Статті в журналах з теми "Photo-Dynamics"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Photo-Dynamics.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Photo-Dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

KRASILNIKOV, MIKHAIL. "BEAM DYNAMICS OPTIMIZATION FOR THE XFEL PHOTO INJECTOR." International Journal of Modern Physics A 24, no. 05 (February 20, 2009): 879–92. http://dx.doi.org/10.1142/s0217751x0904436x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The main challenge for the European XFEL photo injector is the production of 1 nC electron beams with a normalized transverse emittance of 0.9 mm mrad. The photo injector setup consists of a 1.5-cell L-band rf gun cavity supplied with solenoids for beam focusing and emittance compensation and the first accelerating section with 8 TESLA superconducting cavities. The first 4 cavities are used as a booster to provide by proper choice of its position, gradient and phase matching conditions for the emittance conservation. For optimization of the beam dynamics in the photo injector, a staged algorithm, based on ASTRA simulations, has been developed. The first stage considers the emission of electrons from a photo cathode. The cathode laser energy and its transverse parameters are adjusted to produce a bunch charge of 1 nC in presence of space charge forces (including image charge at the cathode) and Schottky-like effects. The second stage contains rf gun cavity and solenoid optimization. The booster position, gradient and initial phase are optimized at the third stage yielding the minimum emittance at the photo injector exit. Results of the XFEL photo injector optimization will be presented. Besides simulations experimental studies towards XFEL photo injector are carried out. The photo injector test facility at DESY in Zeuthen (PITZ) develops photo injectors for FELs, including FLASH and the European XFEL. A thorough comparison of measured data with results of beam dynamics simulations is one of the main PITZ goals. Detailed experimental studies on photo emission processes, thermal emittance, transverse and longitudinal phase space of the electron beam are being performed together with beam dynamics simulations. This aims to result in better understanding of beam dynamics in high brightness photo injectors. Experimentally obtained photo injector characteristics (like thermal emittance) have to be used in an additional optimization of the photo injector resulting in more realistic beam dynamics simulations. Results of these studies will be reported as well.
2

Gnodtke, Christian, Ulf Saalmann, and Jan-Michael Rost. "Dynamics of photo-activated Coulomb complexes." New Journal of Physics 13, no. 1 (January 21, 2011): 013028. http://dx.doi.org/10.1088/1367-2630/13/1/013028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kimura, Yoshifumi, Tsuyoshi Yamaguchi, and Noboru Hirota. "Photo-excitation dynamics of Phenol Blue." Physical Chemistry Chemical Physics 2, no. 7 (2000): 1415–20. http://dx.doi.org/10.1039/a909485g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Masuhara, Hiroshi, Akira Itaya, and Hiroshi Fukumura. "Photo-excitation dynamics of polymeric materials." Kobunshi 38, no. 8 (1989): 832–35. http://dx.doi.org/10.1295/kobunshi.38.832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jacobson, Michele L., and Kathy L. Rowlen. "Photo-dynamics on thin silver films." Chemical Physics Letters 401, no. 1-3 (January 2005): 52–57. http://dx.doi.org/10.1016/j.cplett.2004.11.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gratz, H., A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler. "Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions." Journal of Photochemistry and Photobiology A: Chemistry 128, no. 1-3 (November 1999): 101–9. http://dx.doi.org/10.1016/s1010-6030(99)00174-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kumazoe, Hiroyuki, Aravind Krishnamoorthy, Lindsay Bassman, Fuyuki Shimojo, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta. "Photo-induced Contraction of Layered Materials." MRS Advances 3, no. 6-7 (2018): 333–38. http://dx.doi.org/10.1557/adv.2018.127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTUltrafast atomic dynamics induced by electronic and optical excitation opens new possibilities for functionalization of two-dimensional and layered materials. Understanding the impact of perturbed valence band populations on both the strong covalent bonds and relatively weaker van der Waals interactions is important for these anisotropic systems. While the dynamics of strong covalent bonds has been explored both experimentally and theoretically, relatively fewer studies have focused on the impact of excitation on weak bonds like van der Waals and hydrogen-bond interactions. We perform non-adiabatic quantum molecular dynamics (NAQMD) simulations to study photo-induced dynamics in MoS2 bilayer. We observe photo-induced non-thermal contraction of the interlayer distance in the MoS2 bilayer within 100 femtoseconds after photoexcitation. We identify a large photo-induced redistribution of electronic charge density, whose Coulombic interactions could explain the observed inter-layer contraction.
8

Hashimoto, Hiroshi, Hiroaki Matsueda, Hitoshi Seo, and Sumio Ishihara. "Photo-Induced Dynamics in Charge-Frustrated Systems." Journal of the Physical Society of Japan 83, no. 12 (December 15, 2014): 123703. http://dx.doi.org/10.7566/jpsj.83.123703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Miah, M. Idrish, and Lubna Naheed. "Photo-induced excitonic spin dynamics in GaAs." Optical and Quantum Electronics 47, no. 5 (August 13, 2014): 1239–44. http://dx.doi.org/10.1007/s11082-014-9981-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Asham, Mina D., Walid A. Zein, and Adel H. Phillips. "Photo-Induced Spin Dynamics in Nanoelectronic Devices." Chinese Physics Letters 29, no. 10 (October 2012): 108502. http://dx.doi.org/10.1088/0256-307x/29/10/108502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ilnytskyi, J., A. Slyusarchuk, and M. Saphiannikova. "Photo-controllable percolation of decorated nanoparticles in a nanopore: molecular dynamics simulation study." Mathematical Modeling and Computing 3, no. 1 (July 1, 2016): 33–42. http://dx.doi.org/10.23939/mmc2016.01.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

ANIJA, M., SUNIL KUMAR, N. KAMARAJU, NEHA TIWARI, S. K. KULKARNI, and A. K. SOOD. "ULTRAFAST DYNAMICS OF GOLD NANORODS: TUNING BETWEEN PHOTO-BLEACHING AND PHOTO-INDUCED ABSORPTION." International Journal of Nanoscience 10, no. 04n05 (August 2011): 687–91. http://dx.doi.org/10.1142/s0219581x11009179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report ultrafast electron dynamics in gold nanorods investigated using 80 fs laser pulses centered at 1.57 eV. Five types of nanorod colloidal suspensions in water having their longitudinal surface plasmon peak (E LSP ) on either side of the laser photon energy (EL) have been studied. For E LSP > EL, photo-induced absorption with single decay time constant is observed. On the other hand, for E LSP < EL, photo-bleaching is observed having bi-exponential decay dynamics; the faster one between 1–3 ps and slower one between 7 ps to 22 ps both of them increasing almost linearly with the difference |EL – E LSP |. These time constants increase linearly with the pump intensity. Simulations have been carried out to understand the interplay between photo-bleaching and photo-induced absorption.
13

Takaishi, Shinya, and Masahiro Yamashita. "Solitons, polarons and their dynamics in mixed-valence halogen-bridged MX-chains." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1862 (September 7, 2007): 93–100. http://dx.doi.org/10.1098/rsta.2007.2142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article describes the photo-generation processes of elementary excitations such as solitons and polarons, and their dynamics in the one-dimensional (1D) halogen-bridged Pt compound [Pt(en) 2 Br](ClO 4 ) 2 . Spin-solitons were photo-generated via relaxation processes of CT excitons and self-trapped excitons, made evident by photo-induced absorption and photo-induced electron spin resonance spectra. Polarons were not generated from CT excitons. Diffusion of spin-solitons on the 1D chain was studied quantitatively by analysing 1 H NMR spin-lattice relaxation times ( T 1 ).
14

Ohnishi, Hiromasa, and Norikazu Tomita. "Two Topics of Optical Excitation Dynamics, Newly Unveiled by the Time- and Momentum-Resolved Photo-Electron Emission from the Conduction Band of GaAs: A Theoretical Review." Applied Sciences 8, no. 10 (October 1, 2018): 1788. http://dx.doi.org/10.3390/app8101788.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We review the recent two topics of optical excitation and relaxation dynamics, newly unveiled by the time- and momentum-resolved photo-electron emission from the conduction band of GaAs. One is the real-time collective relaxation dynamics, resulting in the Fermi degeneracy formation in the Γ valley. We show that it takes almost infinite time to realize the exact Fermi degeneracy, due to a restricted selection rule for the intravalley transition of the photo-excited electrons. The other is the spontaneous and instantaneous intervalley transition from the Γ valley to the L one. By considering the electron-phonon coupling before the photo-excitation, such spontaneous intervalley transition is realized within the framework of the Franck–Condon principle of the photo-excitation.
15

Liu, Qianchen, Yutong Zhang, Qi Zhang, Qianshun Wei, Dexia Zhou, Guorong Wu, Kaicong Cai, Kaijun Yuan, and Hongtao Bian. "Understanding the intramolecular vibrational energy transfer and structural dynamics of anionic ligands in a photo-catalytic CO2 reduction catalyst." Physical Chemistry Chemical Physics 21, no. 41 (2019): 23026–35. http://dx.doi.org/10.1039/c9cp05029a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The knowledge of intramolecular vibrational energy redistribution (IVR) and structural dynamics of rhenium photo-catalysts is essential for understanding the mechanism of the photo-catalytic process of CO2 reduction.
16

YAWO, Hiromu, Saki TANIMOTO, Toru ISHIZUKA, and Tetsuo TAKAHASHI. "Molecular Dynamics of Photo-electrical Transducing Proteins, Channelrhodopsins." Seibutsu Butsuri 52, no. 5 (2012): 226–29. http://dx.doi.org/10.2142/biophys.52.226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gao, C.-Z., P. Wopperer, P. M. Dinh, E. Suraud, and P.-G. Reinhard. "On the dynamics of photo-electrons in C60." Journal of Physics B: Atomic, Molecular and Optical Physics 48, no. 10 (April 14, 2015): 105102. http://dx.doi.org/10.1088/0953-4075/48/10/105102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Leitner, T., F. Buchner, A. Luebcke, A. Rouzée, L. Rading, P. Johnsson, M. Odelius, H. O. Karlsson, M. Vrakking, and Ph Wernet. "Coherent wave packet dynamics in photo-excited Nal." EPJ Web of Conferences 41 (2013): 02027. http://dx.doi.org/10.1051/epjconf/20134102027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Harper, P. G., and J. Pfab. "Fragmentation dynamics of the photo-dissociated triatomic molecule." Molecular Physics 78, no. 6 (April 20, 1993): 1337–50. http://dx.doi.org/10.1080/00268979300100891.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Werdehausen, Daniel, Tomohiro Takayama, Gelon Albrecht, Yangfan Lu, Hidenori Takagi, and Stefan Kaiser. "Photo-excited dynamics in the excitonic insulator Ta2NiSe5." Journal of Physics: Condensed Matter 30, no. 30 (July 5, 2018): 305602. http://dx.doi.org/10.1088/1361-648x/aacd76.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Shimosako, Naoki, Yuta Inose, Kazuhiro Ema, Yusuke Igawa, and Katsumi Kishino. "Photo-generated Carrier Dynamics of InGaN/GaN Nanocolumns." Physics Procedia 76 (2015): 42–46. http://dx.doi.org/10.1016/j.phpro.2015.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Qian, Tingting, Mei Wang, Jiao Wang, Rongrong Zhu, Xiaolie He, Xiaoyu Sun, Dongmei Sun, Qingxiu Wang, and ShiLong Wang. "Transient spectra study on photo-dynamics of curcumin." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 166 (September 2016): 38–43. http://dx.doi.org/10.1016/j.saa.2016.04.051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hashimoto, Masafumi, Kazuya Fukunaga, Kazuaki Kouyama, Jumpei Kamimura, Hideyuki Kunugita, Kazuhiro Ema, Akihiko Kikuchi, and Katsumi Kishino. "Photo-excited carrier relaxation dynamics in InN films." Journal of Physics: Conference Series 193 (November 1, 2009): 012053. http://dx.doi.org/10.1088/1742-6596/193/1/012053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Harriman, Anthony. "(Photo)isomerization dynamics of merocyanine dyes in solution." Journal of Photochemistry and Photobiology A: Chemistry 65, no. 1-2 (April 1992): 79–93. http://dx.doi.org/10.1016/1010-6030(92)85034-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hunsche, S., and H. Kurz. "Coherent lattice dynamics of highly photo-excited tellurium." Applied Physics A: Materials Science & Processing 65, no. 3 (September 1, 1997): 221–29. http://dx.doi.org/10.1007/s003390050570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hobley, Jonathan, Ursula Pfeifer-Fukumura, Michael Bletz, Tsuyoshi Asahi, Hiroshi Masuhara, and Hiroshi Fukumura. "Ultrafast Photo-Dynamics of a Reversible Photochromic Spiropyran†." Journal of Physical Chemistry A 106, no. 10 (March 2002): 2265–70. http://dx.doi.org/10.1021/jp012564a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Miah, M. Idrish. "Photo-Induced Spin Dynamics in Semiconductor Quantum Wells." Nanoscale Research Letters 4, no. 4 (January 17, 2009): 385–88. http://dx.doi.org/10.1007/s11671-008-9241-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Shim, Je-Ho, Chul-Hoon Kim, Hong-Guang Piao, Sang-Hyuk Lee, Kyung Min Lee, Jong-Ryul Jeong, Seung-Young Park, Yeon Suk Choi, Dong Eon Kim, and Dong-Hyun Kim. "Intriguing Hysteresis Dynamics in Ultrafast Photo‐Induced Magnetization." physica status solidi (b) 257, no. 3 (September 20, 2019): 1900307. http://dx.doi.org/10.1002/pssb.201900307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Spinlove, K. Eryn, Gareth W. Richings, Michael A. Robb, and Graham A. Worth. "Curve crossing in a manifold of coupled electronic states: direct quantum dynamics simulations of formamide." Faraday Discussions 212 (2018): 191–215. http://dx.doi.org/10.1039/c8fd00090e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Jiang, Xiantao, Weichun Huang, Rui Wang, Hongbo Li, Xuefeng Xia, Xuemei Zhao, Lanping Hu, Tingting Chen, Yanfeng Tang, and Han Zhang. "Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection." Nanoscale 12, no. 20 (2020): 11232–41. http://dx.doi.org/10.1039/c9nr10235c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Selenium, as one of the chain-like materials, has attracted significant attention recently. Here, we investigated the photo-carrier dynamics in Se quantum dots and demonstrated its use for fast photo-detecting in visible regime.
31

Zhao, Mingming, Yan Wang, Niannian Wu, Jun Zhang, and Bo Liu. "Photo-assisted synthesis of inorganic polyoxovanadate." Dalton Transactions 49, no. 28 (2020): 9662–67. http://dx.doi.org/10.1039/d0dt01945c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report a photo-assisted synthesis of inorganic mixed-valence polyoxovanadate, [C9H14N]6[V15O36Cl], and reveal the kinetics of oxovanadate formation and the dynamics of crystal growth under photo irradiation.
32

MATSUMOTO, Yoshiyasu. "Molecular Beam Scattering and Desorption Dynamics. Dynamics of Photo-Induced Desorption and Dissociation." Hyomen Kagaku 16, no. 9 (1995): 557–63. http://dx.doi.org/10.1380/jsssj.16.557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Woo, Kyung Chul, and Sang Kyu Kim. "Mode-specific excited-state dynamics of N-methylpyrrole." Physical Chemistry Chemical Physics 21, no. 26 (2019): 14387–93. http://dx.doi.org/10.1039/c9cp00113a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Gerlinger, Kathinka, Bastian Pfau, Martin Hennecke, Lisa-Marie Kern, Ingo Will, Tino Noll, Markus Weigand, et al. "Pump–probe x-ray microscopy of photo-induced magnetization dynamics at MHz repetition rates." Structural Dynamics 10, no. 2 (March 2023): 024301. http://dx.doi.org/10.1063/4.0000167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with 30 nm spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond time scales, which is of technological relevance, especially in the field of magnetism.
35

Munjal, Pooja, and Kamal P. Singh. "Optically probing picometer-resolved photo-dynamics of solid surfaces." URSI Radio Science Bulletin 2019, no. 370 (September 2019): 12–16. http://dx.doi.org/10.23919/ursirsb.2019.8956139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Goldie, David. "Trap Generation Dynamics in Photo-Oxidised DEH Doped Polymers." Coatings 5, no. 3 (July 3, 2015): 263–77. http://dx.doi.org/10.3390/coatings5030263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

SHIBUYA, Kazuhiko, and Kazuhide TSUJI. "Photo-Excited State Dynamics of van der Waals Molecules." Journal of the Spectroscopical Society of Japan 48, no. 5 (1999): 193–206. http://dx.doi.org/10.5111/bunkou.48.193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

FUJII, K., T. TOMARU, T. OHYAMA, and E. OTSUKA. "DYNAMICS OF ELECTRON-EXCITON SYSTEM IN PHOTO-EXCITED Ge." Journal of the Magnetics Society of Japan 11, S_1_ISMO (1987): S1_125–128. http://dx.doi.org/10.3379/jmsjmag.11.s1_125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Gao, Yan, Christine C. Pemberton, Yao Zhang та Peter M. Weber. "On the ultrafast photo-induced dynamics of α-terpinene". Journal of Chemical Physics 144, № 19 (21 травня 2016): 194303. http://dx.doi.org/10.1063/1.4948629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Xie, Haochen, Saurabh Basu, and Edward C. DeMeter. "Molecular Dynamics Simulations of Photo-Induced Free Radical Polymerization." Journal of Chemical Information and Modeling 60, no. 12 (December 1, 2020): 6314–27. http://dx.doi.org/10.1021/acs.jcim.0c01156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Matsumoto, Yoshiyasu. "Photochemistry and Photo-Induced Ultrafast Dynamics at Metal Surfaces." Bulletin of the Chemical Society of Japan 80, no. 5 (May 15, 2007): 842–55. http://dx.doi.org/10.1246/bcsj.80.842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Handayani, I. P., R. I. Tobey, J. Janusonis, D. A. Mazurenko, N. Mufti, A. A. Nugroho, M. O. Tjia, T. T. M. Palstra, and P. H. M. van Loosdrecht. "Dynamics of photo-excited electrons in magnetically ordered TbMnO3." Journal of Physics: Condensed Matter 25, no. 11 (February 19, 2013): 116007. http://dx.doi.org/10.1088/0953-8984/25/11/116007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Yeh, A. T. "Ultrafast Electron Localization Dynamics Following Photo-Induced Charge Transfer." Science 289, no. 5481 (August 11, 2000): 935–38. http://dx.doi.org/10.1126/science.289.5481.935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Stolow, Albert. "The three pillars of photo-initiated quantum molecular dynamics." Faraday Discussions 163 (2013): 9. http://dx.doi.org/10.1039/c3fd90021e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Hovhannisyan, Vladimir, Wen Lo, Chieh Hu, Shean-Jen Chen, and Chen Yuan Dong. "Dynamics of femtosecond laser photo-modification of collagen fibers." Optics Express 16, no. 11 (May 19, 2008): 7958. http://dx.doi.org/10.1364/oe.16.007958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Terpugov, E. L., and O. V. Degtyareva. "Photo-induced processes and the reaction dynamics of bacteriorhodopsin." Biophysics 60, no. 2 (March 2015): 232–43. http://dx.doi.org/10.1134/s0006350915020189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Liu, H. T., J. P. Müller, M. Beutler, M. Ghotbi, F. Noack, W. Radloff, N. Zhavoronkov, C. P. Schulz, and I. V. Hertel. "Ultrafast photo-excitation dynamics in isolated, neutral water clusters." Journal of Chemical Physics 134, no. 9 (March 2, 2011): 094305. http://dx.doi.org/10.1063/1.3556820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Sasaki, Minoru, Guang Xun Tai, Satoru Tamura, and Masasi Inoue. "Photo-induced carrier dynamics of high Tc oxide superconductors." Physica C: Superconductivity 185-189 (December 1991): 959–60. http://dx.doi.org/10.1016/0921-4534(91)91703-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Bai, Huiyu, Jing Xu, Yanxia Zhang, Xiaoya Liu, and Orlando J. Rojas. "Dynamics of cyclodimerization and viscoelasticity of photo-crosslinkable PVA." Journal of Polymer Science Part B: Polymer Physics 53, no. 5 (November 24, 2014): 345–55. http://dx.doi.org/10.1002/polb.23634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tachibana, Yasuhiro. "Photo-Generated Charge Carrier Dynamics in Metal Oxide Photocatalysts." ECS Meeting Abstracts MA2023-02, no. 47 (December 22, 2023): 2335. http://dx.doi.org/10.1149/ma2023-02472335mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solar water splitting is one of the most attractive energy carrier generation processes to utilize solar energy. Light generated hydrogen is a clean energy carrier, since their consumption for energy generation produces only water. Moreover, generated hydrogen can be stored and used whenever required. Hydrogen is mostly used as a feedstock in the chemical and petrochemical industries, e.g. production of ammonia, methanol and fertilisers.[1] The photocatalytic solar water splitting process has been studied extensively over the last half century. However, despite the efforts, no ideal photocatalyst has yet been identified to meet three main requirements for commercialisation: (1) low cost, (2) high solar to hydrogen (STH) efficiency and (3) durability. Over the last two decades, considerable efforts have focused on developing visible light active photocatalysts, and some promising photocatalysts with relatively high water splitting efficiency were discovered.[2] In contrast to search of appropriate photocatalyst (nano)materials, mechanisms of photocatalytic water splitting reactions, in particular charge carrier dynamics of photocatalysts, were little studied. Understanding charge carrier dynamics in photocatalysts will certainly provide an opportunity to design high efficiency photocatalysts. In this presentation, we will show dynamics of photo-generated charge carries in metal oxide photocatalyst by employing a series of transient absorption spectroscopies covering from 150 fs to 100 s over UV-VIS-NIR wavelength ranges.[2] Correlation of the charge carrier dynamics with photocatalysis reactions will be discussed. This work was partly supported by ARC DP fund (DP180103815) and ARC LIEF funds (LE170100235 and LE200100051), Australia, and the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant number 2023-45 and 2022-99), Japan. We also acknowledge supports from School of Engineering, RMIT University, and Forefront Research Center, Faculty of Science, Osaka University. References [1] N. Armaroli and V. Balzani, ChemSusChem 4 (2011) 21-36. [2] H. Mai, D. Chen, Y. Tachibana, H. Suzuki, R. Abe, Rachel A. Caruso, Chem. Soc. Rev., 50(24) 13692-13729 (2021). [3] H. Liu, M. Liu, R. Nakamura, Y. Tachibana, Appl. Catal. B-Environ., 296 (2021) 120226.

До бібліографії