Статті в журналах з теми "Photoconvertor"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photoconvertor.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Photoconvertor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kulish, M. R. "Photoconverter with luminescent concentrator. Matrix material." Semiconductor Physics, Quantum Electronics & Optoelectronics 22, no. 1 (March 30, 2019): 80–87. http://dx.doi.org/10.15407/spqeo22.01.080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gorbunov, N. A., and G. Flamant. "Analytical model of a plasma photoconverter." Technical Physics 49, no. 11 (November 2004): 1491–95. http://dx.doi.org/10.1134/1.1826196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pawlikowski, J. M. "Zn3P2 as infrared-to-ultraviolet photoconverter." Infrared Physics 28, no. 3 (May 1988): 177–82. http://dx.doi.org/10.1016/0020-0891(88)90007-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kurin, S. Yu, V. D. Doronin, A. A. Antipov, B. P. Papchenko, H. Helava, M. I. Voronova, A. S. Usikov, Yu N. Makarov, and K. V. Eidel’man. "PHOTOCONVERTERS IN SOLAR SPLITTING SYSTEM." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, no. 3 (March 15, 2015): 46. http://dx.doi.org/10.17073/1609-3577-2013-3-46-50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Лунин, Л. С., О. В. Девицкий, А. А. Кравцов та A. С. Пащенко. "Применение полимерных пленок с наночастицами серебра для улучшения спектральных характеристик фотоэлектрических преобразователей". Письма в журнал технической физики 46, № 2 (2020): 51. http://dx.doi.org/10.21883/pjtf.2020.02.48955.18077.

Повний текст джерела
Анотація:
A method of the production of polyvinyl butyral films with silver nanoparticles was developed. Properties of the resulting films as anti-reflecting coatings for silicon photovoltaic converters (photoconverters) were studied. The experiments were carried out on samples with and without Si3N4 coating. It was indicated that, at maximum concentration of silver nanoparticles (7 mmol/l), the increase in the external quantum efficiency in the spectral range from 500 to 1000 nm was more than 20 % for the samples without Si3N4 coating. In the case of the engineered functional coatings onto the photoconverters with Si3N4, the quantum efficiency increased on average by 10 % in the range from 400 to 1000 nm, and by 15–20 % in the range from 320 to 400 nm.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Лунин, Л. С., М. Л. Лунина, А. А. Кравцов, И. А. Сысоев, А. В. Блинов та А. С. Пащенко. "Влияние концентрации наночастиц серебра в функциональных покрытиях TiO-=SUB=-2-=/SUB=--Ag на характеристики фотопреобразователей GaInP/GaAs/Ge". Физика и техника полупроводников 52, № 8 (2018): 860. http://dx.doi.org/10.21883/ftp.2018.08.46210.8698.

Повний текст джерела
Анотація:
AbstractThe results of studying the effect of the silver nanoparticle concentration in TiO_2–Ag functional coatings on the characteristics of GaInP/GaAs/Ge photoconverters are discussed. The optimum concentration of silver nanoparticles in TiO_2 coatings, improving the functional characteristics of solar cells is determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abdukadyrov, M. A., A. S. Ganiev, I. O. Dzhumaniyazov, and R. A. Muminov. "Methods to improve output voltage and specific photoconverter electrical capacity." Applied Solar Energy 50, no. 2 (April 2014): 64–66. http://dx.doi.org/10.3103/s0003701x14020029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Arbusov, Yu D., V. M. Evdokimov, and O. V. Shepovalova. "Cascade photoconverter of concentrated radiations based on homogenous tunnel structures." Applied Solar Energy 51, no. 4 (October 2015): 235–44. http://dx.doi.org/10.3103/s0003701x15040064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Edalatkhah, Elham, Shahyar Saramad, and Shahab Sheibani. "Simulation of a Gas Electron Multiplier Detector for Hard X-Ray Imaging with a Novel Nano Converter." Advanced Materials Research 829 (November 2013): 227–30. http://dx.doi.org/10.4028/www.scientific.net/amr.829.227.

Повний текст джерела
Анотація:
One of the most marvelous applications of GEM is hard X-ray imaging. For increasing the detection efficiency, a photoconverter is usually required. In this work a novel nanostructure photo converter is proposed. Simulation results show that the combination of fast position sensitive gas detector with nanophoto converter can be improved the detection efficiency by one order of magnitude in comparison to the bulk one, which is more benefic for hard X-ray medical imaging applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Slipchenko, N. I., V. A. Pis’menetskii, A. V. Frolov, and N. N. Yanovskaya. "Manufacturing regression models of silicon single-crystal photoconverters." Radioelectronics and Communications Systems 51, no. 11 (November 2008): 602–7. http://dx.doi.org/10.3103/s0735272708110071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Khripko, S. L. "SURFACE RECOMBINATION MODELLING IN p-p+ TRANSITION OF THE SILICON PHOTOCONVERTER." Sensor Electronics and Microsystem Technologies 4, no. 2 (May 29, 2007): 24–27. http://dx.doi.org/10.18524/1815-7459.2007.2.113557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Nikonova, A. A., O. Y. Nebesniuk, and Z. A. Nikonova. "The Influence of Technological Factors on Photoconverters Electrophysical Characteristics." Journal of Nano- and Electronic Physics 12, no. 5 (2020): 05012–1. http://dx.doi.org/10.21272/jnep.12(5).05012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Кіріченко, М. В., В. Р. Копач, Р. В. Зайцев, Н. В. Куца, and К. Ю. Крикун. "MULTIJUNCTION SILICON PHOTOCONVERTERS AS SENSORS IN OPTICAL LOCATION SYSTEMS." Sensor Electronics and Microsystem Technologies 8, no. 2 (November 29, 2011): 45–49. http://dx.doi.org/10.18524/1815-7459.2011.2.116711.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Nikonova, Alina, Oksana Nebesniuk, and Zoia Nikonova. "THE INFLUENCE OF TECHNOLOGICAL FACTORS ON PHOTOCONVERTERS’ ELECTROPHYSICAL CHARACTERISTICS." Transactions of Kremenchuk Mykhailo Ostrohradskyi National University, no. 3(128) (June 11, 2021): 117–23. http://dx.doi.org/10.30929/1995-0519.2021.3.117-123.

Повний текст джерела
Анотація:
Purpose. Solar energy represents a sensible use alternative of thermal, chemical and nuclear current sources. Solar radiation can satisfy the growing needs of humanity with its energetic resources. Nowadays the actual problem is the development and production, of high-effective and economical photo converters (PC). Thus we need new technologies and materials. Semiconductor PC allows producing solar energy converting in electric with the help of homo-or heterojunctions. About 91 % of falling luminous flux energy is converted into electrical current through the charge carriers release out of semiconductor’s volume. The base of their quality raise is getting high-effective silicon nanostructures, their using will raise considerably PC efficiency. Due to their high efficiency, temperature stability, and low sensitivity to radiation exposure, heterostructure-based photoconverters are the most promising for the use. Methodology. In the article the technology of PC production on the base of silicon structures with heterojunctions ITO/n-Si/n+-Si is proposed. Getting of these layers with the pulverization method on the surface of silicon plates is based on the results of the heating temperature optimal values determination, deposition speed and ITO layer thickness, outflow speed of the gas stream from the spray nozzle, concentration of InCl3 to SnCl4 in spirit and other factors. Results. The represented conception of technology development ITO/n- Si/n+- Si junctions helped to define reasons that determine the character of ITO layer conductivity, depending on SnO2 content in it and their influence on the quality of photoelectrical converters on their base. Originality. The technological peculiarities of getting these layers with pulverization method, operational reliability and efficiency are revealed. Practical value. These tasks solution will lead to the modern technological processes modelling, to the raising of PC quality and, in the case of its consumer properties maintaining, to the use of modern supplies of silicon production and semiconductive materials. References 11, figures 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wéry, J., B. Dulieu, M. Baïtoul, F. Ragot, E. Faulques, J. Bullot, P. Deniard, and J. P. Buisson. "Caractérisation et dopage électrochimique d'un film de PPV photoconverti." Journal de Chimie Physique et de Physico-Chimie Biologique 95, no. 6 (June 1998): 1355–58. http://dx.doi.org/10.1051/jcp:1998282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Braun, Stephan A., and Peter A. Gerber. "A photoconverter gel-assisted blue light therapy for the treatment of rosacea." International Journal of Dermatology 56, no. 12 (September 7, 2017): 1489–90. http://dx.doi.org/10.1111/ijd.13724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Levina, S., V. Emelyanov, M. Mintairov, M. Nakhimovich, and M. Shvarts. "Multijunction solar cell spectral response determination at radiation damage study." Journal of Physics: Conference Series 2103, no. 1 (November 1, 2021): 012180. http://dx.doi.org/10.1088/1742-6596/2103/1/012180.

Повний текст джерела
Анотація:
Abstract This paper discusses multijunction solar cells with optically coupled p-n junctions under radiation exposure photosensitivity spectral response study. It is shown that if the measurement technique does not consider the luminescent coupling and does not track the optical coupling degradation, then instead of a decrease (which is a natural response of a photoconverter to radiation damage), an abnormal increase in the narrow-bandgap photoresponse (receiving luminescent radiation) subcell due to radiation damage can be observed. Accordingly, with an increase in the irradiation dose, an increase in the subcell photocurrent forming a “negative” degradation dependence of MJ SC being used in space applications is recorded.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Borshchov, V. N., N. S. Slipchenko, A. M. Listratenko, V. A. Antonova, I. T. Tymchuk, M. A. Protsenko, and Ya Ya Kostyshin. "INVESTIGATION INTO AND DEVELOPMENT OF HIGH-PERFORMANCE MONOCRYSTALLINE-SILICON PHOTOCONVERTERS." Telecommunications and Radio Engineering 71, no. 15 (2012): 1351–59. http://dx.doi.org/10.1615/telecomradeng.v71.i15.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Muminov, R. A., Z. T. Azamatov, N. A. Akbarova, V. I. Redkorechev, O. F. Tukfatullin, and I. A. Khusainov. "Effect of holographic coatings on the efficiency of silicon photoconverters." Applied Solar Energy 50, no. 3 (July 2014): 156–57. http://dx.doi.org/10.3103/s0003701x14030104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Mintairov, Sergey A., Valery V. Evstropov, Nikolay A. Kalyuzhnyy, Mikhail V. Maximov, Mikhail A. Mintairov, Alexey M. Nadtochiy, Nikolay V. Pavlov, Maxim Z. Shvarts, and Alexey E. Zhukov. "Electronic states in GaAs photoconverters with InGaAs quantum well-dots." Applied Physics Express 13, no. 1 (January 1, 2020): 015009. http://dx.doi.org/10.7567/1882-0786/ab6009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Prisniakov, V. F. "Generalized estimation of the mass and cost characteristics of photoconverters." Acta Astronautica 50, no. 5 (March 2002): 311–14. http://dx.doi.org/10.1016/s0094-5765(01)00166-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Salikhov, R. B., Yu N. Biglova, Yu M. Yumaguzin, T. R. Salikhov, M. S. Miftakhov, and A. G. Mustafin. "Solar-energy photoconverters based on thin films of organic materials." Technical Physics Letters 39, no. 10 (October 2013): 854–57. http://dx.doi.org/10.1134/s1063785013100106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pletneva, Nadya V., Sergei Pletnev, Alexey A. Pakhomov, Rita V. Chertkova, Vladimir I. Martynov, Liya Muslinkina, Zbigniew Dauter, and Vladimir Z. Pletnev. "Crystal structure of the fluorescent protein fromDendronephthyasp. in both green and photoconverted red forms." Acta Crystallographica Section D Structural Biology 72, no. 8 (July 13, 2016): 922–32. http://dx.doi.org/10.1107/s205979831601038x.

Повний текст джерела
Анотація:
The fluorescent protein fromDendronephthyasp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the Cα—N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double Cα=Cβbond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Å resolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Ragni, R., G. Leone, G. Rizzo, S. la Gatta, F. Milano, M. Trotta, and G. M. Farinola. "Synthesis of two cyanine dyes as potential artificial antennas for the bacterial photosynthetic Reaction Center." MRS Advances 4, no. 22 (2019): 1293–98. http://dx.doi.org/10.1557/adv.2019.68.

Повний текст джерела
Анотація:
ABSTRACT:Particular attention has been recently devoted to the development of biohybrid photoconverters based on the bacterial Reaction Center (RC) of Rhodobacter sphaeroides. This highly efficient photoenzyme has a conversion yield close to unit that makes it extremely appealing in the field of artificial photosynthesis. Isolated RCs suffer of a limited absorption cross-section in the visible spectral region that limits their applicative employment. Here we report the synthesis of two heptamethine cyanine molecules, whose photophysical properties make them potentially suitable as light harvesting antennas for the RC.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Schmued, L. C., and L. F. Snavely. "Photoconversion and electron microscopic localization of the fluorescent axon tracer fluoro-ruby (rhodamine-dextran-amine)." Journal of Histochemistry & Cytochemistry 41, no. 5 (May 1993): 777–82. http://dx.doi.org/10.1177/41.5.7682231.

Повний текст джерела
Анотація:
Fluoro-Ruby, the fluorescent tetramethylrhodamine-dextran-amine used to demonstrate anterograde axon transport, has been successfully photoconverted and subsequently localized by electron microscopy. The photoconversion was accomplished by irradiating the tissue with green light while bathing it in a solution containing DAB. The tissue could then be examined by brightfield microscopy or processed for conventional electron microscopy. Potential advantages of the technique include greater permanence and contrast at the light microscopic level and the ability to resolve synaptic connectivity at the electron microscopic level.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Feshchanka, A. A., та V. V. Khoroshko. "Surface-barrier structures based on solid solutions (In <sub>2 </sub>S <sub>3 </sub>) <sub>х </sub>•(AgIn <sub>5 </sub>S <sub>8 </sub>) <sub>1–х </sub>". Doklady of the National Academy of Sciences of Belarus 65, № 6 (26 грудня 2021): 764–68. http://dx.doi.org/10.29235/1561-8323-2021-65-6-764-768.

Повний текст джерела
Анотація:
Single crystals of solid solutions (In2S3)x⋅ (AgIn5S8)1–x were grown by the method of directional crystallization of the melt (Bridgman method). Studies of the elemental composition and crystal structure of these single crystals have been carried out. On the basis of solid solutions (In2S3)x⋅ (AgIn5S8)1–x, photosensitive structures have been created for the first time and the photoelectric properties of these structures have been determined. The possibility of using the created structures as broadband photoconverters of optical radiation is shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Komilov, A. "Improving the design of a photoconverter with a heat sink using mathematical simulation." Applied Solar Energy 47, no. 3 (September 2011): 229–33. http://dx.doi.org/10.3103/s0003701x11030108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Минтаиров, С. А., М. В. Нахимович, Р. А. Салий, М. З. Шварц та Н. А. Калюжный. "Увеличение коэффициента полезного действия фотопреобразователей лазерного излучения диапазона 520-540 nm на основе гетероструктур GaInP/GaAs". Письма в журнал технической физики 47, № 6 (2021): 29. http://dx.doi.org/10.21883/pjtf.2021.06.50755.18619.

Повний текст джерела
Анотація:
Photoconverters (PCs) of laser radiation (LR) for the range 520 - 540 nm based on GaInP/GaAs heterostructures have been investigated. It is shown that a decrease in the CuPt ordering in GaInP layers due to the introduction of antimony atoms leads to a short-wavelength shift of the absorption edge with a simultaneous increase in the open-circuit voltage. An increase in the total thickness of the photoactive layers of PC results in an increase in the spectral response. The performed optimization allows increasing the efficiency of the LR PC from 39.4% to 44.4%.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gorban, A. P., V. P. Kostylov, V. N. Borshchov, and A. M. Listratenko. "Prospects for Development of Silicon Photoconverters and Batteries for Space Use." Telecommunications and Radio Engineering 55, no. 9 (2001): 7. http://dx.doi.org/10.1615/telecomradeng.v55.i9.120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Nikitin, B. A., and V. A. Gusarov. "CALCULATION OF OPTIMUM PARAMETERS AND LIMIT CHARACTERISTICS OF CASCADE SILICON PHOTOCONVERTERS." Alternative Energy and Ecology (ISJAEE), no. 21 (April 5, 2016): 24–29. http://dx.doi.org/10.15518/isjaee.2015.21.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Guseynov, N. A. "Technology of manufacturing the reliable silicon photoconverters with long operation time." Semiconductor physics, quantum electronics and optoelectronics 8, no. 3 (October 31, 2005): 85–87. http://dx.doi.org/10.15407/spqeo8.03.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Bobrenko, Yu N., S. Yu Pavelets, A. M. Pavelets, T. V. Semikina, and N. V. Yaroshenko. "Surface-barrier photoconverters with graded-gap layers in the space-charge region." Semiconductors 49, no. 4 (April 2015): 519–23. http://dx.doi.org/10.1134/s1063782615040089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Emel’yanov, V. M., A. V. Bobyl’, E. I. Terukov, O. I. Chesta та M. Z. Shvarts. "Photoinduced degradation of α-Si:H/μc-Si:H tandem photoconvertes at elevated temperatures". Technical Physics Letters 39, № 10 (жовтень 2013): 906–9. http://dx.doi.org/10.1134/s1063785013100179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sevast’yanov, V. G., V. A. Kolesnikov, A. V. Desyatov, and A. V. Kolesnikov. "Conducting Coatings Based on Carbon Nanomaterials and SnO2 on Glass for Photoconverters." Glass and Ceramics 71, no. 11-12 (March 2015): 439–42. http://dx.doi.org/10.1007/s10717-015-9706-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Deyneko, Nataly, Mikhailo Divizinyuk, Оlexandr Levterov, Volodymyr Mirnenko, and Olga Shevchenko. "New approaches to the implementation of information and technical methods for the prevention of emergencies as a result of fire in conditions of damage to the power supply of emergency response systems." Legal, regulatory and metrological support of information security system in Ukraine, no. 2(38) (July 21, 2021): 103–10. http://dx.doi.org/10.20535/2074-9481.2(38).2019.235226.

Повний текст джерела
Анотація:
The paper proposes the development of new approaches to the creation of emergency response systems using non-traditional power supplies in the event of damage to traditional power supply systems.The main idea of the work is the formation of integrated approaches to alternative methods based on the phenomenon of acoustic emission (AE) using an unconventional power source based on film solar cells on flexible substrates. The creation of photoconverters based on thin films from a variety of materials and compounds is a promising direction in the development of solar energy. Unfortunately, the efficiency of these photoconverters is not yet high enough, but the cost of equipment for their creation, and hence the cost of instrument structures, is already quite acceptable.The investigated solar cells were obtained by the method of thermal vacuum evaporation using a UVN67 vacuum unit with modified internal equipment.After manufacturing, solar cells (SCs) were investigated under standard laboratory conditions adopted for the study of solar cells for ground-based use, i.e. in the AM 1.5 mode with a luminous flux power of 100 mW / cm2 and a temperature of 25 ° C. To study degradation processes in such solar cells after measuring the initial parameters The solar cells were placed in a sealed plastic box and kept for 4 years at a temperature of 15-25 ° СChecking the elements demonstrate high degradation resistance, which provides general requirements for the material and the conditions for its creation promising for use as unconventional sources of power supply for emergency response systems and ensuring the use of information and technical methods for preventing emergency situations as a result of fire in conditions of damage to the power supply of emergency response systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Карлина, Л. Б., А. С. Власов, М. З. Шварц, И. П. Сошников, И. П. Смирнова, Ф. Э. Комисаренко та А. В. Анкудинов. "Латеральные наноструктуры Ga(In)AsP как часть оптической системы фотопреобразователей на основе GaAs". Физика и техника полупроводников 53, № 12 (2019): 1714. http://dx.doi.org/10.21883/ftp.2019.12.48632.9218.

Повний текст джерела
Анотація:
The possibility of lateral Ga (In) AsP nanostructures grown by a catalytic method in a quasi-closed volume from phosphorus and indium vapors on the GaAs (100) surface as an antireflection coating for photovoltaic devices is considered for the first time. It is shown that at fixed growth temperature, it is possible to control the surface morphology by changing the growth time. The surface morphology was investigated by scanning electron and atomic force microscopy. The dependence of surface reflection coefficient in the range of 400-800 nm on the surface structure is shown. The use of such coating in GaAs-based photocells demonstrated a significant increase in the external quantum yield of photoconverters.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wróbel, Danuta, Andrzej Boguta, and Rodica M. Ion. "Spectroscopic and photoelectric studies of phthalocyanines in polyvinyl alcohol for application in solar energy conversion." International Journal of Photoenergy 2, no. 2 (2000): 87–96. http://dx.doi.org/10.1155/s1110662x0000012x.

Повний текст джерела
Анотація:
Phthalocyanines are synthetic dyes which are shown to be good photoconverters which can be applied in a photoelectrochemical cell constructed of semiconducting and metallic electrodes. By means of spectroscopic investigation (absorption,fluorescence and photoacoustics) we have followed spectral properties of phthalocyanines complexed with metals dissolved in polyvinyl alcohol solution in order to determine the pathways of deactivation of their excited states. Spectroscopic investigations were accompanied with photovoltaic/photocurrent and current-voltage characteristics of the photoelectrochemical cell with dyes. It has been shown that there is a correlation between dye fluorescence feature and dye ability to electric photoconversion. The comparison of new data for metallic phthalocyanines with those obtained for porphyrins is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Abdukadyrov, M. A., I. O. Dzhumaniyazov, and R. A. Muminov. "The influence of concentrated solar radiation on the properties of Ga0.7In0.3P/GaP photoconverters." Applied Solar Energy 47, no. 2 (June 2011): 152–54. http://dx.doi.org/10.3103/s0003701x11020022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Malatesta, M., C. Zancanaro, M. Costanzo, B. Cisterna, and C. Pellicciari. "Simultaneous ultrastructural analysis of fluorochrome-photoconverted diaminobenzidine and gold immunolabeling in cultured cells." European Journal of Histochemistry 57, no. 3 (September 16, 2013): 26. http://dx.doi.org/10.4081/ejh.2013.e26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Khvostikov, V. P., A. S. Vlasov, S. V. Sorokina, N. S. Potapovich, N. Kh Timoshina, M. Z. Shvarts та V. M. Andreev. "High-efficiency (η = 39.6%, AM 1.5D) cascade of photoconverters in solar splitting systems". Semiconductors 45, № 6 (червень 2011): 792–97. http://dx.doi.org/10.1134/s106378261106011x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Titov, A. S., A. S. Abramov, D. A. Andronikov, K. V. Emtsev, A. F. Semenov, E. E. Terukova та S. A. Yakovlev. "Investigation of light-induced degradation of tandem photoconverters on a-Si:H/μc-Si:H". Journal of Physics: Conference Series 769 (листопад 2016): 012038. http://dx.doi.org/10.1088/1742-6596/769/1/012038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Khvostikov, V. P., L. S. Lunin, V. I. Ratushnyi, É. V. Oliva, M. Z. Shvarts, and O. A. Khvostikova. "Photoconverters based on GaAs/Ge heterostructures grown by low-temperature liquid phase epitaxy." Technical Physics Letters 29, no. 7 (July 2003): 592–93. http://dx.doi.org/10.1134/1.1598559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Arbuzov, Yu D., V. M. Evdokimov, and O. V. Shepovalova. "The limiting characteristics of a cascade photoconverter of a new type based on a homogeneous semiconductor." Applied Solar Energy 47, no. 4 (December 2011): 263–70. http://dx.doi.org/10.3103/s0003701x11040037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Gorev, V. N., V. Yu Prokopiev, Yu M. Prokopiev, L. D. Sinitsina, and A. A. Sidorchuk. "Calculating electric power generated by 3U CubeSat’s photoconverters depending the orbit and orientation parameters." IOP Conference Series: Materials Science and Engineering 537 (June 17, 2019): 022079. http://dx.doi.org/10.1088/1757-899x/537/2/022079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Rybalchenko, D. V., S. A. Mintairov, M. Z. Shvarts, and N. A. Kalyuzhnyy. "Optimization of structural and growth parameters of metamorphic InGaAs/GaAs photoconverters grown by MOCVD." Journal of Physics: Conference Series 741 (August 2016): 012086. http://dx.doi.org/10.1088/1742-6596/741/1/012086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gansmuller, A., F. Kruger, M. Gumpel, and A. Baron-Van Evercooren. "Photoconverted carbocyanine DiI allows direct visualization of transplanted glial cells at the ultrastructural level." Neuroscience Letters 147, no. 2 (December 1992): 151–54. http://dx.doi.org/10.1016/0304-3940(92)90582-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Arbuzov, Yuri D., Vladimir M. Evdokimov, and Olga V. Shepovalova. "New Photoelectric System on the Basis of Cascade Homogeneous Photoconverters and Solar Radiation Concentrators." Energy Procedia 74 (August 2015): 1533–42. http://dx.doi.org/10.1016/j.egypro.2015.07.715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Aumonier, Sylvain, Gianluca Santoni, Guillaume Gotthard, David von Stetten, Gordon A. Leonard, and Antoine Royant. "Millisecond time-resolved serial oscillation crystallography of a blue-light photoreceptor at a synchrotron." IUCrJ 7, no. 4 (June 24, 2020): 728–36. http://dx.doi.org/10.1107/s2052252520007411.

Повний текст джерела
Анотація:
The recent development of serial crystallography has popularized time-resolved crystallography as a technique to determine the structure of protein-reaction intermediate states. However, most approaches rely on the availability of thousands to millions of microcrystals. A method is reported here, using monochromatic synchrotron radiation, for the room-temperature collection, processing and merging of X-ray oscillation diffraction data from <100 samples in order to observe the build up of a photoreaction intermediate species. Using this method, we monitored with a time resolution of 63 ms how the population of a blue-light photoreceptor domain in a crystal progressively photoconverts from the dark to the light state. The series of resulting snapshots allows us to visualize in detail the gradual rearrangement of both the protein and chromophore during this process.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Marchegiani, A., A. Spaterna, A. Palumbo Piccionello, M. Meligrana, A. Fruganti, and AM Tambella. "Fluorescence biomodulation in the management of acute traumatic wounds in two aged dogs." Veterinární Medicína 65, No. 5 (May 27, 2020): 215–20. http://dx.doi.org/10.17221/131/2019-vetmed.

Повний текст джерела
Анотація:
Traumatic wounds represent a fairly common reason for the admission of dogs to a veterinary practice. In elderly patients, the management of wound healing can be challenging due to both the concurrent diseases and impaired physiological states, potentially resulting in delayed healing and chronic or non-healing wounds. The aim of this article is to describe an innovative therapy based on photobiomodulation (PBM) for the management of acute traumatic wounds with significant tissue loss in aged dogs. Two mixed breed dogs were presented with similar wounds in the cervical region and were managed with a fluorescence biomodulation system, a form of PBM, which consists of a photoconverter topical gel that is illuminated with a blue light-emitting diode lamp, applied on a weekly basis. Wound closure was achieved after 9 and 16 weekly treatments, respectively, with a complete re-epithelisation of the skin. This fluorescence-generating system is an innovative, non-invasive, wound care therapy and these results indicate it could be successfully applied in the management of acute traumatic wounds with tissue loss in dogs.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Beard, Matthew C., Justin C. Johnson, Joseph M. Luther, and Arthur J. Nozik. "Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2044 (June 28, 2015): 20140412. http://dx.doi.org/10.1098/rsta.2014.0412.

Повний текст джерела
Анотація:
Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії