Добірка наукової літератури з теми "Photodissociation Region"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Photodissociation Region".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Photodissociation Region"
Tielens, A. G. G. M., and D. Hollenbach. "Photodissociation Regions - Part Two - a Model for the Orion Photodissociation Region." Astrophysical Journal 291 (April 1985): 747. http://dx.doi.org/10.1086/163112.
Повний текст джерелаTielens, A. G. G. M., and D. Hollenbach. "Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region." Astrophysical Journal 291 (April 1985): 722. http://dx.doi.org/10.1086/163111.
Повний текст джерелаKlein, Randolf, Alexander Reedy, Christian Fischer, Leslie W. Looney, Sebastian Colditz, Dario Fadda, Alexander G. G. M. Tielens, and Willam D. Vacca. "The Photodissociation and Ionization Fronts in M17-SW Localized with FIFI-LS on Board SOFIA." Astrophysical Journal 945, no. 1 (March 1, 2023): 29. http://dx.doi.org/10.3847/1538-4357/acb823.
Повний текст джерелаEscalante, V., and A. Góngora-T. "Photodissociation Regions in Planetary Nebulae." Symposium - International Astronomical Union 155 (1993): 220. http://dx.doi.org/10.1017/s0074180900170822.
Повний текст джерелаBisbas, Thomas G., Jonathan C. Tan, and Kei E. I. Tanaka. "Photodissociation region diagnostics across galactic environments." Monthly Notices of the Royal Astronomical Society 502, no. 2 (January 15, 2021): 2701–32. http://dx.doi.org/10.1093/mnras/stab121.
Повний текст джерелаTielens, A. G. G. M. "Photodissociation Regions and Planetary Nebulae." Symposium - International Astronomical Union 155 (1993): 155–62. http://dx.doi.org/10.1017/s0074180900170330.
Повний текст джерелаHartquist, T. W., and A. Sternberg. "Photodissociation-region models of interstellar hydroxyl masers." Monthly Notices of the Royal Astronomical Society 248, no. 1 (January 1991): 48–51. http://dx.doi.org/10.1093/mnras/248.1.48.
Повний текст джерелаPellegrini, E. W., J. A. Baldwin, C. L. Brogan, M. M. Hanson, N. P. Abel, G. J. Ferland, H. B. Nemala, G. Shaw, and T. H. Troland. "A Magnetically Supported Photodissociation Region in M17." Astrophysical Journal 658, no. 2 (April 2007): 1119–35. http://dx.doi.org/10.1086/511258.
Повний текст джерелаGuzmán, Viviana V., Jérôme Pety, Pierre Gratier, Javier R. Goicoechea, Maryvonne Gerin, Evelyne Roueff, Franck Le Petit, and Jacques Le Bourlot. "Chemical complexity in the Horsehead photodissociation region." Faraday Discuss. 168 (2014): 103–27. http://dx.doi.org/10.1039/c3fd00114h.
Повний текст джерелаFederman, S. R., D. C. Knauth, David L. Lambert, and B‐G Andersson. "Probing the Photodissociation Region toward HD 200775." Astrophysical Journal 489, no. 2 (November 10, 1997): 758–65. http://dx.doi.org/10.1086/304804.
Повний текст джерелаДисертації з теми "Photodissociation Region"
Guzman, Veloso Viviana. "Physical and Chemical Conditions in the Horsehead Photodissociation Region." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00950116.
Повний текст джерелаGuzman, Veloso Viviana. "Physical and chemical conditions in the horsehead photodissociation region." Paris 6, 2013. http://www.theses.fr/2013PA066526.
Повний текст джерелаMolecular lines are used to trace the structure of the interstellar medium and the physical conditions of the gas in different environments, from high-z galaxies to protoplanetary disks. To fully benefit from the diagnostic power of molecular lines, the formation and destruction paths of the molecules, including the interplay between gas-phase and grain surface chemistry, must be quantitatively understood. Well-defined sets of observations of simple template sources are key to benchmark the predictions of theoretical models. With that motivation, this thesis is focused on the observation and analysis of an unbiased spectral line survey at 3, 2 and 1mm with the IRAM-30m telescope in the Horsehead nebula, with an unprecedented combination of bandwidth, high spectral resolution and sensitivity. Two positions were observed: the warm photodissociation region (PDR) and a cold condensation shielded from the UV field. Approximately 30 species, with up to 7 atoms plus their isotopologues, are detected. These data are complemented by high-angular resolution IRAM-PdB interferometric maps of specific species. The results of this thesis include the detection of CF+, a new diagnostic of the UV illuminated gas; the detection of a new species in the ISM, tentatively attributed to C3H+; a deep study of the abundance, spatial distribution and excitation conditions of H2CO, CH3OH and CH3CN, which reveals that photo-desorption of ices is an efficient mechanism to re- lease molecules into the gas phase; and the first detection of the complex organic molecules, HCOOH, CH2CO, CH3CHO and CH3CCH in a PDR, which reveals the degree of chemical complexity reached in the UV illuminated neutral gas
洪美思 and Mei-sze Hung. "Investigation of the Franck-Condon region photodissociation dynamics of linear and cyclic nitroalkanes using resonance Raman spectroscopy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215336.
Повний текст джерелаHung, Mei-sze. "Investigation of the Franck-Condon region photodissociation dynamics of linear and cyclic nitroalkanes using resonance Raman spectroscopy /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19945863.
Повний текст джерелаChampion, Jason. "Photoevaporation des disques protoplanétaires par les photons UV d’étoiles massives proches : observation de proplyds et modélisation." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30392/document.
Повний текст джерелаProtoplanetary disks are found around young stars, and represent the embryonic stage of planetary systems. At different phases of their evolution, disks may undergo substantial mass-loss by photoevaporation: energetic photons from the central or a nearby star heat the disk, hence particles can escape the gravitational potential and the disk loses mass. However, this mechanism, and the underlying physics regulating photoevaporation, have not been well constrained by observations so far. The aims of this thesis are to study photoevaporation, in the specific case when it is driven by far-UV photons, to identify the main physical parameters (density, temperature) and processes (gas heating and cooling mechanisms) that are involved, and to estimate its impact on the disk dynamical evolution. The study relies on coupling observations and models of disks being photoevaporated by UV photons coming from neighbouring massive star(s). Those objects, also known as "proplyds", appear as disks surrounded by a large cometary shaped envelope fed by the photoevaporation flows. Using a 1D code of the photodissociation region, I developed a model for the far-IR emission of proplyds. This model was used to interpret observations, mainly obtained with the Herschel Space Observatory, of four proplyds. We found similar physical conditions at their disk surface: a density of the order of 10 6 cm and a temperature about 1000 K. We found that this temperature is maintained by a dynamical equilibrium: if the disk surface cools, its mass-loss rate declines and the surrounding envelope is reduced. Consequently, the attenuation of the UV radiation field by the envelope decreases and the disk surface, receiving more UV photons, heats up. Most of the disk is thus able to escape through photoevaporation flows leading to mass-loss rates of the order of 10 -7 solar mass per year or more, in good agreement with earlier spectroscopic observations of ionised gas tracers. Following this work, I developed a 1D hydrodynamical code to study the dynamical evolution of an externally illuminated protoplanetary disk. [...]
Zannese, Marion. "Haute excitation de molécules dans les régions irradiées de formation stellaire et planétaire observées par le James Webb Space Telescope." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP082.
Повний текст джерелаRadiative feedback from massive stars, which heats and disperses the gas in the surrounding cloud, is a dominant mechanism limiting stellar and planetary formation. Indeed, observations show that only 1-5% of the mass of molecular clouds is converted into stars. In this thesis, I focused on the neutral, warm and irradiated regions between ionized and cold molecular media. In particular, I investigated how the excitation at the formation of certain molecules (OH, CH+ and CH3+) enabled simple and robust diagnostics to constrain the physical and chemical parameters of these regions. To do this, I coupled detailed gas modeling, using quantum dynamics data, with analysis of observations from the James Webb Space Telescope. The spectral coverage, high sensitivity and angular resolution of the JWST give unprecedented access to the chemistry and microphysics of the small-scale substructures of photodissociation regions (PDR) and the warm regions of protoplanetary disks (inner region or photoevaporated wind). My thesis is part of the analysis of data from the PDRs4All program observing the Orion Bar and protoplanetary disks in the line of sight (in particular d203-506).In preparation for the observations, I first concentrated on predicting what the JWST might detect. I studied the prompt emission of rotationally excited OH produced by the photodissociation of water. To this end, I used the Meudon PDR code, which self-consistently calculates the radiative transfer, the chemistry and the heat balance in PDRs. By implementing prompt emission in this code, we then show that only sufficiently dense and warm environments allow OH excitation at formation. The second part of my thesis presents the analysis of spectra obtained with the JWST. The signatures of highly excited molecules at formation observed in these data and analyzed with single-zone excitation models, based on quantum dynamics data, have revealed a particularly active chemistry in warm, irradiated regions. In the Orion Bar and d203-506, we reveal the detection of OH, CH+ and CH3+ as well as their excitation at formation, allowing us to constrain the chemistry in action. Indeed, OH rotational emission, previously modeled and detected in the mid-infrared, reveals the photodissociation of water. The near-infrared emission of OH and CH+ traces the formation and excitation of these species by chemical pumping via reactions with H2: X + H2 → XH* + H. These emission lines reveal a very active water formation and destruction cycle in d203-506 (O <=> OH <=> H2O), as well as the beginning of the carbon chemistry chain (C+ → CH+ → CH2+ → CH3+) in the PDR and disk. Excitation models have enabled us to identify the observed excitation processes and translate the measured line intensities into formation and destruction rates of these species. They also enable us to constrain the physical conditions of the medium, and can be used to determine locally, from the intensity of the observed lines, the intensity of the UV field (for the photodissociation of water) or the density of the gas (for prompt emission), which are essential ingredients determining the initial conditions of stellar and planetary formation. These new diagnostics will be key to the analysis of many JWST observations, since these processes are expected to be detected in a multitude of astrophysical objects with warm, irradiated regions (protostars, outflow, planetary nebulae, etc.)
Parikka, Anna. "Properties and evolution of dense structures in the interstellar medium." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112221/document.
Повний текст джерелаIn this thesis I present a study of two kinds of dense ISM structures: compact cold sources detected by Planck and dense condensations in a photodissociation region (PDR), namely the Orion Bar detected by ground-based and Herschel telescopes. Both kinds of structures are closely related to star formation. The cold sources are investigated as potentially gravitationally bound, prestellar, objects. The Orion Bar is a highly FUV-illuminated (G0=104) prototypical PDR, with several known protoplanetary disks, illuminated by the young Trapezium stars.First I introduce a paper published in A&A: The Physical state of selected cold clumps. In this paper we compared the Herschel dust continuum observations from the open time key program Galactic Cold Cores to ground based molecular line observations from the 20-m radio telescope of the Onsala Space Observatory in Sweden. The clumps were selected based on their brightness and low dust color temperatures (T=10-15 K). We calculated the virial and Bonnor-Ebert masses and compared them to the masses calculated from the observations. The results indicate that most of the observed cold clumps are not necessarily prestellar.Then I move on to the warm and dense condensations of the ISM. In my study of the Orion Bar, I use observations from PACS instrument on board Herschel from the open time program Unveiling the origin and excitation mechanisms of the warm CO, OH and CH+. I present maps of 110”x110” of the methylidyne cation (CH+ J=3-2), OH doublets at 84 µm, and high-J CO (J=19-18). This is the first time that these PDR tracers are presented in such a high spatial resolution and high signal-to-noise ratio. The CH+ and OH have critical densities (1010 cm-3) and upper level energy temperatures (250 K). In addition the endothermicity of the CH+ + H2 reaction (4300 K) that forms CH+ is comparable to the activation barrier of the O + H2 reaction (4800 K) forming OH. Given these similarities it is interesting to compare their emission. The spatial distribution of CH+ and OH shows the same clumpy structure of the Bar that has been seen in other observations. The morphology of CH+ and H2 confirms that CH+ formation and excitation is strongly dependent on the vibrationally excited H2, while OH is not. The peak in the OH 84 µm emission corresponds to a bright young object, identified as the externally illuminated protoplanetary disk 244-440.Finally, I study the high-J CO in the Orion Bar. I also introduce low- and mid-J CO observations of the area. The high-J CO morphology shows a clumpy structure in the Bar and we establish a link between the dense core of the clumps, traced in CS J=2-1 by Lee et al. (2013) and in H13CN by Lis and Schilke (2003). We also show that the high-J CO is mainly excited by the UV heating
Chrysostomou, Antonio. "Molecular hydrogen line emission from photodissociation regions." Thesis, University of Edinburgh, 1993. http://hdl.handle.net/1842/27794.
Повний текст джерелаKlumpe, Eric William. "Large-scale observations of H₂ emission in photodissociation regions /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Повний текст джерелаHosokawa, Takashi. "Dynamical expansion of ionization and photodissociation regions and triggered star formation." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/145081.
Повний текст джерела0048
新制・課程博士
博士(理学)
甲第11313号
理博第2871号
新制||理||1429(附属図書館)
22956
UT51-2005-D64
京都大学大学院理学研究科物理学・宇宙物理学専攻
(主査)教授 嶺重 慎, 教授 中村 卓史, 助教授 鶴 剛
学位規則第4条第1項該当
Книги з теми "Photodissociation Region"
Hollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаAntonella, Natta, and United States. National Aeronautics and Space Administration., eds. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаHollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаHollenbach, David. Time-dependent photodissociation regions. [Washington, DC: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаЧастини книг з теми "Photodissociation Region"
Wolfire, Mark G., and Michael J. Kaufman. "Photodissociation Region." In Encyclopedia of Astrobiology, 1868–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1197.
Повний текст джерелаWolfire, Mark G., and Michael J. Kaufman. "Photodissociation Region." In Encyclopedia of Astrobiology, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1197-8.
Повний текст джерелаWolfire, Mark G., and Michael J. Kaufman. "Photodissociation Region." In Encyclopedia of Astrobiology, 2294–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1197.
Повний текст джерелаRostas, F. "Photoabsorption and Photodissociation of CO in the 900–1200 Å Region." In Molecular Astrophysics, 704–5. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5432-8_46.
Повний текст джерелаMartín-Pintado, Jesús, and Asunción Fuente. "High-density filaments in the photodissociation region (PDR) associated with NGC 7023." In ESO Astrophysics Symposia, 214–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-540-69999-6_31.
Повний текст джерелаWolfire, Mark G., and Michael J. Kaufman. "Photodissociation Regions." In Encyclopedia of Astrobiology, 1236–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1197.
Повний текст джерелаSternberg, A. "Photodissociation Regions." In Springer Proceedings in Physics, 423–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-18902-9_75.
Повний текст джерелаTielens, A. G. G. M. "Photodissociation Regions and Planetary Nebulae." In Planetary Nebulae, 155–62. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2088-3_43.
Повний текст джерелаEscalante, V., and A. Góngora-T. "Photodissociation Regions in Planetary Nebulae." In Planetary Nebulae, 220. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2088-3_92.
Повний текст джерелаGraham, James R., T. M. Herbst, S. Beckwith, K. Matthews, G. Neugebauer, E. Serabyn, and B. T. Soifer. "Photodissociation Regions in Young PN." In Infrared Astronomy with Arrays, 69–72. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1070-9_15.
Повний текст джерелаТези доповідей конференцій з теми "Photodissociation Region"
Johnson, Alan E., Anne B. Myers, Sanford Ruhman, and Uri Banin. "Resonance Raman studies of I 3 – photodissociation in solution." In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.sfb4.
Повний текст джерелаJohnston, M. V., P. L. Ross, S. E. Van Bramer, and E. D. Leavitt. "Unimolecular Photochemistry Studied by Photodissociation-Photoionization Mass Spectrometry." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/laca.1994.tub.8.
Повний текст джерелаKanda, Kazuhiro, Koichiro Mitsuke, Kaoru Suzuki, and Toshio Ibuki. "Photodissociation of Butyl Cyanides and Butyl Isocyanides in the Vacuum UV Region." In SYNCHROTRON RADIATION INSTRUMENTATION: Ninth International Conference on Synchrotron Radiation Instrumentation. AIP, 2007. http://dx.doi.org/10.1063/1.2436423.
Повний текст джерелаBaranov, V. Yu, A. P. Dyadkin, Yu A. Kolesnikov, A. A. Kotov, V. P. Novikov, S. V. Pigulskii, A. S. Razumov, and A. I. Starodubtsev. "Secondary Chemical Reaction Effects Upon Photodissociation of UF6." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cwf62.
Повний текст джерелаMamilov, S. A., S. S. Esman, M. M. Asimov, and A. I. Gisbrecht. "Quantum yields of the photodissociation of HbO2in the visible and near IR spectral region." In Eighteenth International School on Quantum Electronics: Laser Physics and Applications, edited by Tanja Dreischuh, Sanka Gateva, and Alexandros Serafetinides. SPIE, 2015. http://dx.doi.org/10.1117/12.2175629.
Повний текст джерелаPomelnikov, I. A., D. S. Riashchikov, and N. E. Molevich. "On the possible origin of substructures observed in the Orion Bar PDR." In 51-st All-Russian with international participation student scientific conference "Physics of Space", 157–60. Ural University Press, 2024. http://dx.doi.org/10.15826/b978-5-7996-3848-1.25.
Повний текст джерелаXie, Xiaoliang, Robert Dunn, and John D. Simon. "Picosecond Polarization Studies of Protein Relaxation." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.mc21.
Повний текст джерелаBaldwin, K. G. H., S. T. Gibson, B. R. Lewis, J. H. Carver, and T. J. McIlrath. "Four Wave Difference Frequency Generation at 124nm for High Resolution Photoabsorption Studies of O2." In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.tua7.
Повний текст джерелаKiseleva, M. B., G. Y. Zelikina, M. V. Buturlimova, and K. G. Zolotarev. "Collision-induced absorption of mixture of oxygen with argon in the region of the Herzberg photodissociation continuum." In SPIE Proceedings, edited by Leonid N. Sinitsa and Semen N. Mikhailenko. SPIE, 2004. http://dx.doi.org/10.1117/12.545662.
Повний текст джерелаKorn, G., O. Kittelmann, J. Ringling, A. Nazarkin, and I. V. Hertel. "Generation of tunable femtosecond VUV pulses around 100nm by resonant and near resonant four-wave difference frequency mixing." In Applications of High Field and Short Wavelength Sources. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.sab5.
Повний текст джерела