Добірка наукової літератури з теми "Phonon angular momentum"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Phonon angular momentum".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Phonon angular momentum"
Yu Hang, Xu Xi-Fang, Niu Qian, and Zhang Li-Fa. "Phonon angular momentum and chiral phonons." Acta Physica Sinica 67, no. 7 (2018): 076302. http://dx.doi.org/10.7498/aps.67.20172407.
Повний текст джерелаZhu, Zhihan, Wei Gao, Chunyuan Mu, and Hongwei Li. "Reversible orbital angular momentum photon–phonon conversion." Optica 3, no. 2 (February 19, 2016): 212. http://dx.doi.org/10.1364/optica.3.000212.
Повний текст джерелаPark, Sungjoon, and Bohm-Jung Yang. "Phonon Angular Momentum Hall Effect." Nano Letters 20, no. 10 (September 21, 2020): 7694–99. http://dx.doi.org/10.1021/acs.nanolett.0c03220.
Повний текст джерелаKrstovska, Danica, Eun Sang Choi та Eden Steven. "Giant Angular Nernst Effect in the Organic Metal α-(BEDT-TTF)2KHg(SCN)4". Magnetochemistry 9, № 1 (10 січня 2023): 27. http://dx.doi.org/10.3390/magnetochemistry9010027.
Повний текст джерелаTodorov, Tchavdar N., Daniel Dundas, Anthony T. Paxton, and Andrew P. Horsfield. "Nonconservative current-induced forces: A physical interpretation." Beilstein Journal of Nanotechnology 2 (October 27, 2011): 727–33. http://dx.doi.org/10.3762/bjnano.2.79.
Повний текст джерелаLeckron, Kai, Alexander Baral, and Hans Christian Schneider. "Exchange scattering on ultrafast timescales in a ferromagnetic two-sublattice system." Applied Physics Letters 120, no. 10 (March 7, 2022): 102407. http://dx.doi.org/10.1063/5.0080379.
Повний текст джерелаKOTA, V. K. B. "EIKONAL SCATTERING IN THE sdg INTERACTING BOSON MODEL: ANALYTICAL RESULTS IN THE SUsdg(3) LIMIT AND THEIR GENERALIZATIONS." Modern Physics Letters A 08, no. 11 (April 10, 1993): 987–96. http://dx.doi.org/10.1142/s0217732393002464.
Повний текст джерелаChen, Zhanghui, and Lin-Wang Wang. "Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms." Science Advances 5, no. 6 (June 2019): eaau8000. http://dx.doi.org/10.1126/sciadv.aau8000.
Повний текст джерелаChen, Zhanghui, Jun-Wei Luo, and Lin-Wang Wang. "Revealing angular momentum transfer channels and timescales in the ultrafast demagnetization process of ferromagnetic semiconductors." Proceedings of the National Academy of Sciences 116, no. 39 (September 9, 2019): 19258–63. http://dx.doi.org/10.1073/pnas.1907246116.
Повний текст джерелаMiedema, P. S., M. Beye, R. Könnecke, G. Schiwietz, and A. Föhlisch. "The angular- and crystal-momentum transfer through electron–phonon coupling in silicon and silicon-carbide: similarities and differences." New Journal of Physics 16, no. 9 (September 30, 2014): 093056. http://dx.doi.org/10.1088/1367-2630/16/9/093056.
Повний текст джерелаДисертації з теми "Phonon angular momentum"
Bistoni, Oliviero. "Intrinsic vibrational angular momentum driven by non-adiabatic effects in non-collinear magnetic systems." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/328688.
Повний текст джерелаGéneaux, Romain. "Le moment angulaire de la lumière en génération d'harmoniques d'ordre élevé." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS474/document.
Повний текст джерелаAngular momentum is an ubiquitous quantity in all areas of physics. Just like matter, radiation carries angular momentum. It can be decomposed in two parts, namely the spin angular momentum (SAM) and the orbital angular momentum (OAM). Each one of these components has very specific properties and lead to numerous applications using visible and infrared light. In this thesis, we study the behavior of these two types of light angular momentum in a very non-linear process called high harmonic generation (HHG). In this physical process known since 1987, an intense infrared laser is focused into an atomic or molecular gas jet, which in the right intensity regime allows to generate a radiation which has a short wavelength (extreme ultraviolet domain) and is extremely brief (attosecond, 1 as = 10⁻¹⁸ s).We begin by describing theoretically this process, as well as defining in depth the notion of light angular momentum. We then study HHG from an infrared laser carrying OAM. This allows to obtain an unique light source, generating ultrashort light pulses of controlled orbital angular momentum with a wavelength of the order of 10 nm. We then study GHOE from beams carrying MAS. Using a resonance from the generation gas, we manage to transfer this angular momentum to the emitted extreme ultraviolet radiation. This radiation is finally used to measure photoionisation circular dichroisms in chiral molecules, measurements previously restricted to synchrotron sources. This paves the way towards chiroptic time resolved measurement on a femto/attosecond timescale
Chang, Yuan-Pin. "Novel probes of angular momentum polarization." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d3880edf-436a-415e-8a74-6b1c0fd26e65.
Повний текст джерелаLuo, Siwei. "Photon Angular Momentum in Semi-classical Physics and Wave Propagation in Moving Medium." OpenSIUC, 2013. https://opensiuc.lib.siu.edu/theses/1257.
Повний текст джерелаTkachenko, Georgiy. "Optical trapping and manipulation of chiral microspheres controlled by the photon helicity." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0102/document.
Повний текст джерелаExploiting the angular momentum degree of freedom of light to control the mechanical effects that result from light-matter exchanges of linear momentum is an intriguing challenge that may open new routes towards enhanced optical manipulation of material systems. In this context, our work addresses the interplay between the chirality of matter and the chirality of optical fields. Experimentally, this is done by using cholesteric liquid crystal droplets interacting with circularly polarized light and we provide with theoretical developments to quantitatively support our observations. Our main result is the demonstration of optical radiation force controlled by the photon helicity. This phenomenon is then used to demonstrate the optofluidic sorting of material chirality and the helicity-dependent three-dimensional optical trapping of chiral liquid crystal microspheres
Maccalli, Stefania. "Development and testing of quasi-optical devices for Photon Orbital Angular Momentum manipulation at millimetre wavelengths." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/development-and-testing-of-quasioptical-devices-for-photon-orbital-angular-momentum-manipulation-at-millimetre-wavelengths(91ab3ac8-62c5-4d3a-b063-4d162d3b61a5).html.
Повний текст джерелаDjordjevic, Ivan B. "Integrated Optics Modules Based Proposal for Quantum Information Processing, Teleportation, QKD, and Quantum Error Correction Employing Photon Angular Momentum." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/615122.
Повний текст джерелаChopinaud, Aurélien. "Atomes et vortex optiques : conversion de moments orbitaux de lumière en utilisant la transition à deux photons 5S-5D du rubidium." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS155/document.
Повний текст джерелаThe orbital angular momentum of light (OAM) is a quantized quantity arising from the azimuthal phase carried by optical vortices and is well-known for quantum technology applications. Its set of values is theoretically infinite.In this context this thesis experimentally study the conversion of optical vortices in a rubidium vapor through the 5S₁/₂ − 5D₅/₂ stimulated Raman transition. When the atoms are illuminated with laser beams at 780 nm and 776 nm they generate two coherent light beams at 5,23 μm and 420 nm. We investigate the blue light when one laser or both are optical vortices, in particular Laguerre-Gaussian modes. In a first part we show that if the laser at 776 nm carries an OAM the blue light is an optical vortex with an OAM which respects azimutal and Gouy phase matchings. We further show that the conversion is efficient on a large set of OAM from -50 to +50, that the efficiency is governed by the product of the input laser intensities and that the blue light behaves like a pure Laguerre-Gaussian mode. In a second part we demonstrate the conversion of a vortex superposition or a pair of coaxial vortices and that the OAM of the emitted light obeys the conservation rule of total OAM. For each studied case we propose a four wave mixing model establishing selection rules for the conversion process. This work opens possibilities towards OAM conversion using higher atomic levels
Dixon, Mark. "Studies of spin and charge momentum densities using Compton scattering." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340475.
Повний текст джерелаVitullo, Dashiell. "Propagation of Photons through Optical Fiber: Spin-Orbit Interaction and Nonlinear Phase Modulation." Thesis, University of Oregon, 2016. http://hdl.handle.net/1794/20708.
Повний текст джерелаКниги з теми "Phonon angular momentum"
Hamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1.
Повний текст джерела1935-, Allen L., Barnett S. M, and Padgett Miles J, eds. Optical angular momentum. Bristol: Institute of Physics Pub., 2003.
Знайти повний текст джерелаTwisted photons: Applications of light with orbital angular momentum. Weinheim, Germany: Wiley-VCH, 2011.
Знайти повний текст джерелаHamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore Pte. Limited, 2022.
Знайти повний текст джерелаHamada, Masato. Theory of Generation and Conversion of Phonon Angular Momentum. Springer Singapore Pte. Limited, 2021.
Знайти повний текст джерелаBarnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2016.
Знайти повний текст джерелаBarnett, S. M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2020.
Знайти повний текст джерелаBarnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2003.
Знайти повний текст джерелаBarnett, Stephen M., L. Allen, and Miles J. Padgett. Optical Angular Momentum. Taylor & Francis Group, 2016.
Знайти повний текст джерелаBarnett, Stephen, Les Allen, and Miles Padgett. Optical Angular Momentum. Taylor & Francis Group, 2010.
Знайти повний текст джерелаЧастини книг з теми "Phonon angular momentum"
Hamada, Masato. "Phonon Thermal Edelstein Effect." In Theory of Generation and Conversion of Phonon Angular Momentum, 29–48. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_3.
Повний текст джерелаHamada, Masato. "Magnetoelectric Effect for Phonons." In Theory of Generation and Conversion of Phonon Angular Momentum, 49–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_4.
Повний текст джерелаHamada, Masato. "Background." In Theory of Generation and Conversion of Phonon Angular Momentum, 7–27. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_2.
Повний текст джерелаHamada, Masato. "Introduction." In Theory of Generation and Conversion of Phonon Angular Momentum, 1–5. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_1.
Повний текст джерелаHamada, Masato. "Conclusion." In Theory of Generation and Conversion of Phonon Angular Momentum, 89–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_6.
Повний текст джерелаHamada, Masato. "Conversion Between Spins and Mechanical Rotations." In Theory of Generation and Conversion of Phonon Angular Momentum, 69–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4690-1_5.
Повний текст джерелаKeller, Ole. "Photon Angular Momentum." In Quantum Theory of Near-Field Electrodynamics, 333–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17410-0_17.
Повний текст джерелаLoke, Vincent L. Y., Theodor Asavei, Simon Parkin, Norman R. Heckenberg, Halina Rubinsztein-Dunlop, and Timo A. Nieminen. "Driving Optical Micromachines with Orbital Angular Momentum." In Twisted Photons, 93–115. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch6.
Повний текст джерелаAllen, Les, and Miles Padgett. "The Orbital Angular Momentum of Light: An Introduction." In Twisted Photons, 1–12. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch1.
Повний текст джерелаFickler, Robert. "Entanglement of High Angular Momenta." In Quantum Entanglement of Complex Structures of Photons, 35–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22231-8_3.
Повний текст джерелаТези доповідей конференцій з теми "Phonon angular momentum"
Zhu, Zhihan, Liwen Sheng, Chunyuan Mu, and Wei Gao. "Orbital Angular Momentum in Photon-Phonon Coupling." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_qels.2016.ftu3a.1.
Повний текст джерелаNemirovsky-Levy, Liat, Uzi Pereg, and Mordechai Segev. "Increasing Communication Rates Using Photonic Hyperentangled States." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu5a.41.
Повний текст джерелаDjordjevic, Ivan B., and Yequn Zhang. "Photon angular momentum based multidimensional quantum key distribution." In 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876370.
Повний текст джерелаTauchert, S. R., M. Volkov, D. Ehberger, D. Kazenwadel, M. Evers, H. Lange, A. Donges, et al. "Polarized Phonons Carry Angular Momentum in Ultrafast Demagnetization." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu2a.1.
Повний текст джерелаElias, Nicholas M. "Primum Non Torquere∗ - Photon Orbital Angular Momentum in Astronomy." In Propagation Through and Characterization of Distributed Volume Turbulence. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/pcdvt.2013.ptu3f.1.
Повний текст джерелаFranke-Arnold, Sonja. "Orbital angular momentum of photons, atoms, and electrons." In SPIE OPTO, edited by Jesper Glückstad, David L. Andrews, and Enrique J. Galvez. SPIE, 2013. http://dx.doi.org/10.1117/12.2002984.
Повний текст джерелаTang, Ruikai, Xiongjie Li, Wenjie Wu, Haifeng Pan, Heping Zeng, and E. Wu. "Quantum information interface for orbital angular momentum photons." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_at.2015.jw2a.5.
Повний текст джерелаLi, Yongnan, Ling-Jun Kong, Zhi-Cheng Ren, Chenghou Tu, and Hui-Tian Wang. "Trajectory-based unveiling of angular momentum of photons." In Frontiers in Optics. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/fio.2014.ftu1c.5.
Повний текст джерелаLiu, Xiao, Dong Beom Kim, Virginia O. Lorenz, and Siddharth Ramachandran. "Shaping Biphoton Spectral Correlations with Orbital Angular Momentum Fiber Modes." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qth4b.1.
Повний текст джерелаJha, A. K., B. Jack, E. Yao, J. Leach, R. W. Boyd, G. S. Buller, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett. "Fourier Relationship Between Angular Position and Orbital Angular Momentum of Entangled Photons." In Laser Science. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/ls.2008.lthe2.
Повний текст джерела