting their calcium regulatory system. Two new techniques of imaging calcium were used in order to detect changes in intracellular calcium in response to cytokinin. A method was developed for loading the dual wavelength fluorescent dye Indo-1 into moss protonema using iontophoretic microinjection, and intracellular calcium was imaged using ratio-image technology. Wild-type moss and some mutant strains were also successfully transformed with the gene for apoaequorin, and calcium luminescence measured in response to cold-shock and plant hormones. Some different responsesto temperatures hock were apparent in one of the transformed mutants. Preliminary experiments did not reveal any aequor independent calcium luminescence in response to cytokinin.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Knight, C. D. "Gravitropism in the moss Physcomitrella patens." Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Kieran J. D. "The cell wall of Physcomitrella patens." Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liénard, David. "Aquaporines et évaporation chez Physcomitrella patens." Rouen, 2006. http://www.theses.fr/2006ROUES004.

Повний текст джерела
Анотація:
P. Patens est une plante poïkilohydre dont toutes les cellules sont en contact avec le milieu extérieur. Nous avons voulu déterminer l'influence des aquaporines au cours de l'évaporation des pseudo feuilles de ses gamétophores. Les aquaporines ont été recherchées dans une banque d'EST de P. Patens. Quatre aquaporines ont été clonées et nous avons obtenu des mutants knock-out pour trois d'entre elles (Pip2;1, Pip2;2 et Pip2;3). Les protoplastes des gamétophores des plantes mutantes correspondantes, pip21 et pip22, présentent une forte diminution de perméabilité, alors que la mutation demeure sans effet sur pip23. Ces plantes ne présentent pas de phénotype visuel lorsqu'elles demeurent dans une atmosphère saturée. Par contre lorsqu'elles sont soumises à un stress hydrique, pip21 et pip22 flétrissent plus facilement que le WT. Nous proposons un modèle pour expliquer cet effet. Nos mesures suggèrent également une activation réciproque entre pip21 et pip22
Poikilohydric plants such as the moss P. Patens, which do not control their water loss, cannot regulate their water potential. We focused our work on the identification of aquaporins involved during evaporation from the pseudo gametophytic leaves of P. Patens. Four aquaporins Pip1;1, Pip2;1, Pip2;2 and Pip2;3, were cloned and knock-out mutations were obtained for three of them (Pip2;1, Pip2;2 et Pip2;3). Protoplasts from the corresponding mutant plants pip21 and pip22, exhibited a strong decrease in their water permeability, while the pip23 protoplast permeabilities remained unaffected. No difference was visible between the wild type and mutants, when plants were grown under a saturated atmosphere. On the opposite, pip21 and pip22 were less resistant than wild type to a water stress. We proposed a model to explain the role of these aquaporins during evaporation. Our measurements also suggest that interactions enhancing their permeabilities should exist between pip21 and pip22
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Faltusz, Alexander. "Molekulare und funktionelle Analyse von P-Typ-Kalzium-ATPasen im Laubmoos Physcomitrella patens (Hedw.) B.S.G." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971028567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Henschel, Katrin Andrea. "Strukturelle und funktionelle Charakterisierung von MADS-Box-Genen aus dem Laubmoos Physcomitrella patens (Hedw.) B.S.G." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965796779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wanke, Dierk. "Studien zur pflanzenspezifischen WRKY-Transkriptionsfaktorfamilie vergleichende Analyse zwischen dem Moos, Physcomitrella patens, und höheren Pflanzen sowie eine gesamtgenomische Betrachtung von WRKY-DNA-Bindungsstellen /." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971303991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ring, Andreas. "Serine/Arginine-rich proteins in Physcomitrella patens." Thesis, Linköpings universitet, Molekylär genetik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80870.

Повний текст джерела
Анотація:
Serine/Arginine-rich proteins (SR-proteins) have been well characterized in metazoans and in the flowering plant Arabidopsis thaliana. But so far no attempts on characterizing SR-proteins in the moss Physcomitrella patens have been done. SR-proteins are a conserved family of splicing regulators essential for constitutive- and alternative splicing. SR-proteins are mediators of alternative splicing (AS) and may be alternatively spliced themselves as a form of gene regulation. Three novel SR-proteins of the SR-subfamily were identified in P. patens. The three genes show conserved intron-exon structure and protein domain distribution, not surprising since the gene family has evidently evolved through gene duplications. The SR-proteins PpSR40 and PpSR36 show differential tissue-specific expression, whereas PpSR39 does not. Tissue-specific expression of SR-proteins has also been seen in A. thaliana. SR-proteins determine splice-site usage in a concentration dependent manner. SR-protein overexpression experiments in A. thaliana and Oryza sativa have shown alteration of splicing patterns of endogenous SR-proteins. Overexpression of PpSR40 did not alter the splicing patterns of PpSR40, PpSR36 and PpSR39. This suggests that they might not be a substrate for PpSR40. These first results of SR-protein characterization in P. patens may provide insights on the SR-protein regulation mechanisms of the common land plant ancestor.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Physcomitrella paten"

1

Celia, Knight, Perroud Pierre-François, and Cove D. J, eds. The moss Physcomitrella patens. Ames, Iowa: Wiley-Blackwell, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Busch, Hauke. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. Freiburg: Universität, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cove, David, Celia Knight, Pierre-François Perroud, and Pierre-François Perroud. Annual Plant Reviews, the Moss Physcomitrella Patens. Wiley & Sons, Limited, John, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cove, David, Celia Knight, and Pierre-François Perroud. Annual Plant Reviews, the Moss Physcomitrella Patens. Wiley & Sons, Incorporated, John, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bhardwaj, Swati. Cytosine DNA Methyltransferases in the Moss, Physcomitrella patens. LAP Lambert Academic Publishing, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reutter, Kirsten. Expression heterologer Gene in Physcomitrella patens (Hedw.) B.S.G. 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hamburg, Universität, ed. Zell- und molekularbiologische Untersuchungen der Cytokinin-induzierbaren Gewebedifferenzierung und Chloroplastenteilung bei Physcomitrella patens (Hedw.) B.S.G. 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Physcomitrella paten"

1

Arif, Muhammad Asif, Isam Fattash, Basel Khraiwesh, and Wolfgang Frank. "Physcomitrella patens Small RNA Pathways." In Non Coding RNAs in Plants, 139–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19454-2_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sugita, Mamoru. "Plastid Transformation in Physcomitrella patens." In Methods in Molecular Biology, 427–37. Totowa, NJ: Humana Press, 2014. http://dx.doi.org/10.1007/978-1-62703-995-6_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Resemann, Hanno. "Lipid Composition of Physcomitrella patens." In Encyclopedia of Lipidomics, 1–6. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-7864-1_125-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fattash, Isam, Basel Khraiwesh, M. Asif Arif, and Wolfgang Frank. "Expression of Artificial MicroRNAs in Physcomitrella patens." In Methods in Molecular Biology, 293–315. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-558-9_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yamada, Moé, Tomohiro Miki, and Gohta Goshima. "Imaging Mitosis in the Moss Physcomitrella patens." In Methods in Molecular Biology, 263–82. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3542-0_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schaefer, D. G., G. Bisztray, and J. P. Zrÿd. "Genetic Transformation of the Moss Physcomitrella patens." In Plant Protoplasts and Genetic Engineering V, 349–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-09366-5_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ermert, Anna Lena, Fabien Nogué, Fabian Stahl, Tanja Gans, and Jon Hughes. "CRISPR/Cas9-Mediated Knockout of Physcomitrella patens Phytochromes." In Methods in Molecular Biology, 237–63. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9612-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bonhomme, Sandrine, Fabien Nogué, Catherine Rameau, and Didier G. Schaefer. "Usefulness of Physcomitrella patens for Studying Plant Organogenesis." In Methods in Molecular Biology, 21–43. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-221-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sugita, Mamoru. "Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update." In Methods in Molecular Biology, 321–31. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1472-3_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bressendorff, Simon, Magnus Wohlfahrt Rasmussen, Morten Petersen, and John Mundy. "Chitin-Induced Responses in the Moss Physcomitrella patens." In Methods in Molecular Biology, 317–24. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6859-6_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Physcomitrella paten"

1

Wenqun Fu, Zhengbin Chen, Ying Lin, Yuling Wang, Li Li, Xiaoling Teng, Jinmei Fu, and Xiaoqing Li. "Functional analysis of histone deacetylase RPD3/HDA1 family in Physcomitrella patens by bioinformatics." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965941.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Quan, Xiangyu, Osamu Matoba, Kouichi Nitta, Tamada Yousuke, and Yasuhiro Awatsuji. "Live cell imaging of Physcomitrella patens using a multi-modal digital holographic microscope." In 2016 15th Workshop on Information Optics (WIO). IEEE, 2016. http://dx.doi.org/10.1109/wio.2016.7745594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Deluca, Claudia. "Shedding light on the role of a heat stress-inducible eIF5A from Physcomitrella patens." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Radin, Ivan. "Moss (Physcomitrella patens) Piezo mechasensitive ion channel homologs positively regulate cell growth and vacuolar morphology." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1372312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ruibal, Cecilia. "Physcomitrella patens dehydrin, PpDHNA, acts like “chaperone” by conffering protection against stress effects through protein stability enhancement." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Castro, Alexandra. "Geme-wide identification, characterization and expression analysis of the Bcl-2 associated athagene (BAG) gene family in Physcomitrella patens." In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1052969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zvonarev, S. N., V. S. Matskevich, K. Angelis, and V. V. Demidchik. "Qualitative composition of reactive oxygen species generated by salinization and assessment of the effect of elevated NaCl levels on DNA stability in Physcomitrella patens cells." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Physcomitrella paten"

1

Christopher, David A., and Avihai Danon. Plant Adaptation to Light Stress: Genetic Regulatory Mechanisms. United States Department of Agriculture, May 2004. http://dx.doi.org/10.32747/2004.7586534.bard.

Повний текст джерела
Анотація:
Original Objectives: 1. Purify and biochemically characterize RB60 orthologs in higher plant chloroplasts; 2. Clone the gene(s) encoding plant RB60 orthologs and determine their structure and expression; 3. Manipulate the expression of RB60; 4. Assay the effects of altered RB60 expression on thylakoid biogenesis and photosynthetic function in plants exposed to different light conditions. In addition, we also examined the gene structure and expression of RB60 orthologs in the non-vascular plant, Physcomitrella patens and cloned the poly(A)-binding protein orthologue (43 kDa RB47-like protein). This protein is believed to a partner that interacts with RB60 to bind to the psbA5' UTR. Thus, to obtain a comprehensive view of RB60 function requires analysis of its biochemical partners such as RB43. Background & Achievements: High levels of sunlight reduce photosynthesis in plants by damaging the photo system II reaction center (PSII) subunits, such as D1 (encoded by the chloroplast tpsbAgene). When the rate of D1 synthesis is less than the rate of photo damage, photo inhibition occurs and plant growth is decreased. Plants use light-activated translation and enhanced psbAmRNA stability to maintain D1 synthesis and replace the photo damaged 01. Despite the importance to photosynthetic capacity, these mechanisms are poorly understood in plants. One intriguing model derived from the algal chloroplast system, Chlamydomonas, implicates the role of three proteins (RB60, RB47, RB38) that bind to the psbAmRNA 5' untranslated leader (5' UTR) in the light to activate translation or enhance mRNA stability. RB60 is the key enzyme, protein D1sulfide isomerase (Pill), that regulates the psbA-RN :Binding proteins (RB's) by way of light-mediated redox potentials generated by the photosystems. However, proteins with these functions have not been described from higher plants. We provided compelling evidence for the existence of RB60, RB47 and RB38 orthologs in the vascular plant, Arabidopsis. Using gel mobility shift, Rnase protection and UV-crosslinking assays, we have shown that a dithiol redox mechanism which resembles a Pill (RB60) activity regulates the interaction of 43- and 30-kDa proteins with a thermolabile stem-loop in the 5' UTR of the psbAmRNA from Arabidopsis. We discovered, in Arabidopsis, the PD1 gene family consists of II members that differ in polypeptide length from 361 to 566 amino acids, presence of signal peptides, KDEL motifs, and the number and positions of thioredoxin domains. PD1's catalyze the reversible formation an disomerization of disulfide bonds necessary for the proper folding, assembly, activity, and secretion of numerous enzymes and structural proteins. PD1's have also evolved novel cellular redox functions, as single enzymes and as subunits of protein complexes in organelles. We provide evidence that at least one Pill is localized to the chloroplast. We have used PDI-specific polyclonal and monoclonal antisera to characterize the PD1 (55 kDa) in the chloroplast that is unevenly distributed between the stroma and pellet (containing membranes, DNA, polysomes, starch), being three-fold more abundant in the pellet phase. PD1-55 levels increase with light intensity and it assembles into a high molecular weight complex of ~230 kDa as determined on native blue gels. In vitro translation of all 11 different Pill's followed by microsomal membrane processing reactions were used to differentiate among PD1's localized in the endoplasmic reticulum or other organelles. These results will provide.1e insights into redox regulatory mechanisms involved in adaptation of the photosynthetic apparatus to light stress. Elucidating the genetic mechanisms and factors regulating chloroplast photosynthetic genes is important for developing strategies to improve photosynthetic efficiency, crop productivity and adaptation to high light environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії