Статті в журналах з теми "Photobiocatalysis"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photobiocatalysis.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Photobiocatalysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Harrison, Wesley, Xiaoqiang Huang, and Huimin Zhao. "Photobiocatalysis for Abiological Transformations." Accounts of Chemical Research 55, no. 8 (March 30, 2022): 1087–96. http://dx.doi.org/10.1021/acs.accounts.1c00719.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gonçalves, Leticia C. P., Hamid R. Mansouri, Shadi PourMehdi, Mohamed Abdellah, Bruna S. Fadiga, Erick L. Bastos, Jacinto Sá, Marko D. Mihovilovic, and Florian Rudroff. "Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions." Catalysis Science & Technology 9, no. 10 (2019): 2682–88. http://dx.doi.org/10.1039/c9cy00496c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gonçalves, Leticia C. P., Hamid R. Mansouri, Erick L. Bastos, Mohamed Abdellah, Bruna S. Fadiga, Jacinto Sá, Florian Rudroff, and Marko D. Mihovilovic. "Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation." Catalysis Science & Technology 9, no. 6 (2019): 1365–71. http://dx.doi.org/10.1039/c8cy02524j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, Dunming, and Ling Hua. "Photobiocatalysis enables asymmetric Csp3–Csp3 cross-electrophile coupling." Chem Catalysis 2, no. 10 (October 2022): 2429–31. http://dx.doi.org/10.1016/j.checat.2022.09.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maciá-Agulló, Juan Antonio, Avelino Corma, and Hermenegildo Garcia. "Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes." Chemistry - A European Journal 21, no. 31 (May 26, 2015): 10940–59. http://dx.doi.org/10.1002/chem.201406437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blossom, Benedikt M., David A. Russo, Raushan K. Singh, Bart van Oort, Malene B. Keller, Tor I. Simonsen, Alixander Perzon, et al. "Photobiocatalysis by a Lytic Polysaccharide Monooxygenase Using Intermittent Illumination." ACS Sustainable Chemistry & Engineering 8, no. 25 (May 21, 2020): 9301–10. http://dx.doi.org/10.1021/acssuschemeng.0c00702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MARUTHAMUTHU, P., S. MUTHU, K. GURUNATHAN, M. ASHOKKUMAR, and M. SASTRI. "Photobiocatalysis: hydrogen evolution using a semiconductor coupled with photosynthetic bacteria." International Journal of Hydrogen Energy 17, no. 11 (November 1992): 863–66. http://dx.doi.org/10.1016/0360-3199(92)90036-v.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Macia-Agullo, Juan Antonio, Avelino Corma, and Hermenegildo Garcia. "ChemInform Abstract: Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes." ChemInform 46, no. 38 (September 2015): no. http://dx.doi.org/10.1002/chin.201538283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Zijuan, Dong Gao, Hao Geng, and Chengfen Xing. "Enhancing hydrogen production by photobiocatalysis through Rhodopseudomonas palustris coupled with conjugated polymers." Journal of Materials Chemistry A 9, no. 35 (2021): 19788–95. http://dx.doi.org/10.1039/d1ta01019k.

Повний текст джерела
Анотація:
Herein, a feasible and simple bio-hybrid complex based on water-soluble conjugated polymers and Rhodopseudomonas palustris (R. palustris), one kind of photosynthetic bacteria, was constructed for enhancing photocatalytic hydrogen production.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Sahng Ha, Da Som Choi, Su Keun Kuk, and Chan Beum Park. "Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons." Angewandte Chemie International Edition 57, no. 27 (July 2, 2018): 7958–85. http://dx.doi.org/10.1002/anie.201710070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wen, Donghui, Guozheng Li, Rui Xing, Seongjun Park, and Bruce E. Rittmann. "2,4-DNT removal in intimately coupled photobiocatalysis: the roles of adsorption, photolysis, photocatalysis, and biotransformation." Applied Microbiology and Biotechnology 95, no. 1 (November 19, 2011): 263–72. http://dx.doi.org/10.1007/s00253-011-3692-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hobisch, Markus, Jelena Spasic, Lenny Malihan‐Yap, Giovanni Davide Barone, Kathrin Castiglione, Paula Tamagnini, Selin Kara, and Robert Kourist. "Internal Illumination to Overcome the Cell Density Limitation in the Scale‐up of Whole‐Cell Photobiocatalysis." ChemSusChem 14, no. 15 (July 6, 2021): 3219–25. http://dx.doi.org/10.1002/cssc.202100832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Shumyantseva, Victoria V., Polina I. Koroleva, Tatiana V. Bulko, and Lyubov E. Agafonova. "Alternative Electron Sources for Cytochrome P450s Catalytic Cycle: Biosensing and Biosynthetic Application." Processes 11, no. 6 (June 13, 2023): 1801. http://dx.doi.org/10.3390/pr11061801.

Повний текст джерела
Анотація:
The functional significance of cytochrome P450s (CYP) enzymes is their ability to catalyze the biotransformation of xenobiotics and endogenous compounds. P450 enzymes catalyze regio- and stereoselective oxidations of C-C and C-H bonds in the presence of oxygen as a cosubstrate. Initiation of cytochrome P450 catalytic cycle needs an electron donor (NADPH, NADH cofactor) in nature or alternative artificial electron donors such as electrodes, peroxides, photo reduction, and construction of enzymatic “galvanic couple”. In our review paper, we described alternative “handmade” electron sources to support cytochrome P450 catalysis. Physical-chemical methods in relation to biomolecules are possible to convert from laboratory to industry and construct P450-bioreactors for practical application. We analyzed electrochemical reactions using modified electrodes as electron donors. Electrode/P450 systems are the most analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Comparative analysis of flat 2D and nanopore 3D electrode modifiers is discussed. Solar-powered photobiocatalysis for CYP systems with photocurrents providing electrons to heme iron of CYP and photoelectrochemical biosensors are also promising alternative light-driven systems. Several examples of artificial “galvanic element” construction using Zn as an electron source for the reduction of Fe3+ ion of heme demonstrated potential application. The characteristics, performance, and potential applications of P450 electrochemical systems are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Garcia-Borràs, Marc. "Photobiocatalysts tame nitrogen-centred radicals." Nature Catalysis 6, no. 8 (August 23, 2023): 654–56. http://dx.doi.org/10.1038/s41929-023-01004-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cheng, Feng, Heng Li, Dong-Yang Wu, Ju-Mou Li, Yi Fan, Ya-Ping Xue, and Yu-Guo Zheng. "Light-driven deracemization of phosphinothricin by engineered fatty acid photodecarboxylase on a gram scale." Green Chemistry 22, no. 20 (2020): 6815–18. http://dx.doi.org/10.1039/d0gc02696d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Churakova, Ekaterina, Martin Kluge, René Ullrich, Isabel Arends, Martin Hofrichter, and Frank Hollmann. "Specific Photobiocatalytic Oxyfunctionalization Reactions." Angewandte Chemie International Edition 50, no. 45 (September 16, 2011): 10716–19. http://dx.doi.org/10.1002/anie.201105308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Churakova, Ekaterina, Martin Kluge, René Ullrich, Isabel Arends, Martin Hofrichter, and Frank Hollmann. "Specific Photobiocatalytic Oxyfunctionalization Reactions." Angewandte Chemie 123, no. 45 (September 16, 2011): 10904–7. http://dx.doi.org/10.1002/ange.201105308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Le, Thien-Kim, Jong Hyun Park, Da Som Choi, Ga-Young Lee, Woo Sung Choi, Ki Jun Jeong, Chan Beum Park, and Chul-Ho Yun. "Solar-driven biocatalytic C-hydroxylation through direct transfer of photoinduced electrons." Green Chemistry 21, no. 3 (2019): 515–25. http://dx.doi.org/10.1039/c8gc02398k.

Повний текст джерела
Анотація:
Photoactivation of flavins is coupled productively with the direct transfer of photoinduced electrons to P450s to achieve photobiocatalytic C-hydroxylation reactions in the absence of nicotinamide cofactors.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kim, Jinhyun, Yang Woo Lee, Eun-Gyu Choi, Passarut Boonmongkolras, Byoung Wook Jeon, Hojin Lee, Seung Tae Kim, et al. "Robust FeOOH/BiVO4/Cu(In, Ga)Se2 tandem structure for solar-powered biocatalytic CO2 reduction." Journal of Materials Chemistry A 8, no. 17 (2020): 8496–502. http://dx.doi.org/10.1039/d0ta02069a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zachos, Ioannis, Sarah Katharina Gaßmeyer, Daniel Bauer, Volker Sieber, Frank Hollmann, and Robert Kourist. "Photobiocatalytic decarboxylation for olefin synthesis." Chemical Communications 51, no. 10 (2015): 1918–21. http://dx.doi.org/10.1039/c4cc07276f.

Повний текст джерела
Анотація:
The oxidative decarboxylation of fatty acids to terminal alkenes was accomplished with high selectivity by combining a fatty acid decarboxylase OleTJE with the light-catalyzed generation of the cosubstrate hydrogen peroxide, resulting in a simple and efficient system for the light-driven cleavage of C–C bonds.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Singh, Praveen P., Surabhi Sinha, Pankaj Nainwal, Pravin K. Singh, and Vishal Srivastava. "Novel applications of photobiocatalysts in chemical transformations." RSC Advances 14, no. 4 (2024): 2590–601. http://dx.doi.org/10.1039/d3ra07371h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Hobisch, Markus, Morten Martinus Cornelis Harald Schie, Jinhyun Kim, Kasper Røjkjær Andersen, Miguel Alcalde, Robert Kourist, Chan Beum Park, Frank Hollmann, and Selin Kara. "Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane." ChemCatChem 12, no. 16 (June 12, 2020): 4009–13. http://dx.doi.org/10.1002/cctc.202000512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Yamanaka, Rio, Kaoru Nakamura, Masahiko Murakami, and Akio Murakami. "Selective synthesis of cinnamyl alcohol by cyanobacterial photobiocatalysts." Tetrahedron Letters 56, no. 9 (February 2015): 1089–91. http://dx.doi.org/10.1016/j.tetlet.2015.01.092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Nadtochenko, Victor, Vitaliy Nikandrov, Yanina Borisova, Galina Nizova, Arseny Aybush, Andrei Kostrov, Igor Shagadeev, et al. "TiO2 Supported Photobiocatalytic Systems." Recent Patents on Catalysis 2, no. 2 (May 31, 2014): 91–100. http://dx.doi.org/10.2174/2211548x03666140129000100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Rauch, M., S. Schmidt, I. W. C. E. Arends, K. Oppelt, S. Kara, and F. Hollmann. "Photobiocatalytic alcohol oxidation using LED light sources." Green Chemistry 19, no. 2 (2017): 376–79. http://dx.doi.org/10.1039/c6gc02008a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Yoon, Jaekyung, and Hyunku Joo. "Photobiocatalytic hydrogen production in a photoelectrochemical cell." Korean Journal of Chemical Engineering 24, no. 5 (September 2007): 742–48. http://dx.doi.org/10.1007/s11814-007-0036-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Seel, Catharina Julia, Antonín Králík, Melanie Hacker, Annika Frank, Burkhard König, and Tanja Gulder. "Atom-Economic Electron Donors for Photobiocatalytic Halogenations." ChemCatChem 10, no. 18 (July 25, 2018): 3960–63. http://dx.doi.org/10.1002/cctc.201800886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wang, Tian-Ci, Binh Khanh Mai, Zheng Zhang, Zhiyu Bo, Jiedong Li, Peng Liu, and Yang Yang. "Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling." Nature 629, no. 8010 (May 1, 2024): 98–104. http://dx.doi.org/10.1038/s41586-024-07284-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Yuanying, Bo Yuan, Zhoutong Sun, and Wuyuan Zhang. "C–H bond functionalization reactions enabled by photobiocatalytic cascades." Green Synthesis and Catalysis 2, no. 3 (August 2021): 267–74. http://dx.doi.org/10.1016/j.gresc.2021.06.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Krasnovsky, A. A., and V. V. Nikandrov. "The photobiocatalytic system: Inorganic semiconductors coupled to bacterial cells." FEBS Letters 219, no. 1 (July 13, 1987): 93–96. http://dx.doi.org/10.1016/0014-5793(87)81197-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong, and Ning Li. "Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations." ChemSusChem 14, no. 7 (February 16, 2021): 1687–91. http://dx.doi.org/10.1002/cssc.202100184.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong, and Ning Li. "Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations." ChemSusChem 14, no. 7 (March 25, 2021): 1615. http://dx.doi.org/10.1002/cssc.202100471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Kosem, Nuttavut, Yuki Honda, Motonori Watanabe, Atsushi Takagaki, Zahra Pourmand Tehrani, Fatima Haydous, Thomas Lippert, and Tatsumi Ishihara. "Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant Escherichia coli." Catalysis Science & Technology 10, no. 12 (2020): 4042–52. http://dx.doi.org/10.1039/d0cy00128g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hobisch, Markus, Morten Martinus Cornelis Harald Schie, Jinhyun Kim, Kasper Røjkjær Andersen, Miguel Alcalde, Robert Kourist, Chan Beum Park, Frank Hollmann, and Selin Kara. "Front Cover: Solvent‐Free Photobiocatalytic Hydroxylation of Cyclohexane (ChemCatChem 16/2020)." ChemCatChem 12, no. 16 (August 20, 2020): 3956. http://dx.doi.org/10.1002/cctc.202001192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Duong, Hong T., Yinqi Wu, Alexander Sutor, Bastien O. Burek, Frank Hollmann, and Jonathan Z. Bloh. "Intensification of Photobiocatalytic Decarboxylation of Fatty Acids for the Production of Biodiesel." ChemSusChem 14, no. 4 (February 2, 2021): 1053–56. http://dx.doi.org/10.1002/cssc.202002957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Yajie, Xiaoqiang Huang, Jingshu Hui, Lam Tung Vo, and Huimin Zhao. "Stereoconvergent Reduction of Activated Alkenes by a Nicotinamide Free Synergistic Photobiocatalytic System." ACS Catalysis 10, no. 16 (July 24, 2020): 9431–37. http://dx.doi.org/10.1021/acscatal.0c02489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Gurunathan, K. "Photobiocatalytic production of hydrogen using sensitized TiO2–MV2+ system coupled Rhodopseudomonas capsulata." Journal of Molecular Catalysis A: Chemical 156, no. 1-2 (May 2000): 59–67. http://dx.doi.org/10.1016/s1381-1169(99)00417-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Długosz, Olga, and Marcin Banach. "Sunlight photobiocatalytic performance of LDH-Me2O nanocomposites synthesised in deep eutectic solvent (DES)." Solid State Sciences 149 (March 2024): 107456. http://dx.doi.org/10.1016/j.solidstatesciences.2024.107456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Dhanabalan, K., and K. Gurunathan. "Photobiocatalytic Hydrogen Production by Using Cyanobacteria Coupled with Nanoparticles of CdS and CdS/ZnS." Advanced Science, Engineering and Medicine 7, no. 8 (August 1, 2015): 667–71. http://dx.doi.org/10.1166/asem.2015.1749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Liao, Huan‐Xin, Hao‐Yu Jia, Jian‐Rong Dai, Min‐Hua Zong, and Ning Li. "Front Cover: Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations (7/2021)." ChemSusChem 14, no. 7 (March 31, 2021): 1612. http://dx.doi.org/10.1002/cssc.202100472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Reeve, Holly A., Philip A. Ash, HyunSeo Park, Ailun Huang, Michalis Posidias, Chloe Tomlinson, Oliver Lenz, and Kylie A. Vincent. "Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology." Biochemical Journal 474, no. 2 (January 6, 2017): 215–30. http://dx.doi.org/10.1042/bcj20160513.

Повний текст джерела
Анотація:
The present study considers the ways in which redox enzyme modules are coupled in living cells for linking reductive and oxidative half-reactions, and then reviews examples in which this concept can be exploited technologically in applications of coupled enzyme pairs. We discuss many examples in which enzymes are interfaced with electronically conductive particles to build up heterogeneous catalytic systems in an approach which could be termed synthetic biochemistry. We focus on reactions involving the H+/H2 redox couple catalysed by NiFe hydrogenase moieties in conjunction with other biocatalysed reactions to assemble systems directed towards synthesis of specialised chemicals, chemical building blocks or bio-derived fuel molecules. We review our work in which this approach is applied in designing enzyme-modified particles for H2-driven recycling of the nicotinamide cofactor NADH to provide a clean cofactor source for applications of NADH-dependent enzymes in chemical synthesis, presenting a combination of published and new work on these systems. We also consider related photobiocatalytic approaches for light-driven production of chemicals or H2 as a fuel. We emphasise the techniques available for understanding detailed catalytic properties of the enzymes responsible for individual redox half-reactions, and the importance of a fundamental understanding of the enzyme characteristics in enabling effective applications of redox biocatalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lan, Fang, Qin Wang, Hui Chen, Yi Chen, Yuanyuan Zhang, Bowen Huang, Hongbo Liu, Jian Liu, and Run Li. "Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction." ACS Catalysis 10, no. 21 (October 22, 2020): 12976–86. http://dx.doi.org/10.1021/acscatal.0c03652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Tanaka, Shusei, Hideo Kojima, Satomi Takeda, Rio Yamanaka та Tetsuo Takemura. "Asymmetric visible-light photobiocatalytic reduction of β-keto esters utilizing the cofactor recycling system in Synechocystis sp. PCC 6803". Tetrahedron Letters 61, № 24 (червень 2020): 151973. http://dx.doi.org/10.1016/j.tetlet.2020.151973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Erdem, Elif, Lenny Malihan-Yap, Leen Assil-Companioni, Hanna Grimm, Giovanni Davide Barone, Carole Serveau-Avesque, Agnes Amouric, et al. "Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer–Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria." ACS Catalysis 12, no. 1 (December 10, 2021): 66–72. http://dx.doi.org/10.1021/acscatal.1c04555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Broumidis, Emmanouil, and Francesca Paradisi. "Engineering a Dual‐Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry." Angewandte Chemie International Edition, March 20, 2024. http://dx.doi.org/10.1002/anie.202401912.

Повний текст джерела
Анотація:
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits such as integrated processes, reusability, easier product separation, and potential for scalability can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this work we employ a photosensitizer‐containing porous emulsion‐templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material which enables the bromination of four aromatic substrates, including Rutin – a natural occurring flavonol – under blue light (456 nm) irradiation and continuous flow conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Broumidis, Emmanouil, and Francesca Paradisi. "Engineering a Dual‐Functionalized PolyHIPE Resin for Photobiocatalytic Flow Chemistry." Angewandte Chemie, March 20, 2024. http://dx.doi.org/10.1002/ange.202401912.

Повний текст джерела
Анотація:
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits such as integrated processes, reusability, easier product separation, and potential for scalability can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this work we employ a photosensitizer‐containing porous emulsion‐templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO). We demonstrate the versatility of this heterogeneous photobiocatalytic material which enables the bromination of four aromatic substrates, including Rutin – a natural occurring flavonol – under blue light (456 nm) irradiation and continuous flow conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chanquia, Santiago Nahuel, Alessia Valotta, Heidrun Gruber-Woelfler, and Selin Kara. "Photobiocatalysis in Continuous Flow." Frontiers in Catalysis 1 (January 10, 2022). http://dx.doi.org/10.3389/fctls.2021.816538.

Повний текст джерела
Анотація:
In the last years, there were two fields that experienced an astonishing growth within the biocatalysis community: photobiocatalysis and applications of flow technology to catalytic processes. Therefore, it is not a surprise that the combination of these two research areas also gave place to several recent interesting articles. However, to the best of our knowledge, no review article covering these advances was published so far. Within this review, we present recent and very recent developments in the field of photobiocatalysis in continuous flow, we discuss several different practical applications and features of state-of-the art photobioreactors and lastly, we present some future perspectives in the field.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Zhou, Jianle, Frank Hollmann, Qi He, Wen Chen, Yunjian Ma, and Yonghua Wang. "Continuous Fatty Acid Decarboxylation using an Immobilized Photodecarboxylase in a Membrane Reactor." ChemSusChem, November 20, 2023. http://dx.doi.org/10.1002/cssc.202301326.

Повний текст джерела
Анотація:
The realm of photobiocatalytic alkane biofuel synthesis has burgeoned recently; however, the current dearth of well‐established and scalable production methodologies in this domain remains conspicuous. In this investigation, we engineered a modified form of membrane‐associated fatty acid photodecarboxylase sourced from Micractinium conductrix (McFAP). This endeavor resulted in creating an innovative assembled photoenzyme‐membrane ( protein load 5 mg cm‐2), subsequently integrated into an illuminated flow apparatus to achieve uninterrupted generation of alkane biofuels. Through batch experiments, the photoenzyme‐membrane exhibited its prowess in converting fatty acids spanning varying chain lengths (C6‐C18). Following this, the membrane‐flow mesoscale reactor attained a maximum space‐time yield of 1.2 mmol L‐1 h‐1 C8) and demonstrated commendable catalytic proficiency across eight consecutive cycles, culminating in a cumulative runtime of eight hours. These findings collectively underscored the photoenzyme‐membrane's capability to facilitate the biotransformation of diverse fatty acids, furnishing valuable benchmarks for the conversion of biomass via photobiocatalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Dodge, N., D. A. Russo, B. M. Blossom, R. K. Singh, B. van Oort, R. Croce, M. J. Bjerrum, and P. E. Jensen. "Water-soluble chlorophyll-binding proteins from Brassica oleracea allow for stable photobiocatalytic oxidation of cellulose by a lytic polysaccharide monooxygenase." Biotechnology for Biofuels 13, no. 1 (November 30, 2020). http://dx.doi.org/10.1186/s13068-020-01832-7.

Повний текст джерела
Анотація:
Abstract Background Lytic polysaccharide monooxygenases (LPMOs) are indispensable redox enzymes used in industry for the saccharification of plant biomass. LPMO-driven cellulose oxidation can be enhanced considerably through photobiocatalysis using chlorophyll derivatives and light. Water soluble chlorophyll binding proteins (WSCPs) make it is possible to stabilize and solubilize chlorophyll in aqueous solution, allowing for in vitro studies on photostability and ROS production. Here we aim to apply WSCP–Chl a as a photosensitizing complex for photobiocatalysis with the LPMO, TtAA9. Results We have in this study demonstrated how WSCP reconstituted with chlorophyll a (WSCP–Chl a) can create a stable photosensitizing complex which produces controlled amounts of H2O2 in the presence of ascorbic acid and light. WSCP–Chl a is highly reactive and allows for tightly controlled formation of H2O2 by regulating light intensity. TtAA9 together with WSCP–Chl a shows increased cellulose oxidation under low light conditions, and the WSCP–Chl a complex remains stable after 24 h of light exposure. Additionally, the WSCP–Chl a complex demonstrates stability over a range of temperatures and pH conditions relevant for enzyme activity in industrial settings. Conclusion With WSCP–Chl a as the photosensitizer, the need to replenish Chl is greatly reduced, enhancing the catalytic lifetime of light-driven LPMOs and increasing the efficiency of cellulose depolymerization. WSCP–Chl a allows for stable photobiocatalysis providing a sustainable solution for biomass processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wang, Jian-Peng, Min-Hua Zong, and Ning Li. "Photobiocatalysis: A promising tool for sustainable synthesis." Chem Catalysis, February 2024, 100933. http://dx.doi.org/10.1016/j.checat.2024.100933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії