Статті в журналах з теми "Photonic time-Stretch"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photonic time-Stretch.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Photonic time-Stretch".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wang, Guoqing, Yuan Zhou, Rui Min, E. Du, and Chao Wang. "Principle and Recent Development in Photonic Time-Stretch Imaging." Photonics 10, no. 7 (July 13, 2023): 817. http://dx.doi.org/10.3390/photonics10070817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Inspiring development in optical imaging enables great applications in the science and engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one mapping among space-wavelength-time using dispersive medium both in spatial and time domains. The ultrafast imaging speed of the photonics time-stretch imaging technique achieves an ultrahigh frame rate of tens of millions of frames per second, which exceeds the traditional imaging methods in several orders of magnitudes. Additionally, regarding ultrafast optical signal processing, it can combine several other optical technologies, such as compressive sensing, nonlinear processing, and deep learning. In this paper, we review the principle and recent development of photonic time-stretch imaging and discuss the future trends.
2

Mei, Yuan, Boyu Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang. "Harmonics analysis of the photonic time stretch system." Applied Optics 55, no. 26 (September 6, 2016): 7222. http://dx.doi.org/10.1364/ao.55.007222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zlokazov, E. Yu, R. S. Starikov, and V. A. Nebavskiy. "Mathematical modelling of microwave photonic time-stretch system." Journal of Physics: Conference Series 737 (August 2016): 012001. http://dx.doi.org/10.1088/1742-6596/737/1/012001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Yaowen, Rongting Jin, Di Peng, Weiqiang Lyu, Zhenwei Fu, Zhiyao Zhang, Shangjian Zhang, Heping Li, and Yong Liu. "Broadband Transient Waveform Digitizer Based on Photonic Time Stretch." Journal of Lightwave Technology 39, no. 9 (May 1, 2021): 2880–87. http://dx.doi.org/10.1109/jlt.2021.3061511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Saltarelli, Francesco, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo, and Dario Polli. "Photonic Time-Stretch Spectroscopy for Multiplex Stimulated Raman Scattering." EPJ Web of Conferences 205 (2019): 03003. http://dx.doi.org/10.1051/epjconf/201920503003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Stimulated Raman scattering spectroscopy enables label-free molecular identification, but its broadband implementation is technically challenging. We experimentally demonstrate a novel approach to multiplex stimulated Raman scattering based on photonic time stretch. A telecom fiber stretches the broadband femtosecond Stokes pulse after the sample to ∼15ns, mapping its spectrum in time. The signal is sampled through a fast oscilloscope, providing single-shot spectra at 80-kHz rate. We demonstrate high sensitivity in detecting the Raman vibrational modes of various samples over the entire high-frequency C-H stretching region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.
6

Shu, Haowen, Lin Chang, Yuansheng Tao, Bitao Shen, Weiqiang Xie, Ming Jin, Andrew Netherton, et al. "Microcomb-driven silicon photonic systems." Nature 605, no. 7910 (May 18, 2022): 457–63. http://dx.doi.org/10.1038/s41586-022-04579-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMicrocombs have sparked a surge of applications over the past decade, ranging from optical communications to metrology1–4. Despite their diverse deployment, most microcomb-based systems rely on a large amount of bulky elements and equipment to fulfil their desired functions, which is complicated, expensive and power consuming. By contrast, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner5–7, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here we combine these two technologies by using a power-efficient and operationally simple aluminium-gallium-arsenide-on-insulator microcomb source to drive complementary metal–oxide–semiconductor SiPh engines. We present two important chip-scale photonic systems for optical data transmission and microwave photonics, respectively. A microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude four-level modulation scheme with a two-terabit-per-second aggregate rate, and a highly reconfigurable microwave photonic filter with a high level of integration is constructed using a time-stretch approach. Such synergy of a microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.
7

Zhu, Qian, Leran Wang, Lei Yang, Hongbo Xie, and Daoyin Yu. "Ultrafast photonic time-stretch imaging using an optically transparent medium." Applied Physics Express 13, no. 10 (September 10, 2020): 102001. http://dx.doi.org/10.35848/1882-0786/abb344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mei, Yuan, Yuxiao Xu, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang. "Spurious-Free Dynamic Range of the Photonic Time-Stretch System." IEEE Photonics Technology Letters 29, no. 10 (May 15, 2017): 794–97. http://dx.doi.org/10.1109/lpt.2017.2685624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Liu, Changqiao, Xiaofeng Jin, Boyu Xu, Xiangdong Jin, Xianmin Zhang, Shilie Zheng, and Hao Chi. "Impact of 3rd-order dispersion on photonic time-stretch system." Optics Communications 402 (November 2017): 206–10. http://dx.doi.org/10.1016/j.optcom.2017.05.079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xu, Yuxiao, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang. "On the undesired frequency chirping in photonic time-stretch systems." Optics Communications 405 (December 2017): 192–96. http://dx.doi.org/10.1016/j.optcom.2017.08.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Yang, Lei, Hui Chen, Jun Ma, Qian Zhu, Tong Yang, and Hongbo Xie. "Photonic Time-Stretch Technology with Prismatic Pulse Dispersion towards Fast Real-Time Measurements." Photonics 6, no. 3 (September 9, 2019): 99. http://dx.doi.org/10.3390/photonics6030099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photonic time-stretch (PTS) technology enables revolutionary technical breakthroughs in ultrafast electronic and optical systems. By means of employing large chromatic dispersion to map the spectrum of an ultrashort optical pulse into a stretched time-domain waveform (namely, using the dispersive Fourier transformation), PTS overcomes the fundamental speed limitations of conventional techniques. The chromatic dispersion utilized in PTS can be implemented using multiple optical prism arrays, which have the particular advantages of low loss in the extended spectrum outside of the specific telecommunication band, flexibility, and cost-effectiveness. In this article, we propose and demonstrate the PTS technology established for a pair of prisms, which works as a data acquisition approach in ultrafast digitizing, imaging, and measurement regimes.
12

Zhang, Yukang, and Hao Chi. "An Optical Front-End for Wideband Transceivers Based on Photonic Time Compression and Stretch." Photonics 9, no. 9 (September 15, 2022): 658. http://dx.doi.org/10.3390/photonics9090658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This study proposes an optical front-end for wideband transceivers based on photonic time compression (PTC) and photonic time stretch (PTS) techniques. The PTC and PTS systems within a transceiver generate and receive wideband RF signals, respectively, which expand the processible signal bandwidth. We present analytical models for characterizing the optical front-end based on the PTC and PTS. The design of the front-end for signal generation and reception is also discussed, in which we emphasize the bandwidth match between the PTC-based transmitter and PTS-based receiver through an appropriate dispersion configuration. We conducted experiments on PTC and PTS systems with a single channel. Further simulation results for PTC and PTS systems with multiple channels for continuous-time operation are presented. The proposed front-end based on time compression/stretch can largely improve the signal bandwidth in systems using inexpensive low-speed analogue/digital converters.
13

Gupta, Shalabh, and Bahram Jalali. "Time-warp correction and calibration in photonic time-stretch analog-to-digital converter." Optics Letters 33, no. 22 (November 14, 2008): 2674. http://dx.doi.org/10.1364/ol.33.002674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Fard, Ali M., Shalabh Gupta, and Bahram Jalali. "Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging." Laser & Photonics Reviews 7, no. 2 (January 15, 2013): 207–63. http://dx.doi.org/10.1002/lpor.201200015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Han, Y., O. Boyraz, and B. Jalali. "Ultrawide-band photonic time-stretch a/D converter employing phase diversity." IEEE Transactions on Microwave Theory and Techniques 53, no. 4 (April 2005): 1404–8. http://dx.doi.org/10.1109/tmtt.2005.845757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Szwaj, C., C. Evain, M. Le Parquier, P. Roy, L. Manceron, J. B. Brubach, M. A. Tordeux, and S. Bielawski. "High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses." Review of Scientific Instruments 87, no. 10 (October 2016): 103111. http://dx.doi.org/10.1063/1.4964702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Xu, Boyu, Changqiao Liu, Xiaofeng Jin, Xiangdong Jin, Xianbin Yu, Hao Chi, Shilie Zheng, and Xianmin Zhang. "Frequency-dependent noise figure analysis of continuous photonic time-stretch system." Applied Optics 56, no. 29 (October 9, 2017): 8246. http://dx.doi.org/10.1364/ao.56.008246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Coppinger, F., A. S. Bhushan, and B. Jalali. "Photonic time stretch and its application to analog-to-digital conversion." IEEE Transactions on Microwave Theory and Techniques 47, no. 7 (July 1999): 1309–14. http://dx.doi.org/10.1109/22.775471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Xie, Xinggang, Xiaoli Yin, Sha Li, Li Li, Xiangjun Xin, and Chongxiu Yu. "Photonic time-stretch analog-to-digital converter employing envelope removing technique." Optik 125, no. 9 (May 2014): 2195–98. http://dx.doi.org/10.1016/j.ijleo.2013.10.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Jalali, B., F. Coppinger, and A. S. Bhushan. "Photonic Time-stretch Offers Solution to Ultrafast Analog-to-digital Conversion." Optics and Photonics News 9, no. 12 (December 1, 1998): 31. http://dx.doi.org/10.1364/opn.9.12.000031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Mididoddi, Chaitanya K., Fangliang Bai, Guoqing Wang, Jinchao Liu, Stuart Gibson, and Chao Wang. "High-Throughput Photonic Time-Stretch Optical Coherence Tomography with Data Compression." IEEE Photonics Journal 9, no. 4 (August 2017): 1–15. http://dx.doi.org/10.1109/jphot.2017.2716179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Fuster, J. M., D. Novak, A. Nirmalathas, and J. Marti. "Single-sideband modulation in photonic time-stretch analogue-to-digital conversion." Electronics Letters 37, no. 1 (2001): 67. http://dx.doi.org/10.1049/el:20010046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chi, Hao, Ying Chen, Yuan Mei, Xiaofeng Jin, Shilie Zheng, and Xianmin Zhang. "Microwave spectrum sensing based on photonic time stretch and compressive sampling." Optics Letters 38, no. 2 (January 8, 2013): 136. http://dx.doi.org/10.1364/ol.38.000136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Teng, Yun, Chong-xiu Yu, Jin-hui Yuan, Jing-xuan Chen, Cang Jin, and Qian Xu. "Time-stretch analog-to-digital conversion with a photonic crystal fiber." Optoelectronics Letters 7, no. 2 (March 2011): 143–46. http://dx.doi.org/10.1007/s11801-011-0149-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Yang, Shuna, Jian Wang, Bo Yang, Hao Chi, Jun Ou, Yanrong Zhai, and Qiliang Li. "A serial digital-to-analog conversion based on photonic time-stretch technology." Optics Communications 510 (May 2022): 127949. http://dx.doi.org/10.1016/j.optcom.2022.127949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bhushan, A. S., P. V. Kelkar, B. Jalali, O. Boyraz, and M. Islam. "130-GSa/s photonic analog-to-digital converter with time stretch preprocessor." IEEE Photonics Technology Letters 14, no. 5 (May 2002): 684–86. http://dx.doi.org/10.1109/68.998725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, Changqiao, Xiaofeng Jin, Xiangdong Jin, Xianbin Yu, Qinggui Tan, and Guoyong Wang. "Signal Frequency Chirp of Photonic Time-Stretch System Due to Nonlinear Dispersion." IEEE Photonics Technology Letters 31, no. 6 (March 15, 2019): 443–46. http://dx.doi.org/10.1109/lpt.2019.2897723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zheng, Jian, Wei Feng, and Sha Li. "Photonic time stretch preprocessor employing coherent detection in analog-to-digital converter." Optik 124, no. 20 (October 2013): 4647–50. http://dx.doi.org/10.1016/j.ijleo.2013.01.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Yang, Bo, Qing Xu, Shuna Yang, and Hao Chi. "Wideband sparse signal acquisition with ultrahigh sampling compression ratio based on continuous-time photonic time stretch and photonic compressive sampling." Applied Optics 61, no. 6 (February 10, 2022): 1344. http://dx.doi.org/10.1364/ao.450386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Qian Aquan, 钱阿权, 邹卫文 Zou Weiwen, 吴龟灵 Wu Guiling, and 陈建平 Chen Jianping. "Design and Implementation of Multi-Channel Photonic Time-Stretch Analog-to-Digital Converter." Chinese Journal of Lasers 42, no. 5 (2015): 0505001. http://dx.doi.org/10.3788/cjl201542.0505001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Li, Sha, and Chong-Xiu Yu. "Ultrahigh sampling rate photonic time stretch analog-to-digital converter employing phase modulation." Optik 124, no. 20 (October 2013): 4539–43. http://dx.doi.org/10.1016/j.ijleo.2013.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Li, Bo, Shuqin Lou, and José Azaña. "Implementation of the photonic time-stretch concept using an incoherent pulsed light source." Applied Optics 54, no. 10 (March 25, 2015): 2757. http://dx.doi.org/10.1364/ao.54.002757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mididoddi, Chaitanya K., and Chao Wang. "Adaptive non-uniform photonic time stretch for blind RF signal detection with compressed time-bandwidth product." Optics Communications 396 (August 2017): 221–27. http://dx.doi.org/10.1016/j.optcom.2017.03.052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Fard, Ali, Brandon Buckley, and Bahram Jalali. "Spectral Efficiency Improvement in Photonic Time-Stretch Analog-to-Digital Converter via Polarization Multiplexing." IEEE Photonics Technology Letters 23, no. 14 (July 2011): 947–49. http://dx.doi.org/10.1109/lpt.2011.2142414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Fard, Ali M., Peter T. S. DeVore, Daniel R. Solli, and Bahram Jalali. "Impact of Optical Nonlinearity on Performance of Photonic Time-Stretch Analog-to-Digital Converter." Journal of Lightwave Technology 29, no. 13 (July 2011): 2025–30. http://dx.doi.org/10.1109/jlt.2011.2157304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Fard, Ali, Shalabh Gupta, and Bahram Jalali. "Digital broadband linearization technique and its application to photonic time-stretch analog-to-digital converter." Optics Letters 36, no. 7 (March 18, 2011): 1077. http://dx.doi.org/10.1364/ol.36.001077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Stigwall, Johan, and Sheila Galt. "Signal Reconstruction by Phase Retrieval and Optical Backpropagation in Phase-Diverse Photonic Time-Stretch Systems." Journal of Lightwave Technology 25, no. 10 (October 2007): 3017–27. http://dx.doi.org/10.1109/jlt.2007.905893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Xia Nan, 夏楠, 陈颖 Chen Ying, 陈向宁 Chen Xiangning, 邹卫文 Zou Weiwen, 吴龟灵 Wu Guiling, and 陈建平 Chen Jianping. "Impact of Nonlinearity Effect on the Performance of Photonic Time-Stretch Analog-to-Digital Converter System." Acta Optica Sinica 34, no. 6 (2014): 0606002. http://dx.doi.org/10.3788/aos201434.0606002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Peng, Di, Zhiyao Zhang, Zhen Zeng, Lingjie Zhang, Yanjia Lyu, Yong Liu, and Kang Xie. "Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser." Optics Express 26, no. 6 (March 5, 2018): 6519. http://dx.doi.org/10.1364/oe.26.006519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gee, Caroline M., George Sefler, Peter T. S. DeVore, and George C. Valley. "Spurious‐Free dynamic range of a high‐resolution photonic time‐stretch analog‐to‐digital converter system." Microwave and Optical Technology Letters 54, no. 11 (August 24, 2012): 2558–63. http://dx.doi.org/10.1002/mop.27114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sefler, George A., and George C. Valley. "Mitigation of Group-Delay-Ripple Distortions for Use of Chirped Fiber-Bragg Gratings in Photonic Time-Stretch ADCs." Journal of Lightwave Technology 31, no. 7 (April 2013): 1093–100. http://dx.doi.org/10.1109/jlt.2013.2243404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Qian, Na, Weiwen Zou, Siteng Zhang, and Jianping Chen. "Signal-to-noise ratio improvement of photonic time-stretch coherent radar enabling high-sensitivity ultrabroad W-band operation." Optics Letters 43, no. 23 (November 29, 2018): 5869. http://dx.doi.org/10.1364/ol.43.005869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Peng, Di, Zhiyao Zhang, Yangxue Ma, Yali Zhang, Shangjian Zhang, and Yong Liu. "Optimized Single-Shot Photonic Time-Stretch Digitizer Using Complementary Parallel Single-Sideband Modulation Architecture and Digital Signal Processing." IEEE Photonics Journal 9, no. 3 (June 2017): 1–14. http://dx.doi.org/10.1109/jphot.2017.2694442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chen, Ying, Hao Chi, Tao Jin, Shilie Zheng, Xiaofeng Jin, and Xianmin Zhang. "Sub-Nyquist Sampled Analog-to-Digital Conversion Based on Photonic Time Stretch and Compressive Sensing With Optical Random Mixing." Journal of Lightwave Technology 31, no. 21 (November 2013): 3395–401. http://dx.doi.org/10.1109/jlt.2013.2282088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Li, Caiyun, Jiangyong He, Yange Liu, Yang Yue, Luhe Zhang, Longfei Zhu, Mengjie Zhou, Congcong Liu, Kaiyan Zhu, and Zhi Wang. "Comparing Performance of Deep Convolution Networks in Reconstructing Soliton Molecules Dynamics from Real-Time Spectral Interference." Photonics 8, no. 2 (February 13, 2021): 51. http://dx.doi.org/10.3390/photonics8020051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Deep neural networks have enabled the reconstruction of optical soliton molecules with more complex structures using the real-time spectral interferences obtained by photonic time-stretch dispersive Fourier transformation (TS-DFT) technology. In this paper, we propose to use three kinds of deep convolution networks (DCNs), including VGG, ResNets, and DenseNets, for revealing internal dynamics evolution of soliton molecules based on the real-time spectral interferences. When analyzing soliton molecules with equidistant composite structures, all three models are effective. The DenseNets with layers of 48 perform the best for extracting the dynamic information of complex five-soliton molecules from TS-DFT data. The mean Pearson correlation coefficient (MPCC) between the predicted results and the real results is about 0.9975. Further, the ResNets in which the MPCC achieves 0.9906 also has the better ability of phase extraction than VGG which the MPCC is about 0.9739. The general applicability is demonstrated for extracting internal information from complex soliton molecule structures with high accuracy. The presented DCNs-based techniques can be employed to explore undiscovered mechanisms underlying the distribution and evolution of large numbers of solitons in dissipative systems in experimental research.
46

Jiang, Xingyu, Shuaijian Yang, and Leni Zhong. "(Invited) Stretchable and Biodegradable Sensors Based on Liquid Metal-Polymer Composites Encapsulated in Microfluidics." ECS Meeting Abstracts MA2023-02, no. 63 (December 22, 2023): 2975. http://dx.doi.org/10.1149/ma2023-02632975mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photolithography and related advances have made microfluidics, microelectromechanical systems and related systems accessible to many biomecial labs. These systems have found uses in biochemical assays, pharmaceutical screening and many fields of applications. Conductive inks made from lipid metal-polymer composites (MPC) can be encapsulated within elastomer-based microfluidic channels that serve as conducting wires that are flexible, stretchable and completely biodegradable. Such flexible devices have allow the introduction of electrical and photonic signals seamlessly into living tissues. These properties can dramatically expand the capability of stretch electronic devices as biomedical sensors, as well as sensors for electrophysiology, tissue engineering, regenerative medicine and gene therapy. MPC-based epidermal liquid metal-based electronics, such as blood oxygen sensors and sweat detection devices, allow real-time health monitoring. I will also discuss the idea of an “electronic blood vessel” that integrates sensing with regeneration. Eventually, these sensors can also harness the chemical energy within bodies to comprise self-power devices.
47

Peng, Di, Zhiyao Zhang, Yangxue Ma, Yali Zhang, Shangjian Zhang, and Yong Liu. "Broadband linearization in photonic time-stretch analog-to-digital converters employing an asymmetrical dual-parallel Mach-Zehnder modulator and a balanced detector." Optics Express 24, no. 11 (May 18, 2016): 11546. http://dx.doi.org/10.1364/oe.24.011546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yin, Tenghao, Danming Zhong, Junjie Liu, Xiangjiang Liu, Honghui Yu, and Shaoxing Qu. "Stretch tuning of the Debye ring for 2D photonic crystals on a dielectric elastomer membrane." Soft Matter 14, no. 7 (2018): 1120–29. http://dx.doi.org/10.1039/c7sm02322g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Ugo, Cataldi, and Buergi Thomas. "Plasmonic coupling induced by growing processes of metal nanoparticles in wrinkled structures and driven by mechanical strain applied to a polidimethisiloxisilane template." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 45. http://dx.doi.org/10.4302/plp.v9i2.702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report the mechanical control of plasmonic coupling between gold nanoparticles (GNPs) coated onto a large area wrinkled surface of an elastomeric template. Self-assembly and bottom-up procedures, were used to fabricate the sample and to increase the size of GNPs by exploiting the reduction of HAuCl4 with hydroxylamine. The elastic properties of template, the increase of nanostructure size joined with the particular grating configuration of the surface have been exploited to trigger and handle the coupling processes between the nanoparticles. Full Text: PDF ReferencesG. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen", Ann. Phys. 25, 377 (1908) CrossRef U. Kreibig and M. Vollmer, Optical properties of metal cluster, Berlin 1995 CrossRef S. A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007 CrossRef L. A. Lane, X. Qian, and S. Nie, "SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging", Chem. Rev. 115, 10489-10529 (2015) CrossRef N. Pazos-Perez, W. Ni, A. Schweikart, R. A. Alvarez-Puebla, A. Fery and L. M. Liz-Marzan, "Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids", Chem. Sci. 1, 174-178P (2010) CrossRef M. Aioub and M. A. El-Sayed, "A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles", J. Am. Chem. Soc. 138, 1258-1264 (2016) CrossRef G. Baffou, and R. Quidant, "Thermo-plasmonics: using metallic nanostructures as nano-sources of heat", Laser Photonics Rev. 7, No. 2, 171-187 (2013) CrossRef G. Palermo, U. Cataldi, L. De Sio, T. Beurgi, N. Tabiryan, and C. Umeton, "Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals", Applied Physics 109, 191906 (2016) CrossRef J. R. Dunklin, G. T. Forcherio, K. R. Berry, Jr., and D. K. Roper, "Gold Nanoparticle Polydimethylsiloxane Thin Films Enhance Thermoplasmonic Dissipation by Internal Reflection", J. Phys. Chem. 118, 7523-7531 (2014) CrossRef Y. Jin, "Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine", Adv. Mater. 24, 5153-5165 (2012) CrossRef J. H. Lee, Q. Wu, and W. Park, "Metal nanocluster metamaterial fabricated by the colloidal self-assembly", Optics Letters 34, Issue 4, 443-445 (2009) CrossRef R. Pratibha, K. Park, I. I. Smalyukh, and W. Park, "Tunable optical metamaterial based on liquid crystal-gold nanosphere composite", Optics Express 17, Issue 22, 19459-19469 (2009) CrossRef J. Dintinger, S. Mühlig, C. Rockstuhl, and T. Scharf, "A bottom-up approach to fabricate optical metamaterials by self-assembled metallic nanoparticles", Optical Materials Express 2, Issue 3, 269-278 (2012) CrossRef T. Maurer, J. Marae-Djouda, U. Cataldi, A. G., Guillaume Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Léveque, T. Buergi, and R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Front. Mater. Sci. 9(2) (2015) CrossRef J. N. Anker W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors", Nature Materials 7, 442 - 453 (2008) CrossRef M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers,and R. G. Nuzzo, "Nanostructured Plasmonic Sensors", Chem. Rev. 108, 494-521 (2008) CrossRef P. K. Jain , M. A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chemical Physics Letters 487, 153-164 (2010) CrossRef P. K. Jain, W. Huang and M. A. El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nano Letters 7, 2080-2088 (2007) CrossRef U. Cataldi, R. Caputo, Y. Kurylyak, G. Klein, M. Chekini, C. Umeton and T. Buergi, "Growing gold nanoparticles on a flexible substrate to enable simple mechanical control of their plasmonic coupling", Journal of Materials Chemistry C 2(37), 7927-7933 (2014). CrossRef S. K. Ghosh and T. Pal, "Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications", Chem. Rev. 107, 4797 (2007) CrossRef M. K. Kinnan and G. Chumanov, "Plasmon Coupling in Two-Dimensional Arrays of Silver Nanoparticles: II. Effect of the Particle Size and Interparticle Distance", J. Phys. Chem. C 114, 7496 (2010) CrossRef X. L. Zhu, S. S. Xiao, L. Shi, X. H. Liu, J. Zi, O. Hansen and N. A. Mortensen, "A stretch-tunable plasmonic structure with a polarization-dependent response", Opt. Express, 20, 5237 (2012) CrossRef K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith and S. Schultz, "Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles", Nano Lett. 3, 1087 (2003) CrossRef Y. L. Chiang, C. W. Chen, C. H. Wang, C. Y. Hsieh, Y. T. Chen, H. Y. Shih and Y. F. Chen, "Mechanically tunable surface plasmon resonance based on gold nanoparticles and elastic membrane polydimethylsiloxane composite", Appl. Phys. Lett. 96, 041904 (2010) CrossRef N. Bowden, W. T. S. Huck, K. E. Paul, and G. M. Whitesides, "The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer", Appl. Phys. Lett. 75(17) (1999) CrossRef R, A. Lawton, C. R. Price, A. F. Runge, Walter J. Doherty III, S. Scott Saavedra , "Air plasma treatment of submicron thick PDMS polymer films: effect of oxidation time and storage conditions", Colloids and Surfaces A: Physicochem. Eng. Aspects 253, 213-215 (2005). CrossRef A Schweikart, N. Pazos-Perez, R. A. Alvarez-Puebla and A. Fery, "Controlling inter-nanoparticle coupling by wrinkle-assisted assembly", Soft Matter 7, 4093 (2011) CrossRef K. R. Brown, L. A. Lyon, A. P. Fox, B. D. Reiss and M. J. Natan, "Hydroxylamine Seeding of Colloidal Au Nanoparticles. 3. Controlled Formation of Conductive Au Films", Chem. Mater. 12, 314 (2000) CrossRef
50

Asghari, Hossein, and Max Hushahn. "Multi-Probe Photonic Time-Stretch: Design and Applications." SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4345360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії