Дисертації з теми "Photonics, Nanostructures"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Photonics, Nanostructures".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Lewis, Michael K. "Spectroscopy of semiconductor nanostructures for Mid-IR photonics." Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604321.
Повний текст джерелаMomeni, Babak. "Design and Implementation of Dispersive Photonic Nanostructures." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16186.
Повний текст джерелаBottein, Thomas. "Synergetic combination of top-down and bottom-up lithography processes for large scale nanostructures applied to photonics." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0175/document.
Повний текст джерелаThe scope of this thesis is to adopt a hybrid approach through the synergetic combination of bottom-up and top-down lithography methods to fabricate nanostructures with interesting structural and optical properties. This multidisciplinary approach is a vast fruitful field where many combinations are promising but remains unexplored so far. By taking interest in, and bringing together, both materials chemistry and clean-room nanofabrication techniques, this work tries to find practical solutions to tackle some of the current challenges in nanofabrication. In details, we focus on the study of selected lithography techniques (in particular nanoimprint) and demonstrate the possibility to increase the fabrication throughput and obtain nanostructures on a centimeter scale. The nanofabricated structures are then mainly used as Mie resonators for their optical properties and their ability to modify incoming light. Demonstrators of several millimeters are produced and are shown to exhibit interesting optical properties; emphasizing the feasibility of our approach
Krasavin, Alexey Victorovich. "Photonics of metallic nanostructures : active plasmonics and chiral effects." Thesis, University of Southampton, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433942.
Повний текст джерелаLi, Jianyou. "Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9065/.
Повний текст джерелаLee, Kwan Hee. "Fabrication, spectroscopy and modelling of III-V nanostructures for photonics." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442820.
Повний текст джерелаLi, Jianyou Neogi Arup. "Oligonucleotide guanosine conjugated to gallium nitride nano-structures for photonics." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9065.
Повний текст джерелаChen, Xi. "Photothermal Effect in Plasmonic Nanostructures and its Applications." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143754.
Повний текст джерелаQC 20140331
Pizzi, Giovanni. "Band structure engineering of Ge-rich siGe nanostructures for photonics appplications." Doctoral thesis, Scuola Normale Superiore, 2012. http://hdl.handle.net/11384/85857.
Повний текст джерелаMcGinnis, Stephen Patrick. "Electrochemical fabrication of semiconductor nanostructure arrays for photonic applications." Morgantown, W. Va. : [West Virginia University Libraries], 2001. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=2220.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains vii, 112 p. : ill. (some col.) Includes abstract. Includes bibliographical references.
Nguyen, Thanh Tra. "Sillicon photonics based on monolithic integration of III-V nanostructures on silicon." Phd thesis, INSA de Rennes, 2013. http://tel.archives-ouvertes.fr/tel-01065999.
Повний текст джерелаMichieli, Niccolò. "Innovative Plasmonic Nanostructures Based on Translation or Scale Invariance for Nano-Photonics." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423502.
Повний текст джерелаIn questa tesi nanostrutture plasmoniche innovative sono state studiate sotto molteplici aspetti, a partire dalla sintesi fino alla caratterizzazione e alla modellizazione ad elementi finiti. L’attenzione è stata focalizzata su due tipi di nanostrutture ordinate: (i) quelle che mostrano invarianza traslazionale bidimensionale (2D) e (ii) quelle che hanno autosimilarità e carattere frattale. Tre tipi di nanostrutture caratterizzate dalla periodicità 2D sono state analizzate: matrici di nanoprismi, matrici di nanobuchi e matrici di gusci quasi chiusi, i cui elementi di base sono, rispettivamente, prismi metallici a base triangolare, buchi che attraversano strati sottili di metallo e gusci metallici non chiusi attorno a un nucleo dielettrico. Il primo tipo è la base per dei biosensori, e in questo caso uno studio di ottimizzazione è stato compiuto per massimizzare la sensibilità. Il secondo tipo è la chiave per il controllo fine dell’emissione da ioni di Erbio eccitati, e il risultato supera i precedenti, ottenuti senza nanostrutturazione. Il terzo tipo è basato su di un nuovo approccio per la fabbricazione di nanostrutture bi-metalliche, consentendo la produzione di materiali plasmonici e magnetoplasmonici. La strutturazione alla nanoscala è stata portata avanti in modo economicamente vantaggioso, essento tutti e tre i sistemi periodici basati su di una tecnica poco costosa di sintesi. Infine, nanostrutture che mostrano invarianza di scala, frattali, sono state sintetizzate e studiate meticolosamente, sia sperimentalmente che con simulazioni. Come risultato, il ruolo universale della correlazione è stato identificato in questo tipo di sistemi plasmonici. Complessivamente, la presente tesi fornisce una comprensione della fisica alla base della risposta plasmonica delle nanstrutture che basano le loro notevoli proprietà sulle simmetrie, siano esse di scala o per translazione.
Moaied, Modjtaba. "A Generalized Non-local Quantum Theory for Plasmonic Nanostructures." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/18433.
Повний текст джерелаReed, Jennifer. "Light-Matter Interactions of Plasmonic Nanostructures." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6009.
Повний текст джерелаPh.D.
Doctorate
Chemistry
Sciences
Chemistry
Molet, Bachs Pau. "Managing light in optoelectronic devices with resonant optical nanostructures." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673260.
Повний текст джерелаActualmente, uno de los retos en el ámbito de la manipulación de la luz a la nanoescala es la transición del laboratorio a aplicaciones reales. A pesar del gran potencial demostrado por algunas estructuras fotónicas para incrementar la eficiencia de instrumentos optoelectrónicos, su implementación en dispositivos de mercado muchas veces es obstruida por la necesidad de utilizar técnicas de fabricación poco escalables y de alto coste. Esta tesis está dedicada al diseño e implementación de estrategias de manipulación de la luz para mejorar la eficiencia en la recolección de energía de placas solares y fotodetectores, así como la mejora de la emisión en dispositivos de iluminación, mediante métodos de nanoestructuración escalables como la nano-litografía suave. Esta técnica tiene la capacidad de producir patrones y estructures con una resolución de pocos nanómetros con gran fidelidad en áreas grandes. Encima, es compatible con el procesamiento a gran escala mediante el sistema de impresión en cadena “roll-to-roll” (carrete-a-carrete). También se trata de una tecnología muy versátil, puesto que permite el uso de diferentes tipos de sustratos, es poco invasiva y generalmente puede ser introducida en el esquema de fabricación sin tener que modificar ningún paso. Con la ayuda de esta técnica de nanofabricación, exploramos una variedad de arquitecturas fotónicas y las diferentes resonancias fotónicas que las hacen especiales. Entre estas últimas podemos encontrar resonancias de Mie, modos de Brewster y modos de cristal fotónico, que proveerán al sistema con una mayor interacción luz-materia a la capa activa del dispositivo, mejorar sus capacidades ópticas. Primero, hemos desarrollado una estrategia para conseguir una absorción óptima de banda ancha en semiconductores ultra-finos, con menos de 100 nm de grosor, para todas las energías por encima de su energía de banda prohibida. La sinergia de las fuertes resonancias de interferencia de capas finas presentes y los modos del cristal fotónico de la estructura (con un alto índice de refracción) hacen que la estructura logre hasta un 81% de absorción en un amplio rango de longitudes de omda (de 400 a 1500 nm). En segundo lugar, hemos combinado la litografía suave con la deposición química de vapor (CVD en inglés) para obtener una matriz de semiesferas de silicio sobre de una guía de ondas de alto índice de refracción. Hemos estudiado las resonancias de Mie características del sustrato, como hibridan con modos casi-guiados de la guía de olas y como esto afecta en el campo próximo de la metasuperfície. Hemos ido un paso más allá estudiando como la modificación de los parámetros del diseño de la estructura afecta a las resonancias mencionadas. Finalmente, hemos demostrado una posible aplicación como sustrato para incrementar la emisión de luz por parte de una molécula emisora. En la tercera parte de la tesis, nos hemos enfocado en la implementación de estructuras de cristal fotónico bidimensional a tres dispositivos diferentes para la mejora de su eficiencia. En particular, mejoramos la eficiencia en la recolección de fotones de infrarrojo próximo en células solares de puntos cuánticos coloidales (PbS) y en fotodetectores orgánicos (P3HT: PC60BM y PBTTT: PC70BM), y mejoramos la emisión de luz de capas de nanofósforos (nanocristales de GdVO4:Eu3+). Hemos desarrollado sistemas fotónicos adaptados a cada caso y hemos hecho una caracterización óptica y electrónica de todos los dispositivos. La nanoestructuración en forma de cristal fotónico bidimensional provee a las capas activas con propiedades de guías de onda resonantes, mejorando sus propiedades de confinamiento de la luz en las longitudes de onda deseadas, demostrando así la posibilidad de implementar las arquitecturas.
Currently, one of the main challenges in light management at the nanoscale is the transition from the laboratory to real applications. Despite the great potential shown by photonic architectures to optically improve the performance of many devices, transitioning into marketable devices is often hampered by the low-throughput and expensive nanofabrication techniques involved. This thesis is devoted to the design and development of subwavelength light managing strategies to improve the light harvesting or out-coupling in solar cells, photodetectors and light emitters while using a scalable nanostructuration such as soft nanoimprint lithography (NIL). This technique has been proven to achieve resolutions down to few tens of nanometers with high fidelity in large areas, being compatible with roll to roll processing. It is also versatile regarding the materials where it can be used, non-invasive, and can be seamlessly introduced in the devices fabrication scheme. With the aid of this technique, we explore a variety of photonic architectures and the different types of resonances sustained, from Brewster modes to Mie resonances, in order to enhance the light-matter interaction with the active layer of the device. First, we develop a strategy to achieve broadband optimal absorption in ultra-thin semiconductor materials (less than 100 nm thick) for all energies above their bandgap. The interplay of strong interference thin film resonances and photonic crystal modes sustained by a high refractive index nanostructure on a gold film renders the system with a 81% total absorption over a broad spectral range (from 400 to 1500 nm). Second, we combine soft NIL and chemical vapor deposition to obtain an array of silicon hemispheres on top of a high refractive index dielectric waveguide. We study the Mie resonances supported by the substrate, how these hybridize with the guided modes of the waveguide and how their interaction influences the electromagnetic near field of the metasurface. We further explore the tunability of such resonances with the design parameters of the structure and we demonstrate a potential application of it as a substrate for enhanced photoluminescence. In the third part of the thesis, we focus on the implementation of 2D photonic structures within the active layer of three different devices to improve performance. In particular we enhance the near infrared (NIR) photon harvesting efficiency in a colloidal quantum dot solar cell (PbS-CQD) and in organic photodetectors (P3HT: PC60BM and PBTTT: PC70BM) and improve the light out coupling from a nanophosphor layer (GdVO4:Eu3+ nanocrystals). We developed photonic systems tailored for each device and provide the complete optical and electronic characterization for each case. The nanostructuration with a 2D periodic arrangement renders the active layers with resonant waveguide properties enhancing its light trapping properties in the targeted spectral ranges, hence demonstrating the possibility to implement photonic schemes within actual devices.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
Joshi, Bhuwan. "DESIGN AND STUDY OF PLASMONIC NANOSTRUCTURES FOR APPLICATIONS IN BIOLOGICAL DETECTION AND PHOTONICS." Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1324762602.
Повний текст джерелаNoé, Pierre-Olivier. "Elaboration et caractérisation de matériaux nanostructurés à base de silicium comme source de lumière pour la photonique." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY006.
Повний текст джерелаSilicon is known as a poor light emitter due to its indirect band gap. Various strategies have been developed to overcome its poor emission efficiency since it is the material of choice for photonics. In this manuscript are detailed the elaboration and characterization of original silicon-based materials in order to propose alternatives solutions to improve Si light emission properties. This work is divided in 4 parts with a first one describing the state of the art of light emission in Si and the basics of recombination mechanisms in Si. A second part focuses on the elaboration and study of electroluminescent devices based on bulk Si with a buried dislocation network at a PN junction obtained by wafer bonding. The light emission near 1.1 and 1.5 µm (1.1 and 0.8 eV) is attributed to the recombination of carriers on trap states induced by boron and oxide precipitates in the vicinity of dislocations (E^phonon_Bore near 1.1eV and Dp~0.8eV) and defects traps at the intersection of the square network of screw dislocations (D1~0.8eV). In a third part is showed the elaboration and the optical properties of Er3+ ions coupled with Si nanostructures in Si-Rich Silicon Oxide (SRO) thin films obtained by co-evaporation of SiO and Er. We demonstrate the efficient indirect excitation of Er at 1.5 µm with high effective cross sections between 2x10-16 cm2 and 5x10-15 cm2 as a function of the excitation flux and the elaboration parameters. The main result is the drastic decrease of the number of Er3+ emitting ions coupled to Si with the annealing temperature. EXAFS experiments revealed that this behavior is correlated with the evolution of the local chemical order around Er atoms. In a last part is presented the elaboration of Si nanostructures based on core-shell Si/SiO2 nanowires. These core-shell structures are obtained by three different methods. Core-shell nanowires obtained by oxide deposition on the surface of CVD Au-catalyzed Si nanowires exhibit an efficient room temperature emission around 500 nm due to the recombination of photo generated carriers in defects states in the oxide layer and at the Si/SiO2 interface. The collected PL intensity is more than one order of magnitude higher than similar SiO2 thin films deposited on Si substrates. Moreover, the passivation of CVD-growth Si nanowires by a thermal oxidation procedure allows neutralizing the surface states which are predominant in such structures. As a result, the measurement of surface recombination velocities seems to indicate that such passivated nanowires present similar volume electronic properties than standard microelectronic bulk Si. Finally, a new method for the elaboration of in situ core-shell Si/SiO2 nanowires based on the evaporation of a solid SiO source with Au and Cu as catalysts is presented. The Au-catalyzed growth occurs in the VLS mode (Vapor-Liquid-Solid like in CVD-growth) leading to the growth of nanowires with a crystalline Si core surrounded by an amorphous oxide shell. But Cu-catalyzed nanowires growth seems to appear preferentially at lower temperatures in the VSS (Vapour-Solid-Solid) mode explaining why these nanowiress exhibit a high density of crystalline defects in the Si core compared to Au-catalyzed wires
Zin, Melvin T. "Self-assembly and nanofabrication approaches towards photonics and plasmonics /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/15502.
Повний текст джерелаTran, Ngoc Minh. "Applications of nonlinear magneto-photonics at the nanoscale." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1029/document.
Повний текст джерелаOwing to surface and interface sensitivity, the magnetic Second Harmonic Generation (mSHG) represents a useful tool to probe magnetic interfaces and nanostructures. This work investigates the coupling and interaction of the mSHG with electromagnetic waves propagating along the surface. Two types of surface waves have been studied: (i) surface plasmon polaritons (SPP) at surfaces of metallic thin films and multilayers, and (ii) the diffraction anomaly at the surface of periodically arranged metallic nanostructures. To study influence of linear and nonlinear excitation of surface waves on the mSHG, the reflected second harmonic (SH) intensity and the magnetic SH contrast in the transverse magneto-optical geometry were measured as a function of the angle of incidence. The use of different femtosecond light sources in the near-infrared optical range, where the SPP dispersion and damping exhibit significant variations, made it possible to disentangle linear and nonlinear contributions to the excitation of surface waves. In this thesis, it is proven that phase-matching of the mSHG and surface electromagnetic waves can lead to the enhancement of both the SH yield and the nonlinear magneto-optical signal. These results are important for controlling of the nonlinear magneto-optical response and could impact the development of magnetic storage devices, label-free biosensors and nonlinear magneto-optical switches
Mrazek, Jan. "Sol-gel synthesis of ternary ZnxTiyOz nanostructures for applications in solar cell technologies and photonics." Rennes 1, 2011. http://www.theses.fr/2011REN1S055.
Повний текст джерелаL'étude examine la préparation de phases ternaires de formule générale ZnxTiyOz par la voie sol-gel, leur caractérisation et l'application éventuelle dans la photonique. Résultats obtenus apporte des nouvelles connaissances fondamentales sur les processus de formation de nanocristaux ZnxTiyOz de xérogels amorphe et donne des nouvelles informations sur les propriétés structurales et opto-électrique de matériaux préparés. Sur la base des résultats présentés, la plupart de toutes de phase reportée composant de ZnxTiyOz avec la taille et la structure nanocristalline façonner peuvent être préparés comme des poudres ou des couches minces. Une méthode souple qui permet la préparation de spinelle inverse Zn2TiO4, cubes spinelle défaut ZnTiO3 et rhomboédrique ZnTiO3 avec des tailles de nanocristaux a été créé sur mesure. Dans la deuxième partie de l'étude, les approches élaborées dans la première partie ont été exploitées avec succès pour la préparation des couches minces à définir la structure et la composition nanocristallin sélectionné. Dans la troisième partie on a démontré que des nanoparticules d'oxyde de zinc préparé par le procédé sol-gel peut être utilisé avec succès dans le cadre des matrices d'accueil pour l'élément terre rare permettant la préparation des fibres optiques actives avec des paramètres près de fibres optiques préparé par la solution standard ou par la méthode de dopage modifiée
Pitelet, Armel. "Théorie et simulation en nanophotonique : non-localité dans les nanostructures métalliques." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC097/document.
Повний текст джерелаThis manuscript is mainly focused on the influence of repulsion between free electrons on the optical response of metals. Classical material models consider that the metallic response is local -- i.e. that the response at a given point only depends on the fields at this point. Taking into account the repulsion between electrons leads to a so-called non-local description of the metalic response. This thesis explores in a theoritical and numerical way the effects of non-locality on the optical properties of metallo-dielectric nanostructures in the visible and near infrared. Using a hydrodynamical model it is shown that, suprisingly, the modes of plasmonic gaps can be sensitive to non-locality for thicknesses of several tens of nanometers. It is also shown that the surface plasmon itself can be sensitive to non-locality provided that an interface between a metal and a sufficiently high refractive index dielectric is considered. We propose and study here several simple and realictic setups (prism and grating couplers) which would allow to experimentally observe the impact of non-locality and which have characteristic scales of tens or even hundreds of nanometers. Finally, in a second part of the manuscript, the formalism and numerical considerations necessary for the study of a dipole radiation in a multi-layered structure are presented in detail and then validated thanks to comparisons of Green dyadics, radiation diagrams, and emission rates with cases avaible in the literature
Liu, Jia. "Fabrication and optical simulation of periodic nanostructures and their applications." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI027/document.
Повний текст джерелаPeriodic nanostructures play an important role in the domain of nanotechnology, especially in photon control. While there exist many general purpose techniques for fabrication and optical simulation, we show tailored fabrication and optical simulation methods for periodic structures to accelerate lab-scale prototyping and optical design. In the first part of this dissertation, we describe a low-cost lithographic technique named Laser Interference Lithography (LIL) for fabricating periodic nanostructures. LIL technique is combined with dry-etching, wet-etching and electrochemical etching technique to realize, respectively, cylindrical holes, inverted pyramids and high aspect ratio pore arrays on silicon based substrate. The one-dimensional patterns on glass substrates are also used as nanofilters in realizing low-cost preconcentration chip. In the second part, we first describe Rigorous Coupled-Wave Analysis (RCWA), a rigorous electromagnetic calculation method designed for periodic structures. A detailed derivation is given to explain the numerical method. Then, we combine the RCWA method and a new proposed pseudo-disordered patterns design approach to investigate photon control. As an example, we demonstrate that by adding ‘appropriate’ engineered fine stripes to each long period the absorption performance of thin silicon slab can be largely enhanced
Massiot, Inès. "Design and fabrication of nanostructures for light-trapping in ultra-thin solar cells." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00986262.
Повний текст джерелаPes, Salvatore. "Nanostructures-based 1.55 μm-emitting Vertical-(External)-Cavity Surface-Emitting Lasers for microwave photonics and coherent communications". Thesis, Rennes, INSA, 2019. https://tel.archives-ouvertes.fr/tel-02892844.
Повний текст джерелаThe work presented in this dissertation focus on the development of InP-based semiconductor vertical-cavity lasers, based on quantum nanostructures and emitting at the telecom wavelengths (1550-1600 nm). A new technological process for the realization of compact VCSELs is described. This process (named TSHEC) has been employed to realize optically-pumped VCSELs, integrated onto a host Silicon platform, with good performances. The same process has been adapted to develop an electrically-driven version of VCSELs: a preliminary study of the confinement section based on a InGaAs-BTJ is presented, together with the development of a mask set. Thanks to the development of the liquid crystals μ-cell technology (in collaboration with LAAS, IMT Atlantique et C2N), we realized a tunable photodiode at 1.55 μm, and a tunable VCSEL is currently under development. This work also presents the first realization of a 1.6 μm- emitting optically-pumped quantum dashes-based VECSELs, and its characterization in multi-mode and single-frequency regime. Finally, the realization of an experimental setup for the investigation of the coupling between two orthogonal eigenstates of a bi- frequency 1.54 μm-emitting SQW-VECSEL has been conceived and realized. This setup, which allowed the direct quantification of the coupling constant on such a device, in the near future will allow performing the same study on anisotropic structures like quantum dashes or quantum dots, with the objective of studying the inhomogeneous broadening effect observed in these gain regions
Berencén, Ramírez Yonder Antonio. "Rare earth- and Si nanostructure-based light emitting devices for integrated photonics." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/285453.
Повний текст джерелаEsta tesis presenta un trabajo experimental en el desarrollo de iones de tierras raras y nanoestructuras de Si como plataforma de materiales para dispositivos de emisión de luz (LEDs) en el rango visible e infrarrojo cercano. Se han fabricado diferentes dispositivos electroluminiscentes basados en capas simples, dobles o triples de óxido de silicio y/o nitruro de silicio dopados o no con tierras raras. Para ello se han empleado varias técnicas de fabricación compatibles con la tecnología CMOS; a saber, depósito de vapor químico asistido por plasma (PECVD), pulverización catódica mediante magnetrón, depósito de vapor químico a baja presión (LPCVD) e implantación de iones. Así mismo, las propiedades estructurales y de composición de las capas fabricadas han sido determinadas mediante el uso de técnicas de caracterización tales como TOF-SIMS, SIMS, XPS, EFTEM, FIB y elipsometría. Además, a temperatura ambiente y altas temperaturas (25 0C – 300 0C) se han estudiado las propiedades electro-ópticas en los regímenes cuasi-estático y dinámico. Por lo general, las técnicas electro-ópticas empleadas fueron corriente-voltaje, capacitancia-voltaje, estudio de carga hasta la ruptura, electroluminiscencia (EL)-corriente, EL-voltaje y EL resuelta en tiempo.
Ghenuche, Petru Virgil. "Probing the near-field optical response of plasmon nanostructures with two-photon luminescence microscopy." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/22737.
Повний текст джерелаThis thesis describes the design, fabrication and the optical characterization of plasmon-resonant systems able to confine and enhance light fields down to the sub-wavelength scale. Extensive 3D numerical modeling was first used to design different geometries of coupled plasmonic nanostructures through the calculation of their far-field and near-field optical response. On the basis of simulations, the nanostructures were fabricated by e-beam lithography and thin film deposition. Special efforts were devoted to increasing the resolution and optimizing the reproducibility of critical parameters such as particle shape and interparticle gaps. Finally, far-field spectroscopy combined with two-photon induced luminescence (TPL) spectroscopy was used to probe the local optical response of the optimized architectures. We focused our attention on different families of structures: metal dimers, bar antennas, finite chains of nanoparticles and star-like particle arrangements. Particle dimers feature strong field enhancements in their sub-wavelength gap due to near-field coupling of their dipolar localized plasmon resonances. Based on the same physics, gap antennas, formed by two adjacent gold bars supporting multipolar resonances can efficiently couple to propagating light and concentrate it into tiny volumes. While finite particle chains were previously shown by other authors to be good candidates to guide light through subwavelength cross-sections, we show here that they can also be used as efficient nanolenses able to concentrate light at their extremity. Finally, the near-field distribution in star-like arrangements of gold nanoparticles exhibits a strong dependence with the incident field polarization which can be exploited for dynamical optical addressing of nano-objects. We have compared the far field spectroscopy of large ensembles of dimers and finite chains to TPL spectroscopy. Our main result is to show that TPL is preferentially sensitive to local fields and that it enables the assessment of spectroscopic features which cannot be resolved otherwise. In order to overcome the limitations of measurements on large ensembles a considerable effort was dedicated to mounting and optimizing an optical set-up enabling TPL measurement of single structures. Using the developed TPL micro-spectroscopy, spatially resolved spectral mode mapping on single resonant gap-antennas was achieved. As predicted by calculations, we were able to directly visualize at resonance the strongly enhanced TPL signal within the gap. Our results show how TPL scans can be directly compared with the convoluted distribution of the fourth power of the calculated local mode field. By monitoring the evolution with the incident wavelength of the TPL signal within the gap and at the antenna extremities we got further insight in the physical mechanism behind the buildup of the antenna’s resonance. Finally, TPL microscopy was used to probe the local fields under different orientations of the incident linear polarization near star-like arrangement of gold disks. It is shown that, unlike the scattering spectrum, the TPL distribution over the structure is found to depend drastically on the incident polarization state. Our study brings a significant contribution to the field of Plasmon optics by proposing novel geometries able to efficiently confine optical fields down to the nanometric scale, but also by providing deep insight into the use of TPL microspectroscopy to probe their local optical response. Our findings are foreseen to be important in applications such as enhanced spectroscopy, bio-sensing and enhanced light-matter interaction, where one needs to assess the actual field experienced by small amounts of matter.
Zandbergen, Sander, and Sander Zandbergen. "Light-Matter Interactions in Various Semiconductor Systems." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/624528.
Повний текст джерелаNedel, Patrick. "Nanostructures photoniques ultimes pour l'information quantique." Phd thesis, Ecole Centrale de Lyon, 2010. http://tel.archives-ouvertes.fr/tel-00676648.
Повний текст джерелаAlam, Mohammad. "High performance magneto-optic garnet materials for integrated optics and photonics." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2012. https://ro.ecu.edu.au/theses/528.
Повний текст джерелаSampath, Vimal G. "ULTRA–LOW POWER STRAINTRONIC NANOMAGNETIC COMPUTING WITH SAW WAVES: AN EXPERIMENTAL STUDY OF SAW INDUCED MAGNETIZATION SWITCHING AND PROPERTIES OF MAGNETIC NANOSTRUCTURES." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4617.
Повний текст джерелаVabbina, Phani Kiran. "Sonochemical Synthesis of Zinc Oxide Nanostructures for Sensing and Energy Harvesting." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2534.
Повний текст джерелаGhosh, Siddharth [Verfasser], Jörg [Akademischer Betreuer] [Gutachter] Enderlein, and Peter Jomo [Gutachter] Walla. "Nanoscale Photonics : From single molecule nanofluidics to light-matter interaction in nanostructures / Siddharth Ghosh ; Gutachter: Jörg Enderlein, Peter Jomo Walla ; Betreuer: Jörg Enderlein." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://d-nb.info/1138437980/34.
Повний текст джерелаHadjikhani, Ali. "Nanofabrication and Spectroscopy of Magnetic Nanostructures Using a Focused Ion Beam." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2536.
Повний текст джерелаChen, Xiaojun. "Croissance de nanostructures de composés III-nitrures en épitaxie en phase vapeur d'organo-métalliques : de la croissance auto-assemblée à la croissance sélective." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENY080/document.
Повний текст джерелаThis work reports the metal-organic vapour phase epitaxy of III-Nitride wire- or pyramid-shaped nanostructures and focuses on the growth mechanisms related to these two types of GaN nanostrcutures. A complete parametric study is presented in order to optimize and to understand the catalyst-free self-assembled GaN nanowire growths. We demonstrate that the silane flux injection is a key-parameter for nanowire growth thanks to the formation of SiNx passivation layer along the sidewall facets that acts as a mask favoring the vertical growth. A novel silane-free nanowire growth is also proposed in this work using ultra-low precursor flux that favors the formation of vertical facets. Such nanowires exhibit excellent structural and optical properties due to the absence of silicon. In addition, the polarity is found to play a key-role for GaN nanostructure growth, since the nanostructure shape can be basically determined by the polarity orientation: N-polar nanostructure results in wire, whereas Ga-polar in pyramid. Consequently, the shape wire/pyramid of nanostructure can be chosen depending on the polarity control on sapphire or GaN substrates. This method is applied to get ordered arrays of GaN wires and pyramids using selective area growth on patterned mask. Such nanostructures can be used as template for InGaN/GaN heterostructure growth to get either non-polar multi-quantum wells along the wire sidewalls or InGaN quantum dots at the pyramid apex
Tremblay, Ronan. "Propriétés structurales, optiques et électriques de nanostructures et alliages à base de GaP pour la photonique intégrée sur silicium." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0026/document.
Повний текст джерелаThis PhD work focuses on the structural, optical, electrical properties of GaP-based nanostructures and alloys for integrated photonics on silicon. Amongst the integration approaches of III-V on Si, the interest of GaP/Si is firstly discussed. A study of the growth and the doping of AlGaP used as laser cladding layers (optical confinement and electrical injection) is presented. The activation complexity of n-dopants is highlighted. Then, the photoluminescence properties of InGaAs/GaP quantum dots are investigated as a function of temperature and optical density. The origin of the optical transitions involved are identified as (i) indirect type-I transition between electrons in Xxy states and holes in HH states of quantum dots InGaAs and (ii) indirect type-II with electrons in Xz states of strained GaP. Despite an effective modification in the electronic structure of these emitters, a direct type I optical transition is not demonstrated. This is the major bottleneck in the promotion of GaP based emitters on Si. This said, the control of the GaP/Si interface and electrical injection are confirmed by the demonstration of electroluminescence at room temperature on Si. If no laser effect is obtained in rib laser architectures, a possible beginning of Г band filling in QDs is discussed. Finally, the adequacy of state of the art integrated lasers with the development of on-chip optical interconnects is discussed
Kosmeier, Sebastian. "Optical eigenmodes for illumination & imaging." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3369.
Повний текст джерелаChen, Vincent W. "Fabrication and chemical modifications of photonic crystals produced by multiphoton lithography." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45918.
Повний текст джерелаWu, Qi. "Negative refraction by photonic nanostructures." Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337163.
Повний текст джерелаMatricardi, Cristiano. "Hybrid plasmonic-photonic nanostructures for enhanced spectroscopies." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670161.
Повний текст джерелаEsta tesis está dedicada a la nanofabricación, la caracterización y las aplicaciones de estructuras híbridas plasmónica-fotónica. La posibilidad de trabajar con la luz a la nanoescala, controlar sus propiedades, manejar su flujo y concentrar su campo eléctrico en volúmenes nanométricos, ha llevado al desarrollo de un nuevo campo de la ciencia: la nanoplasmónica. Este campo está en continuo crecimiento y, junto con la nanotecnología, está llevando hacia el desarrollo de nuevos sistemas optoelectrónicos. Estas investigaciones tienen un gran impacto en campos desde la medicina hasta la conversión de energía. De ahí se deriva la necesidad de estudiar nuevas técnicas de nanofabricación y caracterización más asequibles que permitan un fácil escalado de estructuras nanométricas. El manuscrito se compone de dos trabajos principales, ambos dedicados a la utilización de técnicas de nanofabricación híbridas entre bottom-up y top-down. En primer lugar, se han fabricado en gran escala nuevas estructuras plasmónicas asimétricas. Sus propiedades ópticas dependientes de la polarización lineal o circular de la luz han sido estudiadas desvelando cómo la asimetría geométrica permite obtener una diferente respuesta óptica. Entre todas las estructuras estudiadas, matrices de nanoaperturas han sido utilizadas para demonstrar el aumento de fluorescencia debido a la interacción de un colorante con superficies metálicas nanoestructuradas. En segundo lugar, se han fabricado matrices de agregados de nanopartículas de oro a través de técnicas de auto ensamblaje guiadas por un nanopatrón de PDMS. La posibilidad de ajustar las resonancias plasmónicas a lo largo de todo el espectro visible e infrarrojo cercano ha permitido adaptar el sistema para la utilización como sensores de SERS en medios biológicos.
This dissertation is the result of the work carried out in the Nanostructured Materials for Optoelectronics and Energy Harvesting (NANOPTO) research group at the Institute of Materials Science of Barcelona. Part of this work was conducted in collaboration with the Bionanoplasmonic group at the CIC BiomaGUNE in San Sebastian. This work is dedicated to the nanofabrication, characterization, and application of complex plasmonic nanostructures with engineered optical properties. The possibility to play with light at the nanoscale, control its property, mold its flow and concentrate its electric filed in nanometric volumes has led to the arising of a new field of science: nanoplasmonics. This field is constantly growing at a high pace and, along with nanotechnology, is driving the development of next-generation optoelectronic devices. These new research fields have a broad impact from medicine to energy harvesting hence the interest in studying this filed seeking more affordable nanofabrication techniques which will allow the scale-up of plasmonic devices. The manuscript is divided into three sections, which in turn are divided into several chapters. In Section I, we summarize the optical properties of metals highlighting their importance in plasmonics and describing different approaches to fabricate nanostructured devices, namely top-down and bottom-up. A discussion on the main techniques will highlight the strength of unconventional fabrication methods based on soft nanoimprinting. Section II is dedicated to the fabrication, optical characterization and surface-enhanced fluorescence studies with asymmetric plasmonic crystals. The fabrication process combines thermal nanoimprint lithography (top-down) with tilted thermal evaporation (bottom-up) which allow large scale plasmonic system with homogeneous optical properties over a large area. Finally, section III deals with the merger o nanoimprint lithography and nanoparticle self-assembly to achieve long-range homogeneity of nanoparticles supercrystals. In this discussion, we will present a new controlled method to achieve template self-assembly form both gold nanospheres and nanorods. The optical characterization reveals the hybridization between localized plasmon resonances and diffraction modes which allows the tuning of resonances by changing the lattice parameter of the array. The application of supercrystals as Surface-enhanced Raman spectroscopy sensors will be finally explored, studying intra batch and inter batch signal homogeneity unveiling the critical parameters that affect the SERS signal.
Yoshie, Tomoyuki Scherer Axel. "Planar photonic crystal nanocavities with active quantum nanostructures /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-05272004-095431.
Повний текст джерелаVarytis, Paraschos. "Tailored disorder and anisotropic scattering in photonic nanostructures." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20861.
Повний текст джерелаIn this thesis, we study the optical response of planar spectrometers based on disorder scatterers, composite dielectric nanoparticles with plasmonic shell, and all-dielectric magneto-optical shape-modified metasurfaces. Therefore, we employ both Mie and multiple scattering theory as well as a discontinuous Galerkin time-domain method based on finite elements for the numerical computation of the electromagnetic fields. Specifically, we present a theoretical design study for obtaining random spectrometers with high spectral resolution. Furthermore, we provide an alternative strategy to achieve preferentially high backscattering by studying the optical properties of composite nanoparticles. Finally, we present enhanced Faraday rotation along with high transmittance in all-dielectric magneto-optical metasurfaces composed of shape-modified nanodisks.
Zhao, Xuesong. "Nonlinear phenomena in photonic nanostructures : modulational instabilities and solitons." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648937.
Повний текст джерелаNakagawa, Wataru. "Near-field phenomena in resonant and nonlinear photonic nanostructures /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3061649.
Повний текст джерелаMartin, Aude. "Nonlinear Photonic Nanostructures based on Wide Gap Semiconductor Compounds." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS526/document.
Повний текст джерелаThe energy consumption of the whole ICT ecosystem is growing at a fast paceand in a global context of the search for an ever more connected yet sustainable society, a technologicalbreakthrough is desired. Here, integrated nonlinear photonics will help by providingnovel possibilities for energy efficient signal processing. In this PhD thesis, I have been investigatingsub-wavelength semiconductor structures, particularly photonic crystals, which have shownremarkable nonlinear properties. More specifically the strong confinement and slow light propagationenables on-chip ultra-fast all-optical signal processing, either based on four-wave-mixingor self-phase modulation. The main point here is the use of novel semiconductor materials withimproved nonlinear properties with respect to Silicon. In fact, it has now been acknowledgedthat the nonlinear and free-carriers absorption in Silicon integrated photonic structures is anissue hindering the full exploitation of nonlinear effects. In my thesis, wide-gap III-V semiconductorshave been used to develop high quality photonic crystal waveguides and cavities whichare able to sustain extremely high optical power densities as well as large average power levels.I have demonstrated PhC waveguides with much improved thermal conductivity through heterogeneousintegration of GaInP membranes with silicon dioxide. This will allow continuous wave phase-sensitive amplification, which I already demonstrated in the pulsed regime using GaInPself-suspended membranes. In parallel, I have demonstrated high quality PhC in Gallium Phosphide,which is a very promising material because of the large bandgap and the very good thermalconductivity. Preliminar results demonstrate the achievement of extremely large nonlinear regime(mini-comb, soliton compression and fission ...)
Quan, Qimin. "Photonic Crystal Nanobeam Cavities for Biomedical Sensing." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10421.
Повний текст джерелаEngineering and Applied Sciences
Geng, Wei. "Coupling nanostructures towards integrated nanophotonics devices." Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0016/document.
Повний текст джерелаWith the significant advantages in storing, processing and transmitting information, quantuminformation science has attracted abundant studies in the last few decades, by which many proofs ofprinciple have been made using macro-photonic experimental techniques. However, the applicabilityof this technology still strongly depends on the miniaturization of the system, i.e. the on-chip integration of quantum photonic functionalities. The general prerequisites of an integrated quantumchip are localised and efficient generation, transportation and detection of photons. Some effortshave been made successfully involving one or two necessary features. However, the full integration still remains unaccomplished. Based on semiconductor nanophotonic elements and simple nanofabrication techniques, this thesis aims to provide a strategy for on-chip quantum photonic integration. An efficient and local excitation of a single photon source with a subwavelengthwaveguide is firstly demonstrated. Then we investigate the efficient light exchange betweennanostructures and waveguides that can serve as linking blocks between devices in an integrationsystem. The fabrication and characterisation of a sensitive photodetector based on a single nanowireis also presented, which exhibits great potential in single-photon detection. At the end, an outlook ofthe ultimate integration of all these functionalities is provided
Martins, Emiliano. "Light management in optoelectronic devices." Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6133.
Повний текст джерелаBenhsaien, Abdessamad. "Self-assembled quantum dot semiconductor nanostructures modeling: Photonic device applications." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27225.
Повний текст джерелаTorrisi, Felice. "Nanomaterials-based dispersions, inks and composites for flexible electronics and photonics." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648269.
Повний текст джерелаZheng, Hanbin. "Design and bottom-up fabrication of nanostructured photonic / plasmonic materials." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0255/document.
Повний текст джерелаThe bottom-up self-assembly of colloidal particles is a versatile technique that allows the fabrication of large areas of colloidal crystals. The purpose of the present study is to develop highly reliable and reproducible process routes to fabricate nanostructured photonic and plasmonic materials that can be incorporated into different devices. Titania inverse opals with precise control of the layer thickness have been successfully incorporated into solid state DSSCs which showed improved performance of up to 105 %. Nanostructured gold surfaces that exhibited omnidirectional total light absorption have been fabricated by controlled electrodeposition of gold through colloidal monolayers of polystyrenebeads. In addition, very rough gold surfaces that showed anti-reflective properties were also made. By tuning the pore size of the colloidal monolayer, plasmonic gold nanopillarswith different lengths were fabricated by a sequential electrodeposition process. Using a non close-packed monolayer of PS beadscombined with electrodeposition,fishnet metamaterialswere fabricated