Статті в журналах з теми "Photopolymeric nanocomposite"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photopolymeric nanocomposite.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-39 статей у журналах для дослідження на тему "Photopolymeric nanocomposite".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chiu, Shih-Hsuan, Sigit Tri Wicaksono, Kun-Ting Chen, Chiu-Yen Chen, and Sheng-Hong Pong. "Mechanical and thermal properties of photopolymer/CB (carbon black) nanocomposite for rapid prototyping." Rapid Prototyping Journal 21, no. 3 (April 20, 2015): 262–69. http://dx.doi.org/10.1108/rpj-11-2011-0124.

Повний текст джерела
Анотація:
Purpose – The purpose of this paper is to evaluate the mechanical properties of photopolymer/CB (carbon black) nanocomposite when applied in a visible-light rapid prototyping (RP) machine. Design/methodology/approach – The mechanical properties of the samples such as hardness and tensile strength along with thermal stability were analyzed. The curing time behavior of the photopolymer/CB nanocomposites was tested by using a rigid-body pendulum rheometer. The shrinkage property and dimensional stability were also analyzed using the technique according to ASTM D2566 and ASTM D1204, respectively. Findings – The results showed that the prototype fabricated from pristine photopolymer tended to exhibit poor mechanical properties and low thermal stability. However, after adding the photopolymer with various concentrations of nano-CB and dispersant in appropriate composition, the photopolymer/CB nanocomposite prototype not only reduced its curing time but also enhanced its mechanical properties, thermal stability and dimensional stability. Practical implications – The presented results can be used in a visible-light RP machine. Originality/value – The mechanical and thermal properties of photopolymer are improved with nano-CB additives for a RP system.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Irfan, Muhammad, Suzanne Martin, Muhannad Ahmed Obeidi, Scott Miller, Frank Kuster, Dermot Brabazon, and Izabela Naydenova. "A Magnetic Nanoparticle-Doped Photopolymer for Holographic Recording." Polymers 14, no. 9 (April 30, 2022): 1858. http://dx.doi.org/10.3390/polym14091858.

Повний текст джерела
Анотація:
Functionalised holograms are important for applications utilising smart diffractive optical elements for light redirection, shaping and in the development of sensors/indicators. This paper reports on holographic recording in novel magnetic nanocomposites and the observed temperature change in dry layers and liquid samples exposed to alternating magnetic field (AMF). The nanocomposite consists of N-isopropylacrylamide (NIPA)-based polymer doped with magnetic nanoparticles (MNPs), and local heating is achieved through magnetic induction. Here, volume transmission holographic gratings (VTHGs) are recorded with up to 24% diffraction efficiency (DE) in the dry layers of magnetic nanocomposites. The dry layers and liquid samples are then exposed to AMF. Efficient heating was observed in the liquid samples doped with Fe3O4 MNPs of 20 nm average size where the temperature increased from 27 °C to 64 °C after 300 s exposure to 111 mT AMF. The temperature increase in the dry layers doped with the same nanoparticles after exposure to 4.4 mT AMF was observed to be 6 °C. No temperature change was observed in the undoped layers. Additionally, we have successfully recorded Denisyuk holograms in the magnetic nanocomposite materials. The results reveal that the magnetic nanocomposite layers are suitable for recording holograms and need further optimisation in developing holographic indicators for mapping AMFs.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chiu, Shih-Hsuan, Sigit Tri Wicaksono, Kun-Ting Chen, and Sheng-Hong Pong. "Morphology and properties of a photopolymer/clay nanocomposite prepared by a rapid prototyping system." Science and Engineering of Composite Materials 21, no. 2 (March 1, 2014): 205–10. http://dx.doi.org/10.1515/secm-2012-0041.

Повний текст джерела
Анотація:
AbstractThis study represents an in situ polymerization by preparation of tetrafunction polyester acrylate mixed with 1,6-hexanediol diacrylate/clay nanocomposite by digital light processor rapid prototyping. The morphology of nano-clay fillers and the dispersing agent in the photopolymer matrix are investigated by scanning electron microscopy (SEM). Degradation temperature, tensile strength, impact strength, and hardness are characterized by using thermogravimetric analysis, universal tensile machine, Izod impact tester, and hardness shore A tester, respectively. Results show that the effect of clay loading with an appropriate amount of dispersant tends to significantly increase not only the tensile strength and hardness but also the degradation temperature of photopolymer/clay nanocomposite; however, the impact strength is not affected. In the same conditions, as visualized on SEM images, the nanocomposite tends to form the exfoliated structure with agglomeration of clay, which is caused by uneven distribution of nano-clay in the photopolymer matrix.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Toombs, Joseph T., Manuel Luitz, Caitlyn C. Cook, Sophie Jenne, Chi Chung Li, Bastian E. Rapp, Frederik Kotz-Helmer, and Hayden K. Taylor. "Volumetric additive manufacturing of silica glass with microscale computed axial lithography." Science 376, no. 6590 (April 15, 2022): 308–12. http://dx.doi.org/10.1126/science.abm6459.

Повний текст джерела
Анотація:
Glass is increasingly desired as a material for manufacturing complex microscopic geometries, from the micro-optics in compact consumer products to microfluidic systems for chemical synthesis and biological analyses. As the size, geometric, surface roughness, and mechanical strength requirements of glass evolve, conventional processing methods are challenged. We introduce microscale computed axial lithography (micro-CAL) of fused silica components, by tomographically illuminating a photopolymer-silica nanocomposite that is then sintered. We fabricated three-dimensional microfluidics with internal diameters of 150 micrometers, free-form micro-optical elements with a surface roughness of 6 nanometers, and complex high-strength trusses and lattice structures with minimum feature sizes of 50 micrometers. As a high-speed, layer-free digital light manufacturing process, micro-CAL can process nanocomposites with high solids content and high geometric freedom, enabling new device structures and applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Wan Ting, Hitoshi Takagi, Antonio Norio Nakagaito, and Shih Hsuan Chiu. "Preparation and Characterization of Halloysite Nanocomposites by Rapid Prototyping Technology." Key Engineering Materials 665 (September 2015): 61–64. http://dx.doi.org/10.4028/www.scientific.net/kem.665.61.

Повний текст джерела
Анотація:
Rapid prototyping (RP) is a new technology to fabricate a prototype part layer-by-layer. This technique has been achieved in many industrial sectors, but parts fabricated using this technique exhibit low mechanical properties, this makes it difficult to apply to fast growing applications. This technology can not only effectively save production time and cost of the prototypes, but also produce complicated product. In this study, we investigate the effect of the addition of halloysite nanotubes on mechanical properties of nanocomposites made by the RP process. Test specimens were fabricated using tetrafunctional polyester acrylate (TPA) and 1, 6 hexanediol diacrylate (HDDA) photopolymer as a matrix material and halloysite nanotubes as a reinforcing material. The adhesion between TPA/HDDA and halloysite nanotubes has been improved by using surface modification of a silane coupling agent. When compared with neat photopolymer, the tensile strength of nanocomposites decreased by about 22%, because the halloysites had poor interfacial adhesion. Silane treatment of halloysites using 3-aminopropyl triethoxysilane was succeeded to improve tensile strength of nanocomposites (2 phr halloysite nanotubes) by 31%.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Park, Ji Young, and Eunkyoung Kim. "Preparation and Characterization of Organic-Inorganic Nanocomposite Films for Holographic Recording." Key Engineering Materials 277-279 (January 2005): 1039–43. http://dx.doi.org/10.4028/www.scientific.net/kem.277-279.1039.

Повний текст джерела
Анотація:
The photopolymerization of aromatic methacrylate in organic-inorganic nanocomposite films for holographic recording media was investigated. Thick photopolymer films (thickness>200 µm) were prepared using organic-inorganic hybrid solutions containing high refractive index monomers, through the sol-gel process. These photopolymer films were polymerized upon exposure to a visible light with high photo conversions. The photopolymerization was highly effective under visible light irradiation and could be applied to a holographic medium with high diffraction efficiency (>95 %) by using a 532nm laser. The diffraction efficiency of the film was much affected by morphology, which might affect monomer diffusion during the recording.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sakhno, Oksana V., Tatiana N. Smirnova, Leonid M. Goldenberg, and Joachim Stumpe. "Holographic patterning of luminescent photopolymer nanocomposites." Materials Science and Engineering: C 28, no. 1 (January 2008): 28–35. http://dx.doi.org/10.1016/j.msec.2007.03.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Denisyuk, I. Yu, N. O. Sobeshuk, J. A. Burunkova, and N. D. Vorzobova. "Subwavelength Microstructures Fabrication by Self-Organization Processes in Photopolymerizable Nanocomposite." Journal of Nanomaterials 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/827438.

Повний текст джерела
Анотація:
This paper describes our research results on nanometers sizes subwavelength nanostructure fabrication by UV curing of special nanocomposite material with self-organization and light self-focusing effects. For this purpose, special UV curable nanocomposite material with a set of effects was developing: light self-focusing in the photopolymer with positive refractive index change, self-organization based on photo-induced nanoparticles transportation, and oxygen-based polymerization threshold. Both holographic and projection lithography writing methods application for microstructure making shows geometrical optical laws perturbation as result of nanocomposite self-organization effects with formation of nanometers-sized high-aspect-ratio structures. Obtained results will be useful for diffraction limit overcoming in projection lithography as well as for deep lithography technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wicaksono, Sigit Tri, Shih-Hsuan Chiu, Kun-Ting Chen, and Sheng-Hong Pong. "Effect of nano-BaTiO3 on thermal, mechanical, and electrical properties of HDDA/TPA photopolymer prepared by a digital light processor RP machine." Science and Engineering of Composite Materials 24, no. 6 (November 27, 2017): 875–81. http://dx.doi.org/10.1515/secm-2016-0029.

Повний текст джерела
Анотація:
AbstractThe acrylate-based photopolymer consists of tetra-functional polyester acrylate (TPA), and hexanediol diacrylate (HDDA) has been successfully composited with nano barium titanate (BaTiO3) and completely cured via a digital light processor RP machine. The degradation temperature, tensile strength, hardness, resistivity, and dielectric constant of samples were characterized by Thermo Gravimetric Analyzer Hi-Res TGA2950, Universal Tensile Machine JIA701, Hardness Shore D tester, Fluke 117 multimeter, and Agilent B1500A Semiconductor Device Analyzer, respectively. The morphology changes of the samples were also investigated using the JEOL JSM-6390LV scanning electron microscopy (SEM). The results show that the improvement of degradation temperature is not obvious. Furthermore, the modulus elasticity, hardness, and dielectric constant increase as the filler loading increases up to 2 phr, but the resistivity is vice versa. Interestingly, there is an inverse correlation between dielectric constant and resistivity of photopolymer/BaTiO3 nanocomposite.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ishii, T., H. Nozawa, and T. Tamamura. "C60-Incorporated Nanocomposite Resist System." Journal of Photopolymer Science and Technology 10, no. 4 (1997): 651–56. http://dx.doi.org/10.2494/photopolymer.10.651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sakaya, Taichi, and Nobuhiro Osaki. "The Potential of Nanocomposite Barrier Technology." Journal of Photopolymer Science and Technology 19, no. 2 (2006): 197–202. http://dx.doi.org/10.2494/photopolymer.19.197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Borisov, V. N., and V. V. Lesnichii. "Theory of Holographic Formation in Multicomponent Photopolymer-Based Nanocomposites." Optics and Spectroscopy 128, no. 8 (August 2020): 1286–91. http://dx.doi.org/10.1134/s0030400x20080093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

YOVCHEVA, T., I. NAYDENOVA, S. SAINOV, V. TOAL, and S. MINTOVA. "HOLOGRAPHIC RECORDING IN CORONA CHARGED ACRYLAMIDE-BASED MFI-ZEOLITE PHOTOPOLYMER." Journal of Nonlinear Optical Physics & Materials 20, no. 03 (September 2011): 271–79. http://dx.doi.org/10.1142/s0218863511006091.

Повний текст джерела
Анотація:
The influence of corona charging on holographic recording in acrylamide-based photopolymer nanocomposite containing MFI zeolite nanoparticles has been studied. The holographic recording was carried out in two different geometries — transmission grating recording and total internal reflection grating recording. During the recording process, the layers were charged in a corona field. It was observed that independently of the corona polarity, in the case of transmission geometry of recording, the corona charging led to a decrease in the diffraction efficiency (DE) of the grating. In the case of the total internal reflection grating, the DE increased in the corona field presence.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Liu, Ying, Fenglan Fan, and Xiaodi Tan. "SiO2 NPs-PQ/PMMA Photopolymer Material Doped with a High-Concentration Photosensitizer for Holographic Storage." Polymers 12, no. 4 (April 4, 2020): 816. http://dx.doi.org/10.3390/polym12040816.

Повний текст джерела
Анотація:
Dispersing nanoparticles and increasing the photosensitizer concentration have been regarded as effective approaches for improving the performance of a holographic storage material. In this paper, SiO2 nanoparticle (NP)-dispersed PQ/PMMA nanocomposite material (SiO2 NP-PQ/PMMA) with a high PQ doping concentration was prepared. By introducing the co-monomer methyl isobutyl ketone (MIBK) that comes from an SiO2 NP colloidal solution, the concentration of PQ in the system increased to 1.2 wt %. We investigated the performance of polarization holographic recordings in both traditional PQ/PMMA and nanocomposite material SiO2 NP-PQ/PMMA with the orthogonally polarized signal and reference waves. With the dispersion of the SiO2 NPs colloidal solution and the increase in the PQ concentration, diffraction efficiency and photoinduced birefringence were multiplied. In addition, high-quality holographic image reconstruction was achieved by our homemade material.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ni, Mingli, Haiyan Peng, Yonggui Liao, Zhifang Yang, Zhigang Xue, and Xiaolin Xie. "3D Image Storage in Photopolymer/ZnS Nanocomposites Tailored by “Photoinitibitor”." Macromolecules 48, no. 9 (April 27, 2015): 2958–66. http://dx.doi.org/10.1021/acs.macromol.5b00261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sakhno, O. V., L. M. Goldenberg, J. Stumpe, and T. N. Smirnova. "Effective volume holographic structures based on organic–inorganic photopolymer nanocomposites." Journal of Optics A: Pure and Applied Optics 11, no. 2 (January 15, 2009): 024013. http://dx.doi.org/10.1088/1464-4258/11/2/024013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sakhono, Oksana V., Joachim Stumpe, Leonid M. Goldenberg, Tatiana N. Smirnova, and Lyudmila M. Kokhtych. "Diffractive-Optical Elements via All-Optical Patterning of Photopolymers and Nanocomposites." Journal of Photopolymer Science and Technology 23, no. 6 (2010): 757–64. http://dx.doi.org/10.2494/photopolymer.23.757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Borisov, V. N., and V. V. Lesnichii. "Theory of Holographic Formation in Multicomponent Photopolymer-Based Nanocomposites-=SUP=-*-=/SUP=-." Журнал технической физики 128, no. 8 (2020): 1201. http://dx.doi.org/10.21883/os.2020.08.49732.1023-20.

Повний текст джерела
Анотація:
The derivation of the three-component (monomer, chemically neutral component, and polymer) photopolymerization model from general thermodynamic considerations is presented. This model, together with another previously published one, are subject to a numerical solution for the case of a two-component one-dimensional diffusion (polymer component being steady). The divergence of results of work for both models was compared based on the average speed of the root-mean-square deviation in the spatial spectrum domain for relative volume fraction functions for all three components. Such a comparison was performed for 81 pairs of initial relative amount of neutral component and effective diffusion coefficient. The results of the work may serve as a good guide for the choice of parameters of experiments, which are aimed to verify the correctness of the modified theory. Keywords: photopolymerization, photoformer, holographic grating, multicomponent diffusion, polymer, holography.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Chiu, Shih-Hsuan, and Dien-Chi Wu. "Preparation and physical properties of photopolymer/SiO2 nanocomposite for rapid prototyping system." Journal of Applied Polymer Science 107, no. 6 (2007): 3529–34. http://dx.doi.org/10.1002/app.27535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tsang, Chi Him Alpha, Adilet Zhakeyev, Dennis Y. C. Leung, and Jin Xuan. "GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography." Frontiers of Chemical Science and Engineering 13, no. 4 (September 23, 2019): 736–43. http://dx.doi.org/10.1007/s11705-019-1836-x.

Повний текст джерела
Анотація:
Abstract Graphene oxide (GO) induced enhancement of elastomer properties showed a great deal of potential in recent years, but it is still limited by the barrier of the complicated synthesis processes. Stereolithography (SLA), used in fabrication of thermosets and very recently in “flexible” polymers with elastomeric properties, presents itself as simple and user-friendly method for integration of GO into elastomers. In this work, it was first time demonstrated that GO loadings can be incorporated into commercial flexible photopolymer resins to successfully fabricate GO/elastomer nanocomposites via readily accessible, consumer-oriented SLA printer. The material properties of the resulting polymer was characterized and tested. The mechanical strength, stiffness, and the elongation of the resulting polymer decreased with the addition of GO. The thermal properties were also adversely affected upon the increase in the GO content based on differential scanning calorimetry and thermogravimetric analysis results. It was proposed that the GO agglomerates within the 3D printed composites, can result in significant change in both mechanical and thermal properties of the resulting nanocomposites. This study demonstrated the possibility for the development of the GO/elastomer nanocomposites after the optimization of the GO/“flexible” photoreactive resin formulation for SLA with suitable annealing process of the composite in future.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zimmerman, Paul A., Bryan Rice, Robert Rodriguez, Micahel F. Zettel, Markos Trikeriotis, Dongyan Wang, Yi Yi, Woo Jin Bae, Christopher K. Ober, and Emanuel Giannelis. "The use of Nanocomposite Materials for High Refractive Index Immersion Lithography." Journal of Photopolymer Science and Technology 21, no. 5 (2008): 621–29. http://dx.doi.org/10.2494/photopolymer.21.621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zhang, Chengxiang, Tingxi Li, Hui Song, Yongqin Han, Haibo Su, Yanmin Wang, and Qing Wang. "Epoxy Resin/POSS Nanocomposites with Toughness and Thermal Stability." Journal of Photopolymer Science and Technology 30, no. 1 (2017): 25–31. http://dx.doi.org/10.2494/photopolymer.30.25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Toor, Anju, Hongyun So, and Albert P. Pisano. "Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites." Applied Surface Science 414 (August 2017): 373–79. http://dx.doi.org/10.1016/j.apsusc.2017.04.096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Corcione, Carola Esposito. "Development and characterization of novel photopolymerizable formulations for stereolithography." Journal of Polymer Engineering 34, no. 1 (February 1, 2014): 85–93. http://dx.doi.org/10.1515/polyeng-2013-0224.

Повний текст джерела
Анотація:
Abstract Novel photopolymerizable formulations, able to photopolymerize with a dual mechanism (cationic and radical), were developed and characterized as potential resins for stereolithography (SL) process. The influence of the presence of organically modified boehmite nanoparticles on the properties of the photopolymerizable mixtures was also analyzed. The main properties required for a liquid SL resin are a high reactivity and a low viscosity. All of the experimental formulations produced, even in the presence of boehmite nanoparticles, are able to satisfy these significant requirements. Physical-mechanical and thermal properties of the photocured samples, obtained starting from the experimental formulations, were finally measured. The cured nanocomposite bars show a high transparency, confirming the good dispersion of the nanofiller in the polymeric matrix and possess improved glass transition temperature (Tg) and mechanical performances, compared to the unfilled system and to a commercial stereolithographic resin. These results suggest the possibility of using the novel nanofilled photopolymerizable suspensions in the stereolithographic apparatus to build, not only esthetical, but also functional prototypes.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Sharif, Mehdi, Behzad Pourabas, and Ali Fazli. "Photo-reduction of Graphene Oxide during Photo-polymerization of Graphene Oxide/Epoxy-Novolac Nanocomposite Coatings." Journal of Photopolymer Science and Technology 29, no. 5 (2016): 769–73. http://dx.doi.org/10.2494/photopolymer.29.769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Graf, Dennis, Sven Burchard, Julian Crespo, Christof Megnin, Sebastian Gutsch, Margit Zacharias, and Thomas Hanemann. "Influence of Al2O3 Nanoparticle Addition on a UV Cured Polyacrylate for 3D Inkjet Printing." Polymers 11, no. 4 (April 6, 2019): 633. http://dx.doi.org/10.3390/polym11040633.

Повний текст джерела
Анотація:
The brittleness of acrylic photopolymers, frequently used in 3D Inkjet printing, limits their utilization in structural applications. In this study, a process was developed for the production and characterization of an alumina-enhanced nanocomposite with improved mechanical properties for Inkjet printing. Ceramic nanoparticles with an average primary particle size (APPS) of 16 nm and 31 nm, which was assessed via high-resolution scanning electron microscopy (HRSEM), were functionalized with 3.43 and 5.59 mg/m² 3-(trimethoxysilyl)propyl methacrylate (MPS), respectively, while being ground in a ball mill. The suspensions of the modified fillers in a newly formulated acrylic mixture showed viscosities of 14 and 7 mPa∙s at the printing temperature of 60 °C. Ink-jetting tests were conducted successfully without clogging the printing nozzles. Tensile tests of casted specimens showed an improvement of the tensile strength and elongation at break in composites filled with 31 nm by 10.7% and 74.9%, respectively, relative to the unfilled polymer.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Murakami, Yasuharu. "Influence of Monomer Sequence of Binder Polymers for Lithographic Property of Photodefinable Nanocomposites." Journal of Photopolymer Science and Technology 27, no. 4 (2014): 539–44. http://dx.doi.org/10.2494/photopolymer.27.539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Mataki, Hiroshi, Kaname Tsuchii, Nobuko Mibuka, Ayami Suzuki, Jun Sun, Hironori Taniguchi, Kenichi Yamashita, and Kunishige Oe. "Polymer Waveguide Optical Amplifier Using Organic/Inorganic Nanocomposites Doped With Rare-Earth-Metal Nanoclusters." Journal of Photopolymer Science and Technology 20, no. 1 (2007): 67–72. http://dx.doi.org/10.2494/photopolymer.20.67.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Invernizzi, Marta, Raffaella Suriano, Allegra Muscatello, Stefano Turri, and Marinella Levi. "Near‐visible stereolithography of a low shrinkage cationic/free‐radical photopolymer blend and its nanocomposite." Journal of Applied Polymer Science 137, no. 5 (August 2, 2019): 48333. http://dx.doi.org/10.1002/app.48333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Han, Samsook, Muncheul Lee, and Byung Kyu Kim. "Effective holographic recordings in the photopolymer nanocomposites with functionalized silica nanoparticle and polyurethane matrix." Optical Materials 34, no. 1 (November 2011): 131–37. http://dx.doi.org/10.1016/j.optmat.2011.07.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Yang, Zhaozhe, Guomin Wu, Siqun Wang, Min Xu, and Xinhao Feng. "Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: Effect of cellulose nanocrystal and postcure temperature." Journal of Polymer Science Part B: Polymer Physics 56, no. 12 (April 17, 2018): 935–46. http://dx.doi.org/10.1002/polb.24610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Yoshikawa, Yuji, Mustafa Ciftci, Muhammed Aydin, Muneki Narusawa, Takashi Karatsu, and Yusuf Yagci. "Synthesis, Characterization and Photoinduced Cross-linking of Functionalized Poly(cyclohexyl methacrylate) Copolymer/Clay Nanocomposite as Negative Image Patterning Material." Journal of Photopolymer Science and Technology 28, no. 6 (2015): 769–74. http://dx.doi.org/10.2494/photopolymer.28.769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Denisyuk, I. Yu, Yu É. Burunkova, M. I. Fokina, N. D. Vorzobova, and V. G. Bulgakova. "The formation of microstructures as a result of the self-focusing of light in a photopolymer nanocomposite." Journal of Optical Technology 75, no. 10 (October 1, 2008): 658. http://dx.doi.org/10.1364/jot.75.000658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hürmüzlü, Feridun, and Vahti Kılıç. "Analysis of Monomer Elution from Bulk-fill and Nanocomposites Cured with Different Light Curing Units Using High Performance Liquid Chromatography." Journal of Photopolymer Science and Technology 33, no. 1 (July 1, 2020): 27–36. http://dx.doi.org/10.2494/photopolymer.33.27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Fujigaya, Tsuyohiko, Shinsuke Haraguchi, Takahiro Fukumaru, and Naotoshi Nakashima. "Development of Novel Carbon Nanotube/Photopolymer Nanocomposites with High Conductivity and their Application to Nanoimprint Photolithography." Advanced Materials 20, no. 11 (June 4, 2008): 2151–55. http://dx.doi.org/10.1002/adma.200701780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zulina, Natalia A., Ilia M. Pavlovetc, Mikhail A. Baranov, and Igor Yu Denisyuk. "Optical, structural and nonlinear optical properties of laser ablation synthesized Ag nanoparticles and photopolymer nanocomposites based on them." Optics & Laser Technology 89 (March 2017): 41–45. http://dx.doi.org/10.1016/j.optlastec.2016.09.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

"A Review on Photopolymers for Polymer Nanocomposite Applications." Journal of Environmental Nanotechnology 3, no. 3 (September 2014): 01–15. http://dx.doi.org/10.13074/jent.2014.09.143104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Chavez, Luis A., Jaime E. Regis, Luis C. Delfin, Carlos A. Garcia Rosales, Hoejin Kim, Norman Love, Yingtao Liu, and Yirong Lin. "Electrical and mechanical tuning of 3D printed photopolymer–MWCNT nanocomposites through in situ dispersion." Journal of Applied Polymer Science, February 5, 2019, 47600. http://dx.doi.org/10.1002/app.47600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Elliott, Amelia M., Olga S. Ivanova, Christopher B. Williams, and Thomas A. Campbell. "Inkjet Printing of Quantum Dots in Photopolymer for Use in Additive Manufacturing of Nanocomposites." Advanced Engineering Materials, May 22, 2013, n/a. http://dx.doi.org/10.1002/adem.201300020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії